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Up-Down Symmetric Configurations 

• Magnetohydrodynamic equilibrium calculations are a crucial tool for 
magnetic confinement. 

Motivation

• PINN calculates residual of PDE and Boundary condition

Physics-informed Neural Network

• Grad-Shafranov Equation is a 2D ideal 
MHD equilibrium equation

Grad-Shafranov Equation 

• Expand to 3D MHD to 
reconstruct equilibria for 
stellarator optimization

Future Works

• BFGS vs. Adam
• Number of Adam optimization 

steps does effect BFGS 
convergence

Hyperparameter Scan

• Single null divertor
• 41.3 seconds to train

• 𝑨 = 𝟏. 𝟎 (Force Free)

• 𝑰𝑻𝑬𝑹
• A = −0.155

• 27.2 seconds to train • 𝑵𝑺𝑻𝑿
• A = 1.0

• 23.2 seconds to train

• 𝑺𝒑𝒉𝒆𝒓𝒐𝒎𝒂𝒌
• A = 1.0

• 29.4 seconds to 
train

• 𝑭𝑹𝑪
• A = 0.0

• 42.1 seconds to 
train

• Network Architecture
• For Adam, there is no significant 

improvement after depth=3
• For BFGS, it all converged nicely
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Shafranov Shift in NSTX

Divertor Configuration – X-points

• Double null divertor
• 32.1 seconds to train

Boundary Conditions

Collocation Points

• Collocation points are where 
the PDE residuals are 
evaluated

• Possible to add data from 
numerical simulation or 
experiment
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• 21.6 seconds to train• 𝑨 = 𝟎. 𝟎 (Low-𝛽)

• 22.4 seconds to train

• 26.4 seconds to train• 𝑨 = −𝟎. 𝟕 (𝛽 limit)

Using Cerfon Boundary Conditions

Using 1024 Dirichlet Boundary Conditions

• Parametric-PINN to expand our input to included A(current/pressure 
profile) and shape parameters (i.e. eps, kappa, and delta)

• Activation Function
• Activation functions should be 

differentiable to solve GS 
equation with PINN

All	calculations	were	done	with	a	
2019	MacBook	Pro	(2.6	GHz	6-Core	
Intel	Core	i7)

• Learning Rate
• BFGS performs great regardless 

of previous learning rates of 
Adam

• We are looking at a particular set of 
analytic solutions: Solov’ev Profile

• The reason we use an analytic solution 
is not to train but to check
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• A fast solver for MHD equilibria is needed for real-time reconstructions 
and incorporation in optimization loops such as those that occur in 
stellarator shape optimization.

• Here we explored physics-informed neural networks (PINNs) as a solver 
for producing 2D MHD equilibria.

• Optionally, we can add data(i.e. experimental or numerical solution)
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