

Optimizing stellarators to maximize turbulent impurity transport over energy transport

Stefan Buller, Rahul Gaur and Matt Landreman

University of Maryland

Overview

- ▶ Neoclassically optimized stellarators like Wendelstein 7-X may need turbulent transport to avoid impurity accumulation.
- ▶ Performed quasi-linear calculations of impurity flux (Γ_z) and energy flux (Q) in ARIES-CS, NCSX and **TJ-II** geometries.
- ▶ Used SIMSOPT and STELLA to optimize ARIES-CS for maximal Γ_z/Q in an ion temperature gradient (ITG) turbulence scenario.

All geometries scaled to ARIES-CS minor radius a = 1.7 m and $B_{00} = 5.68$.

Scalar optimizable

- Want to have fastest/cheapest measure of Γ_z/Q .
- Evaluate Γ_z/Q ratio for $k_x = 0$ and the fastest growing mode at low k_y .
- ▶ Not suitable for ETG.
- Find lowest resolution for which ratio at this k_y is converged.

- ► Three sets of gradients for the bulk species are considered ("ITG", "TEM", "ETG")

	a/L_{Ti}	a/L_n	a/L_{Te}
ITG	4.0	0.0	0.0
TEM	0.0	4.0	0.0
ETG	0.0	0.0	4.0

Table 1: The three different gradient scenarios

Trace Ar+16 impurity (Z = 16, A = 40) with gradients $a/L_{Tz} = 2.75$, $a/L_{nz} = 0.42$.

Definitions

Electrostatic gyrokinetics with kinetic electrons.

Gyrokinetic equation

$$\frac{\partial g_{s}}{\partial t} + v_{\parallel} \vec{b} \cdot \nabla z \left(\frac{\partial g_{s}}{\partial z} + \frac{Z_{s} e}{T_{s}} \frac{\partial \langle \varphi \rangle_{\vec{R}}}{\partial z} F_{s} \right) - \frac{\mu_{s}}{m_{s}} \vec{b} \cdot \nabla B \frac{\partial g_{s}}{\partial v_{\parallel}} + \vec{v}_{Ms} \cdot \left(\nabla_{\perp} g_{s} + \frac{Z_{s} e}{T_{s}} \nabla_{\perp} \langle \varphi \rangle_{\vec{R}} F_{s} \right) + \langle \vec{v}_{E} \rangle_{\vec{R}} \cdot \nabla_{\perp} g_{s} + \langle \vec{v}_{E} \rangle_{\vec{R}} \cdot \nabla_{E} F_{s} = \mathbf{0},$$
(1)

► Quasi-neutrality

$$\mathbf{0} = \sum_{s} Z_{s} \delta n_{s} = \sum_{s} Z_{s} \left(g_{s} - Z_{s} \frac{Z_{s} e}{T_{s}} F_{s} [\varphi - \langle \varphi \rangle_{\vec{R}}] \right), \tag{2}$$

► (Raw) fluxes

$$\Gamma_s = \frac{1}{n_s} \int d^3 v (\vec{v}_E \cdot \nabla r) g_s, \qquad (3)$$

$$= \int \mathrm{d}^3 v \frac{m v^2}{2} (\vec{v}_E \cdot \nabla r) g_s. \tag{4}$$

Expanded $g = g_{k_x,k_y} \exp(ik_x x + ik_y y)$ and linearize. $(k_x = 0$ here)

 Q_{S}

Figure 5:(a) ITG example. (b) TEM example.

Figure 6:Scalar impurity and heat flux for the different configurations

		Γ_z	Q	Γ_z/Q
ARIES-CS	ITG	0.4305	27.02	0.01593
NCSX	ITG	0.5436	27.83	0.01953
TJ-II	ITG	0.4154	48.09	0.008636
ARIES-CS	TEM	-2.58	9.32	-0.2765
NCSX	TEM	-0.0333	4.23	-0.007874
TJ-II	TEM	-10.51	141.5	-0.07431

Table 2: Ratio of impurity and heat flux in the different configurations

Optimizing ARIES-CS' boundary shape in the ITG scenario

• Optimize boundary shape for Fourier modes up to |n| = m = 1, keeping $r_{c,0,0}$ fixed. Preserve stellarator symmetry. \implies 8 degrees of freedoms.

1 1

Quasi-linear fluxes

 $R(\theta,\phi) = \sum \sum r_{c,m,n} \cos (m\theta - n_{\rm fp} n\phi)$ m=0 n=-1 $Z(\theta,\phi) = \sum \sum z_{s,m,n} \sin (m\theta - n_{fp}n\phi)$ m=0 n=-1

 \blacktriangleright Using VMEC + STELLA, run with SIMSOPT.

Figure 7:ARIES-CS (a) Initial boundary. (b) Optimized boundary. (c) Pessimized boundary.

Figure 8:ARIES-CS (a) Initial at s = 0.49. (b) Optimized at s = 0.49. (c) Pessimized at s = 0.49.

	Original	Optimized	Pessimized
Γ _z	0.4305	0.5226	0.001858
Q	27.02	25.68	20.255
Γ_z/Q	0.01593	0.02035	9.175×10^{-5}
$\epsilon_{\rm eff}^{3/2}$ (edge)	0.00049	0.0856	0.033

(7)

Figure 3:a) Frequences. b) Growthrates. c) QL impurity flux. d) QL heat flux ARIES-CS ARIES-CS **ARIES-CS** 10 0.0 З -2.5 -1050 b) $\sum_{a}Q_{a}$ > 8 2 k_yρ $k_y \rho$

Figure 4:a) Frequences. b) Growthrates. c) QL impurity flux. d) QL heat flux

Fast-particle loss fraction 0.26 0.32 0.33

Table 3:ARIES-CS ITG scenario before and after Γ_z/Q -optimization (pessimization)

Outlook

- Check against $k_x = 0$ and alpha = 0 (field-line label).
- Comparison to nonlinear GX simulations ongoing.
- Global optimizations tricky since most points in boundary representation are non-sensible.

References

- https://github.com/stellaGK/stella
- ▶ M Barnes, FI Parra, M Landreman, Journal of Computational Physics, **391**, p365-380 (2019)
- https://github.com/hiddenSymmetries/simsopt
- M Landreman, B Medasani, F Wechsung, A Giuliani, R Jorge, and C Zhu, J. Open Source Software 6, p3525 (2021)
- ▶ N Mandell, W Dorland, M Landreman, Journal of Plasma Physics, 84, p905840108 (2018).