

M Landreman, J Y Choi, C Alves, P Balaprakash, R M Churchill, R Conlin, G Roberg-Clark Journal of Plasma Physics **91**, E120 (2025), arXiv:2502.11657

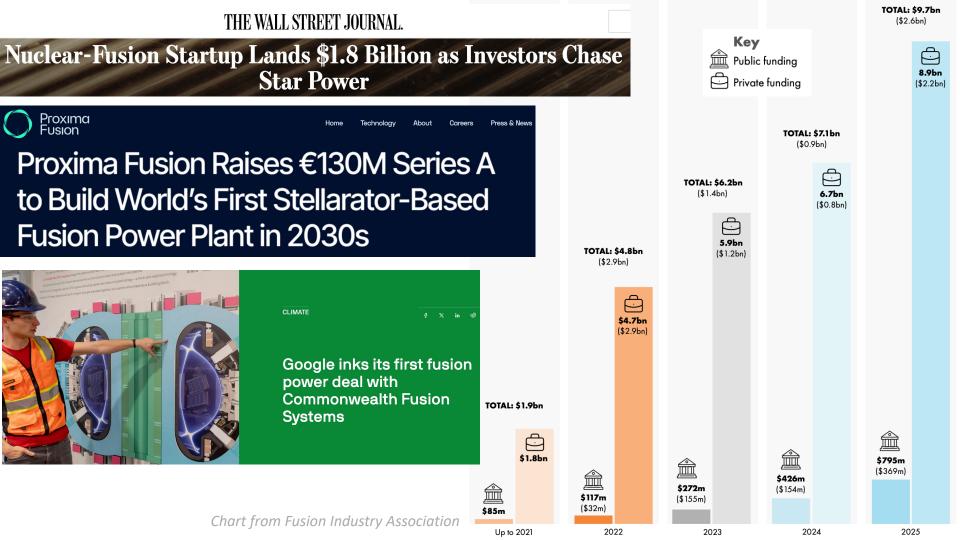
- Motivating application: turbulence in fusion plasmas
- Regression/classification method

Results

• Motivating application: turbulence in fusion plasmas

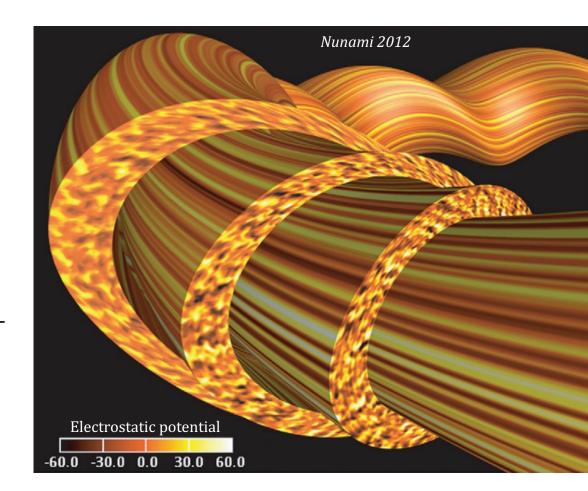
• Regression/classification method

Results

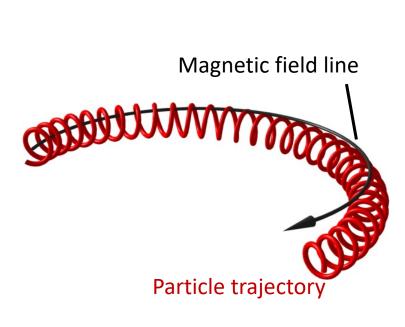


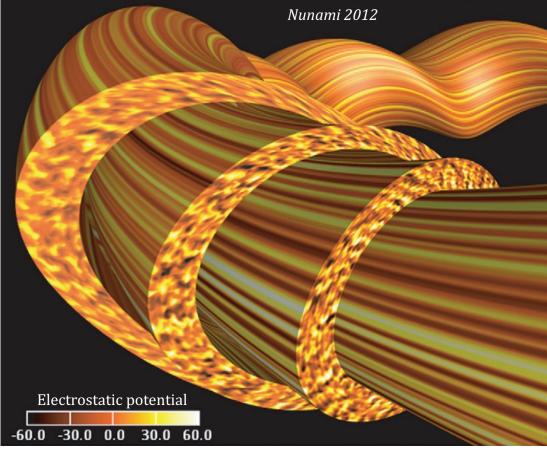
Turbulence in fusion plasmas: we want to understand & optimize

- Gradients of plasma density & temperature cause instabilities & turbulence.
- Causes heat to leak out.
- Known to depend on plasma shape, but how exactly?
- Geometry could be optimized to reduce turbulence
- Turbulence simulations: ~10 GPUmin to 10⁶s of CPU-hours.
- 5D + time

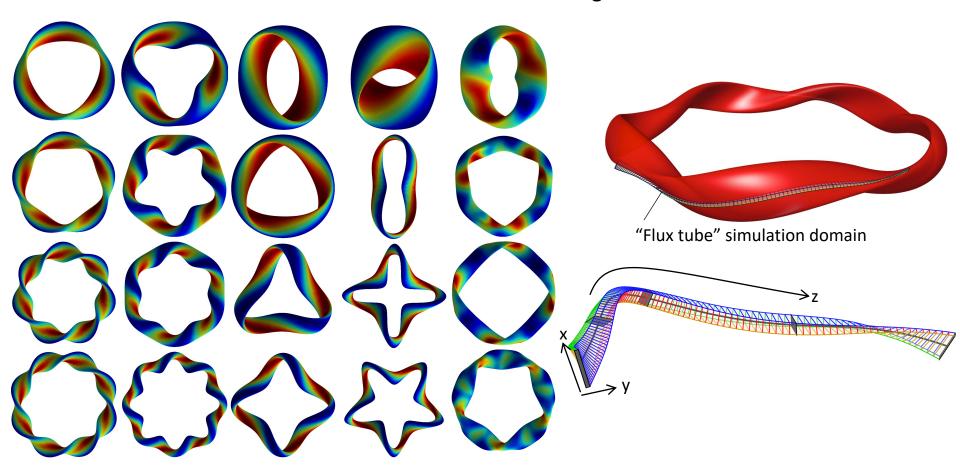


Turbulence in fusion plasmas is highly anisotropic due to magnetic field





Approach here: learn how turbulence depends on geometry using data Start with direct numerical simulations of turbulence in 10⁵ geometries



Equations describing the turbulence

 $\Phi(x, y, z, t) = \sum \hat{\Phi}_{\mathbf{k}}(z, t) \exp(ik_x x + ik_y y)$ Electrostatic potential:

Electrostatic potential:
$$\Phi\left(x,y,z,t\right)=\sum_{\mathbf{k}}\hat{\Phi}_{\mathbf{k}}\left(z,t\right)$$

Ion distribution function:
$$h\left(x,y,z,v_{||},\mu,t
ight)=\sum_{\mathbf{k}}\hat{h}_{\mathbf{k}}$$

Gyrokinetic equation:
$$\frac{\partial \hat{h}_{\mathbf{k}}}{\partial t} + v_{||} \frac{\partial \hat{h}_{\mathbf{k}}}{\partial z} - \mu \frac{\partial B}{\partial z} \frac{\partial \hat{h}}{\partial v}$$

$$egin{aligned} & \mathbf{B} \cdot \mathbf{b} \cdot \mathbf{b} \cdot \mathbf{b} = \frac{1}{2} \mathbf{B} \cdot \mathbf{b} \cdot \mathbf{b} \end{aligned}$$

$$\mathbf{v}_{d} = \frac{mv_{\perp}^{2}}{2eB^{3}}\mathbf{B} \times \nabla B + \frac{mv_{||}^{2}}{eB^{2}}\mathbf{B} \times (\mathbf{b} \cdot \nabla \mathbf{b}) \qquad \mathbf{b} = \frac{1}{B}\mathbf{B} \qquad \mathcal{N}_{\mathbf{k}} = \sum_{\mathbf{k}'} \frac{J_{0,\mathbf{k}'}\hat{\Phi}_{\mathbf{k}'}\hat{h}_{\mathbf{k}''}}{B_{\text{ref}}} \left(k_{y}'k_{x}'' - k_{x}'k_{y}''\right) \\ k'' = \mathbf{k} - \mathbf{k}' \qquad \mathbf{k}'' = \mathbf{k} - \mathbf{k}' \qquad \mathbf{k}'' = \mathbf{k} - \mathbf{k}'$$

$$J_{0,\mathbf{k}} = J_{0} \left(\frac{v_{\perp}m}{eB}\sqrt{k_{x}^{2}|\nabla x|^{2} + 2k_{x}k_{y}\nabla x \cdot \nabla y + k_{y}^{2}|\nabla y|^{2}}\right) \qquad \omega_{\perp}^{T} = \frac{k_{y}T}{2} \left[\frac{1}{2}\frac{dn}{dt} + \frac{1}{2}\frac{dT}{dt}\left(\frac{mv^{2}}{2} - \frac{3}{2}\right)\right]$$

Quasineutrality:
$$\hat{\Phi}_{f k}\left(1+rac{T}{T_e}
ight)-\left\langle\hat{\Phi}_{f k}
ight
angle\left(rac{T}{T_e}
ight)=rac{T}{ne}\int dt$$

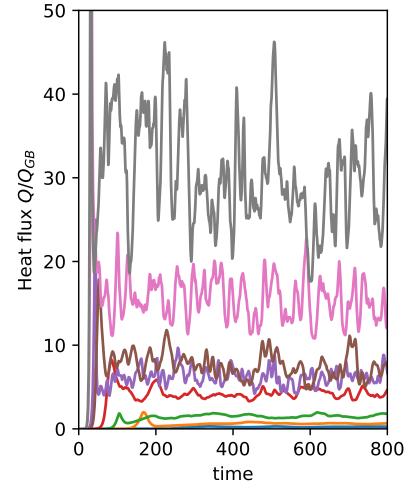
Heat flux: $Q = \sum_{\mathbf{k}} \left\langle \int d^3v \frac{m_i v^2}{2} i k_y J_{0,\mathbf{k}} \hat{h}_{\mathbf{k}} \hat{\Phi}_{-\mathbf{k}} \right\rangle$

$$J_{0,\mathbf{k}} = J_0 \left(\frac{v_{\perp} m}{eB} \sqrt{k_x^2 \left| \nabla x \right|^2 + 2k_x k_y \nabla x \cdot \nabla y + k_y^2 \left| \nabla y \right|^2} \right) \qquad \omega_*^T = \frac{k_y T}{eB_{\mathrm{ref}}} \left[\frac{1}{n} \frac{dn}{dx} + \frac{1}{T} \frac{dT}{dx} \left(\frac{mv^2}{2T} - \frac{3}{2} \right) \right]$$
Quasineutrality:
$$\hat{\Phi}_{\mathbf{k}} \left(1 + \frac{T}{T_e} \right) - \left\langle \hat{\Phi}_{\mathbf{k}} \right\rangle \left(\frac{T}{T_e} \right) = \frac{T}{ne} \int d^3v J_{0,\mathbf{k}} \hat{h}_{\mathbf{k}} \qquad \left\langle \dots \right\rangle = \frac{\int \frac{dz}{B} \left(\dots \right)}{\int \frac{dz}{B}}$$

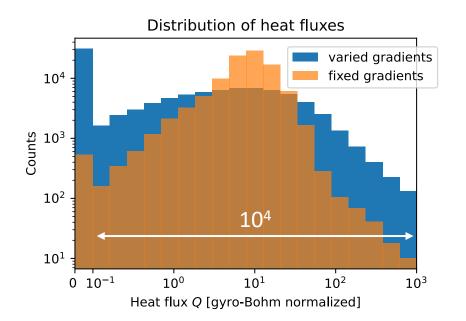
 $\mathbf{k} = (k_x, k_y)$

Ion distribution function:
$$h\left(x,y,z,v_{||},\mu,t\right) = \sum_{\mathbf{k}} \hat{h}_{\mathbf{k}}\left(z,v_{||},\mu,t\right) \exp\left(ik_{x}x+ik_{y}y\right) \qquad \mu = \frac{v_{\perp}^{2}}{2B}$$
 Gyrokinetic equation:
$$\frac{\partial \hat{h}_{\mathbf{k}}}{\partial t} + v_{||}\frac{\partial \hat{h}_{\mathbf{k}}}{\partial z} - \mu \frac{\partial B}{\partial z}\frac{\partial \hat{h}_{\mathbf{k}}}{\partial v_{||}} + \mathbf{v}_{d} \cdot \nabla \hat{h}_{\mathbf{k}} + \mathcal{N}_{\mathbf{k}} = \frac{eJ_{0,\mathbf{k}}}{T}\left(\frac{\partial \hat{\Phi}_{\mathbf{k}}}{\partial t} + i\omega_{*}^{T}\hat{\Phi}_{\mathbf{k}}\right)$$

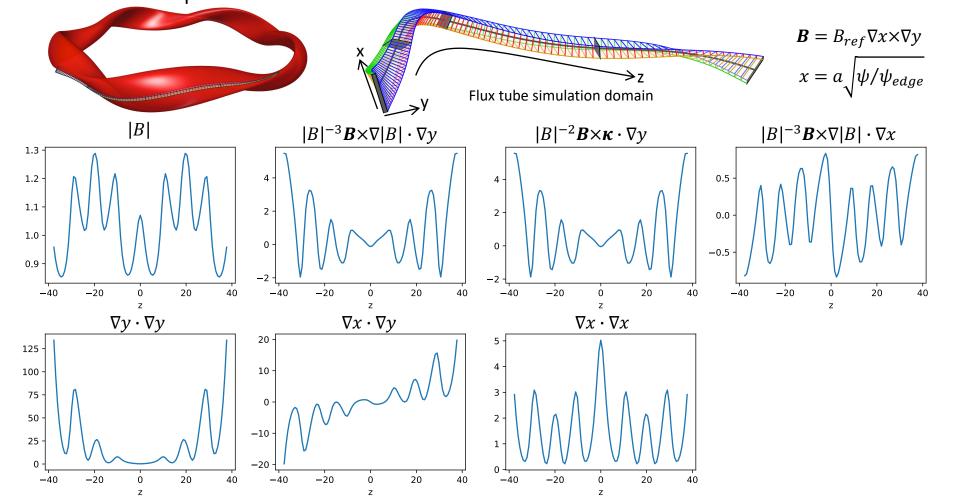
Nonlinear turbulence simulations were run in 10⁵ geometries



- 1 simulation in each tube with random dT/dx and dn/dx.
- 1 simulation in each tube with (a/T) dT/dx = 3, (a/n) dn/dx=0.9
- 8 minutes to get heat flux on 1 GPU
- 2×10⁵ nonlinear simulations took < 7000 node-hours

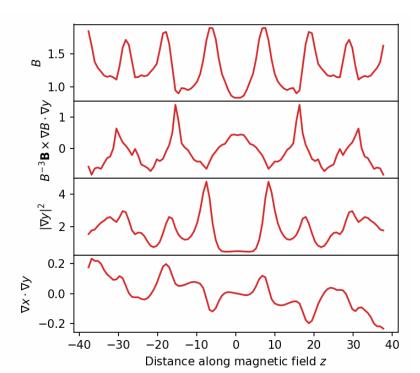


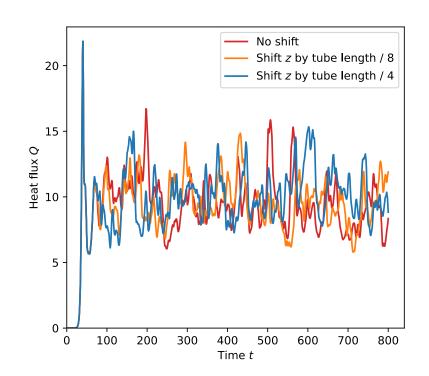
Raw feature space: 7x 1D functions that enter the turbulence simulations



Raw features should *not* be directly fed to classical regression or fully-connected neural network, since model should be translation-invariant

- Gyrokinetic equation, hence heat flux, is invariant under periodic translation of the raw features in z.
- Similar to computer vision, where convolutional neural networks give approximate translation-invariance.

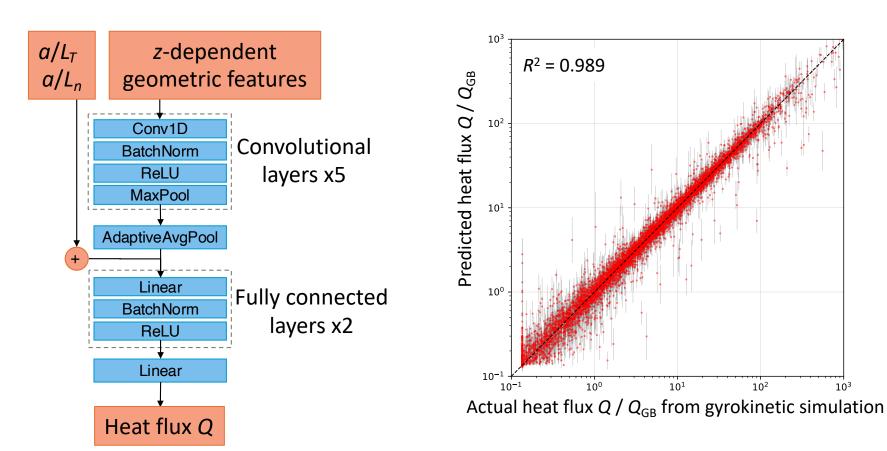




- Motivating application: turbulence in fusion plasmas
- Regression/classification method

Results

Convolutional neural networks give accurate prediction of the turbulence, but lack interpretability



Regression/classification method to achieve invariance & interpretability

- 1. Define library of candidate features which are all translation-invariant. (Akin to SINDy).
- 2. Apply a fast regression/classification method like decision trees to these features.
- 3. Use forward sequential feature selection to pick out only the most important features.

·

Guarantees that model will respect the invariance.

- Each feature is an analytic expression ⇒ partially interpretable.
- Step 2 allows extra nonlinearity beyond functions in the library.
- Method in step 2 must be fast to fit because we will fit millions of models.

To create library of candidate features, apply any translation-invariant reduction to translation-equivariant operations

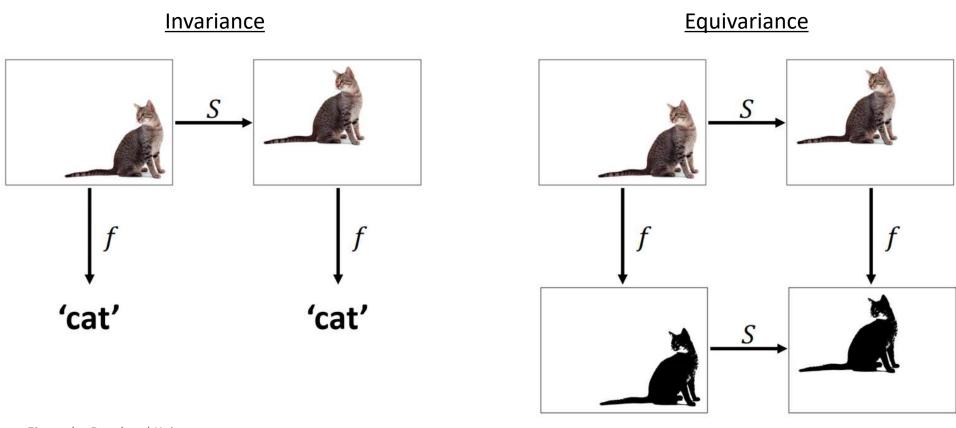


Figure by Bernhard Kainz

To create library of candidate features, apply any translation-invariant reduction to translation-equivariant operations

Start with inputs to the gyrokinetic equation:

 $F = \{B, B^{-3}\mathbf{B} \times \nabla B \cdot \nabla y, B^{-2}\mathbf{B} \times \mathbf{\kappa} \cdot \nabla y, B^{-3}\mathbf{B} \times \nabla B \cdot \nabla x, |\nabla x|^{2}, \nabla x \cdot \nabla y, |\nabla y|^{2}\}.$

U = unary operations on f(z): identity, df/dz, Heaviside(f), Heaviside(-f), ReLU(f), ReLU(-f), 1/f, f^2 , f/B (Jacobian), f^*B

C(U(F)) = U(F) and all pairwise products of functions in U(F)

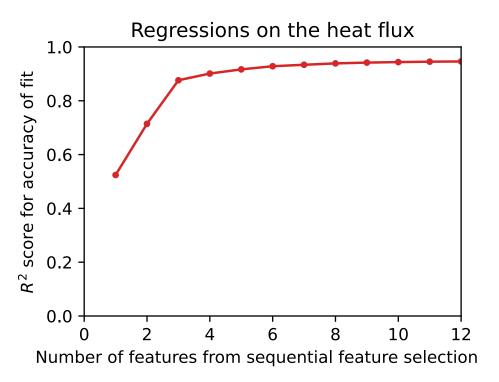
Reductions: R = {min, max, max-min, mean, median, mean square, variance, skewness, L_1 norm, quantiles 0.1, 0.25, 0.75, or 0.9, abs of fft coefficients 1-3, $k_{||}$ with largest amplitude, expected $k_{||}$, count above [-2, -1, 0, 1, 2]}

Features: $R(U(C(U(F)))) \implies > 1$ million combinations

- Motivating application: turbulence in fusion plasmas
- Regression/classification method

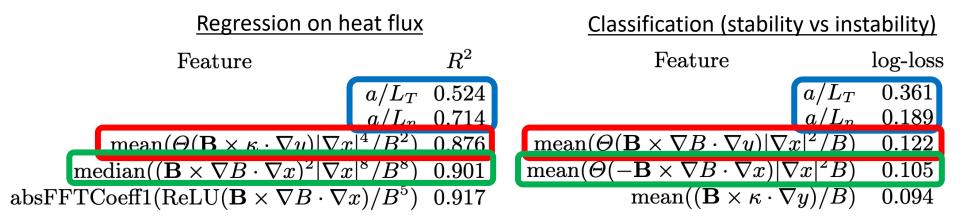
Results

Forward sequential feature selection



Using decision trees (XGBoost library), varied-gradient dataset

Most important features from sequential feature selection

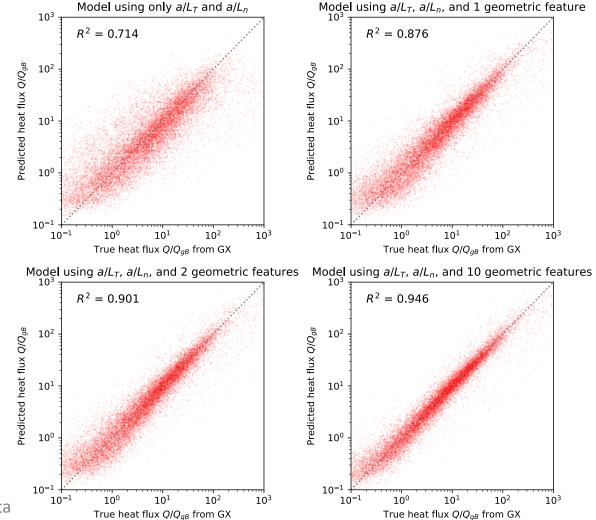


Most important geometric feature:
The gradients are more important than any geometric feature.

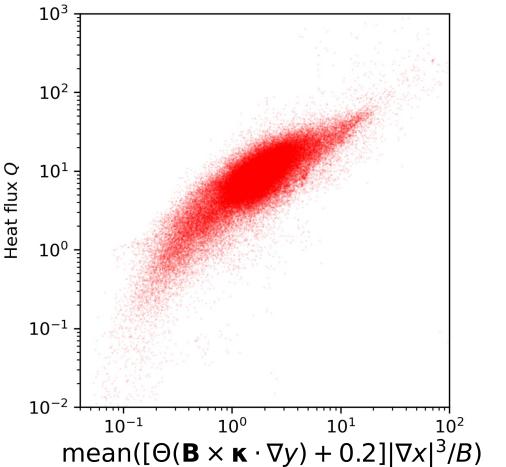
Local temperature gradient in real space |VT| = (dT/dx) |Vx|, where there is bad curvature.

Samilar to upos posed 40hys) c. Nielspired Martogakes (2022): $[New (2020), Xanthopo (10802014)] \text{ The projection of t$

Sequential feature selection allows closer fit to the data as more geometric features are included



The first geometric feature can be fine-tuned for even better fit



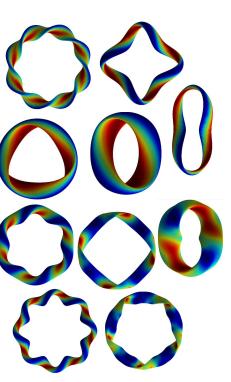
Summary

- Interpretable regression/classification guaranteeing translation-invariance.
- Library of candidate invariant features + decision trees + feature selection.
- Most important features align with recent physics-motivated surrogates.

Future work

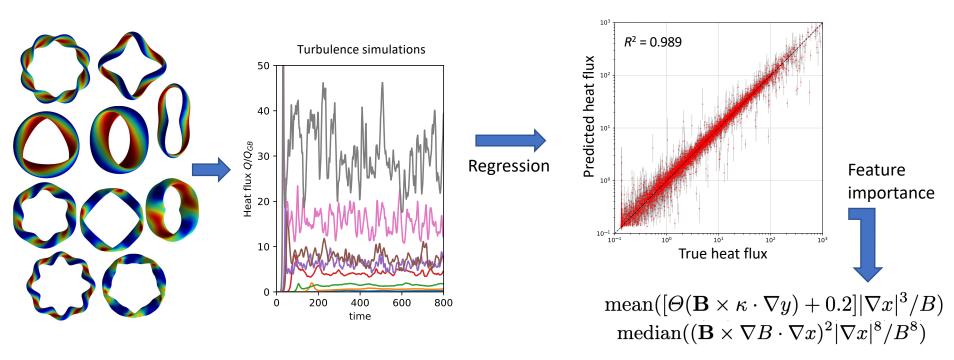
- Use model for optimizing geometry & predicting temperature.
- Compare to saliency maps for the neural networks.
- Include physics-motivated features (e.g. linear growth rates).
- Generate data with higher physics fidelity, repeat analysis.
- Other suggestions for methods to try?

Journal of Plasma Physics 91, E120 (2025) arXiv:2502.11657



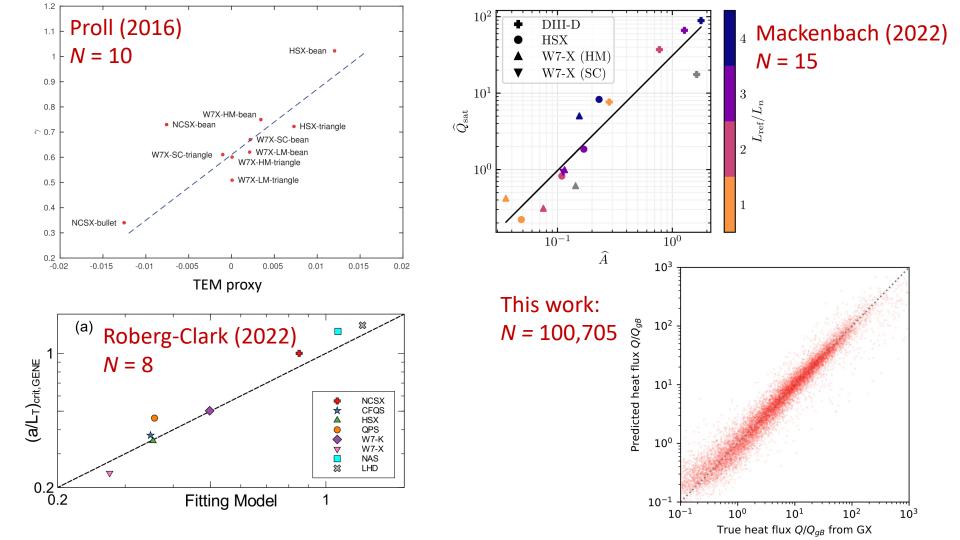
Extra slides

How does magnetic geometry affect ITG turbulence? Insights from data & machine learning

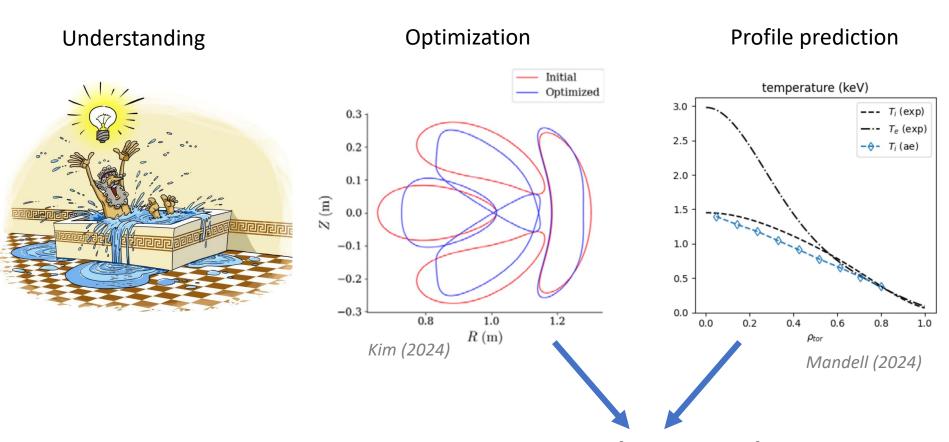


M Landreman, J Y Choi, C Alves, P Balaprakash, R M Churchill, R Conlin, G Roberg-Clark

arXiv:2502.11657



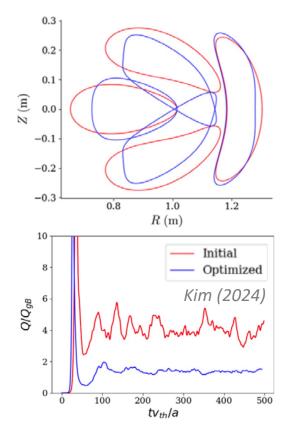
Motivations



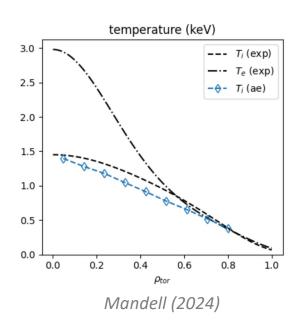
Optimize geometry for maximum fusion power

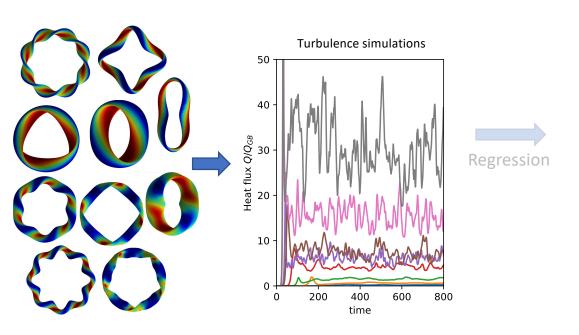
Motivations

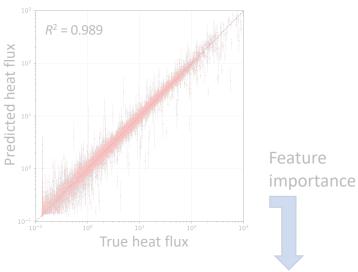
Optimization



Profile prediction

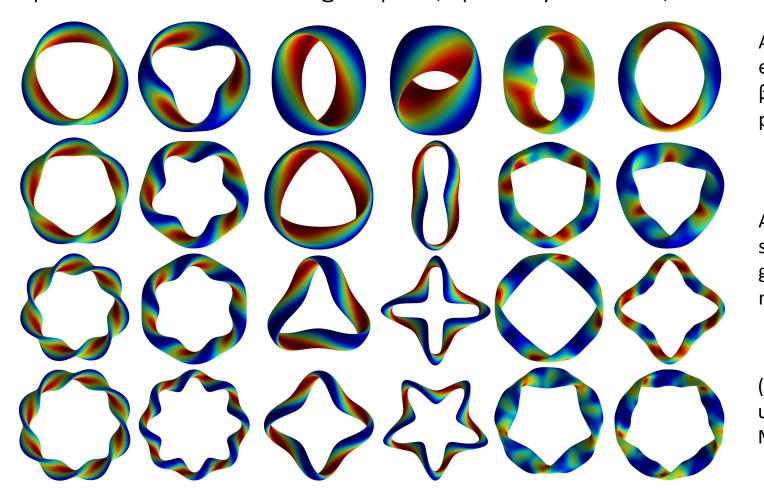






$$\operatorname{mean}([\Theta(\mathbf{B} \times \kappa \cdot \nabla y) + 0.2] |\nabla x|^3 / B)$$
$$\operatorname{median}((\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^8)$$

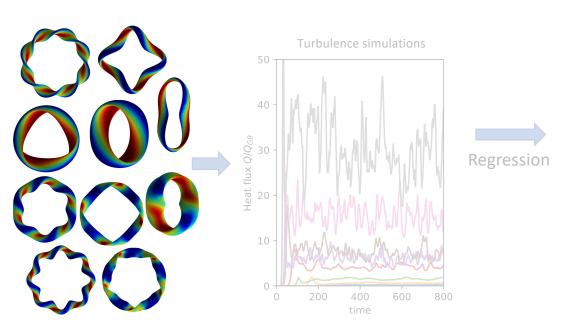
Equilibria include rotating ellipses, quasi-symmetric, and random shapes

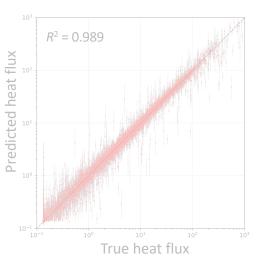


Aspect ratio, elongation, $q = 1 / \iota$, β , and number of field periods are all varied.

All configurations scaled to have same gyroBohm normalizations

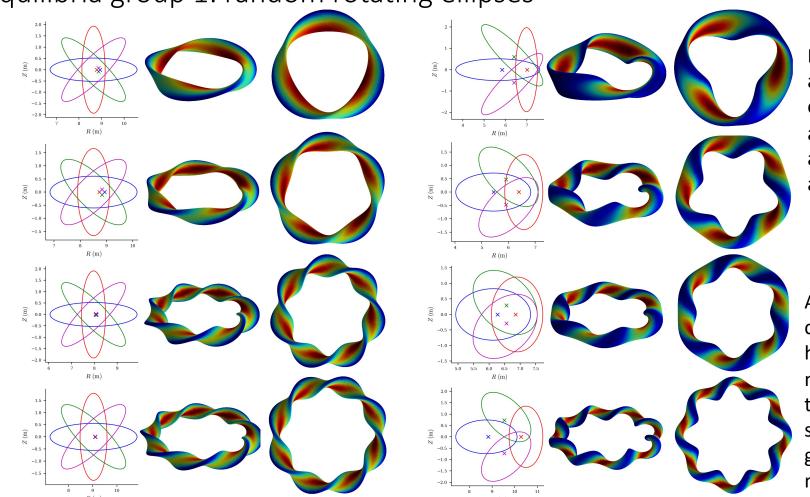
(Tokamak generation underway by Ralf Mackenbach)





Feature importance

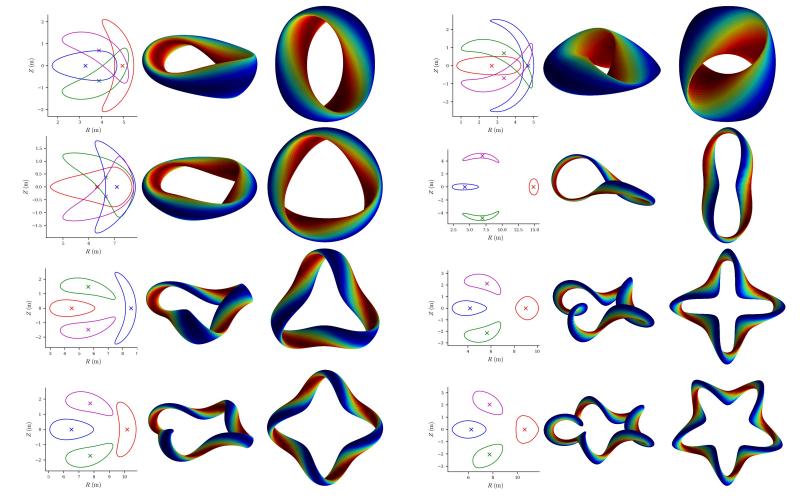
mean($[\Theta(\mathbf{B} \times \kappa \cdot \nabla y) + 0.2] |\nabla x|^3 / B$) median($(\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^8$) Equilibria group 1: random rotating ellipses



Nfp, aspect ratio, elongation, axis torsion, and beta are all random.

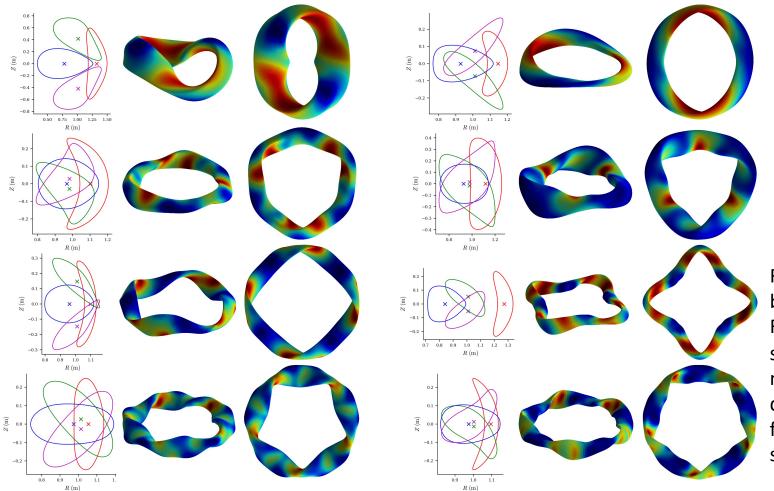
All configurations have same minor radius & toroidal flux, so same gyroBohm normalization

Equilibria group 2: QUASR QA & QH (Giuliani 2024)

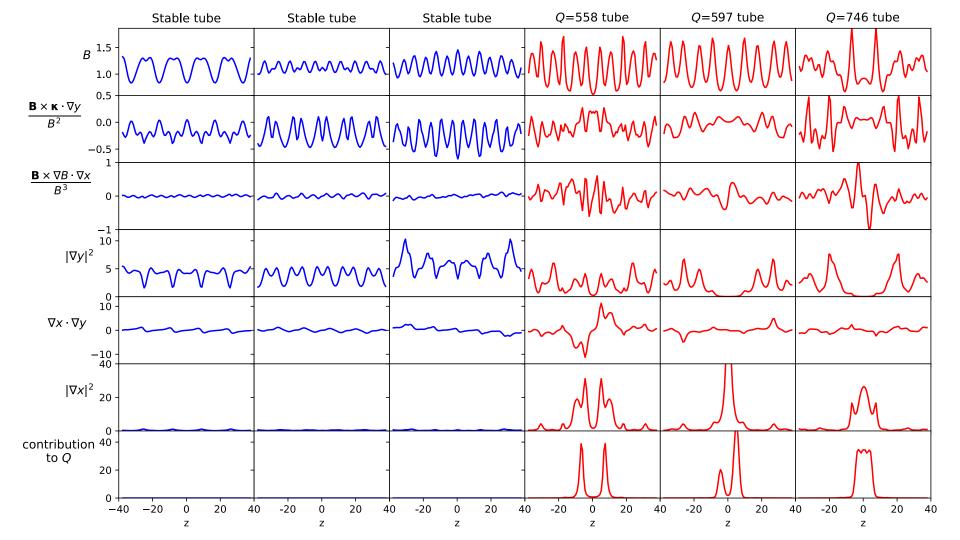


Random pressure added for even more diversity

Equilibria group 3: random boundary modes



RBC and ZBS boundary Fourier modes sampled from normal distributions, fit to 44 "real" stellarators



Our interpretable models use a large library of candidate features, all translation-invariant

Start with inputs to the gyrokinetic equation & local shear:

$$F = \{B, B^{-3}\mathbf{B} \times \nabla B \cdot \nabla y, B^{-2}\mathbf{B} \times \mathbf{\kappa} \cdot \nabla y, B^{-3}\mathbf{B} \times \nabla B \cdot \nabla x, |\nabla x|^{2}, \nabla x \cdot \nabla y, |\nabla y|^{2}, d/dz(\nabla x \cdot \nabla y / |\nabla x|^{2})\}.$$

U = unary operations on f(z): identity, df/dz, Heaviside(f), Heaviside(-f), ReLU(f), ReLU(-f), 1/f, f^2 , f/B (Jacobian), f^*B

$$C(U(F)) = U(F)$$
 and all pairwise products of functions in $U(F)$

Reductions: R = {min, max, max-min, mean, median, mean square, variance, skewness, L_1 norm, quantiles 0.1, 0.25, 0.75, or 0.9, abs of fft coefficients 1-3, $k_{||}$ with largest amplitude, expected $k_{||}$, count above [-2, -1, 0, 1, 2]}

Features: $R(U(C(U(F)))) \implies > 1$ million combinations

Spearman correlation is a quick tool to find the most important feature

- Spearman correlation is the regular Pearson correlation of the the sorted rank of the target with the sorted rank of the feature.
- Its magnitude is invariant to any monotonic nonlinear function, e.g. corr(x, exp(x)) = 1
- No regression model required. Features with highest correlation to heat flux Q at fixed dT/dx & dn/dx:

Feature
$$\text{Correlation}$$
 Correlation variance $(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) |\nabla x|^2/B) = 0.775$

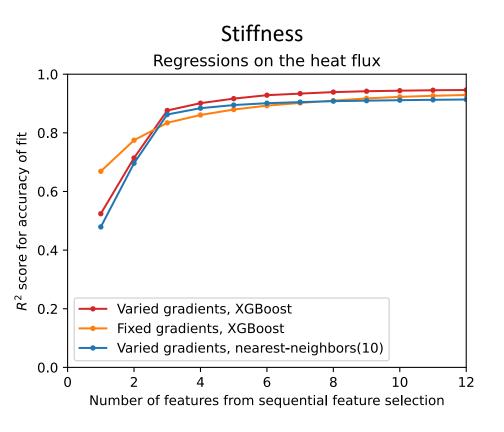
Heaviside function: Where there is bad curvature,

local temperature gradient in real space (to various powers) $|\nabla T| = (dT/dx) |\nabla x|$

Jacobian (maybe squared)

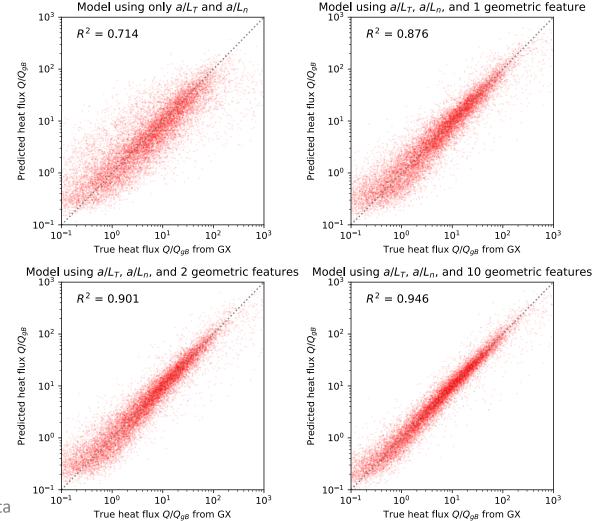
Extremely similar to Mynick (2010), Xanthopoulos (2014), Stroteich (2022), Goodman (2024)!

Forward sequential feature selection: ~3 features can be almost as predictive as all features



Critical gradient

Sequential feature selection allows closer fit to the data as more geometric features are included



At each step, the top features are variations on a theme

 R^2

0.876

0.874

0.871

0.870

Feature

 $\operatorname{mean}(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) |\nabla x|^4 / B^2)$

 $\operatorname{mean}(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) |\nabla x|^4 / B)$

 $\operatorname{mean}(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) |\nabla x|^8 / B^4) \quad 0.869$

variance($\Theta(\mathbf{B} \times \kappa \cdot \nabla y) |\nabla x|^2 / B$)

quantile $0.9(\Theta(\mathbf{B} \times \kappa \cdot \nabla y)|\nabla x|^2/B)$

Regression for the random-gradient dataset

Feature

quantile 0.75 (ReLU($-\mathbf{B} \times \nabla B \cdot \nabla x$)² $|\nabla x|^8/B^6$)

quantile 0.75 (ReLU($-\mathbf{B} \times \nabla B \cdot \nabla x$) $|\nabla x|^4/B^3$)

 $\operatorname{median}((\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^8)$

 $\operatorname{median}((\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^6)$

 $\operatorname{median}(|\mathbf{B} \times \nabla B \cdot \nabla x| |\nabla x|^4 / B^4)$

 R^2

0.901

0.901

0.901

0.901

0.901

aieni aataset

Spearman correlation is a quick tool to find the most important feature

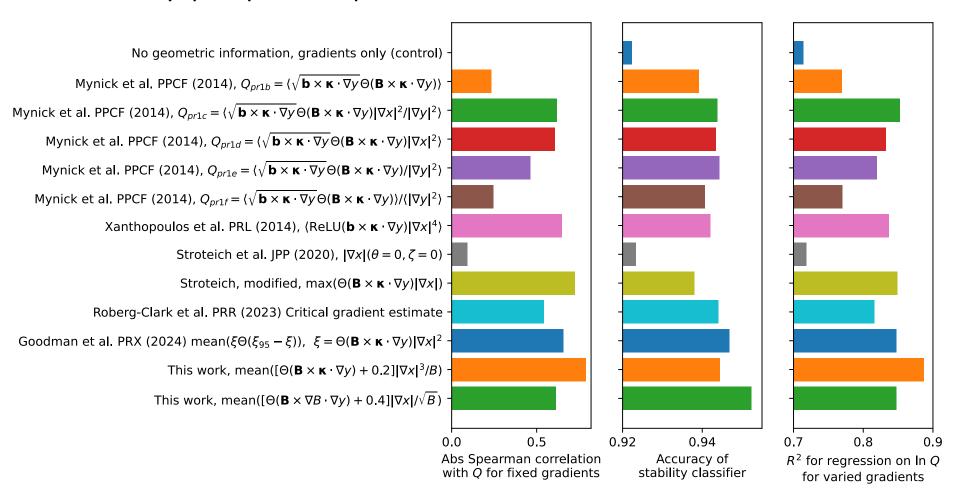
- Unlike Pearson, Spearman is invariant to any monotonic function.
- Features with highest correlation to heat flux Q at fixed dT/dx & dn/dx:

Feature Correlation	
variance $(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) \nabla x ^2 / B)$ 0.775	
$\operatorname{mean}(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) \nabla x ^8/B^2) = 0.774$	(· () · ()
$\operatorname{mean}(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) \nabla x ^4 / B) = 0.772$,
variance $(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) \nabla x ^4 / B)$ 0.769	
$\operatorname{mean}(\Theta(\mathbf{B} \times \kappa \cdot \nabla y) \nabla x ^4 / B^2) \qquad 0.769$	
Heaviside function: Where there is bad curvature, Jacobian (maybe squa	ared)

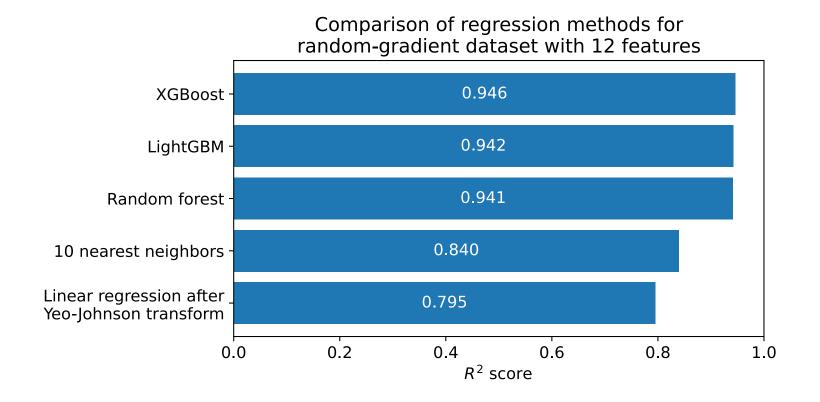
Extremely similar to Mynick (2010), Xanthopoulos (2014), Stroteich (2022), Goodman (2024)!

local temperature gradient in real space (to various powers) $|\nabla T| = (dT/dx) |\nabla x|$

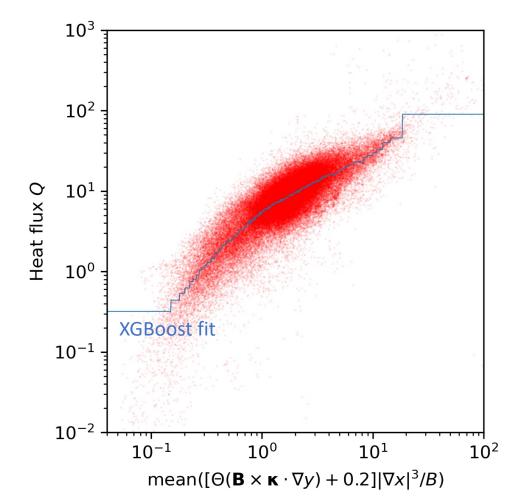
Previously proposed proxies can be tested



Other machine learning regression methods work also

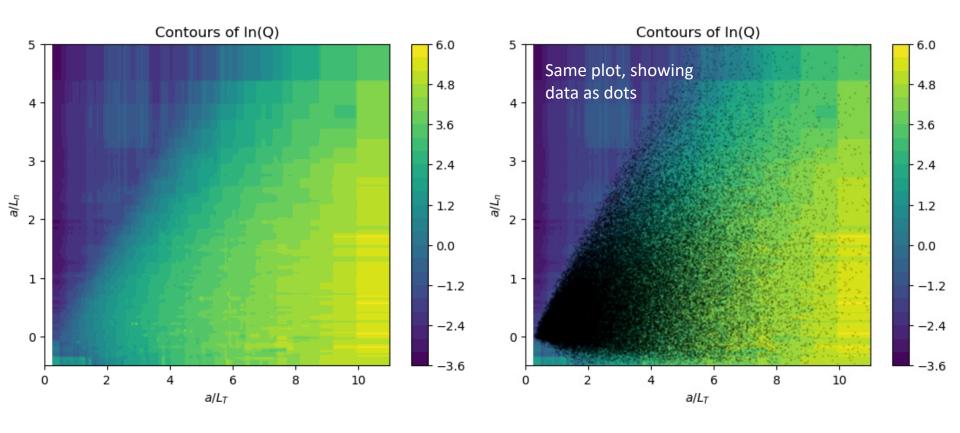


XGBoost regression model with 1 feature

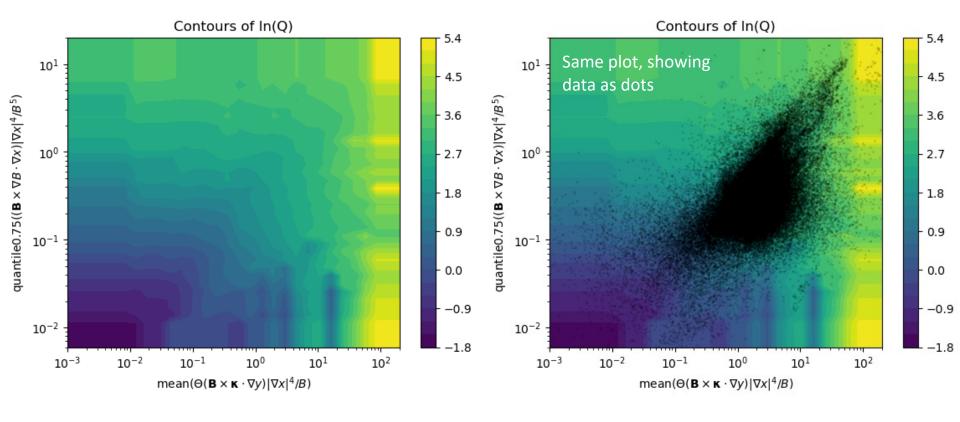


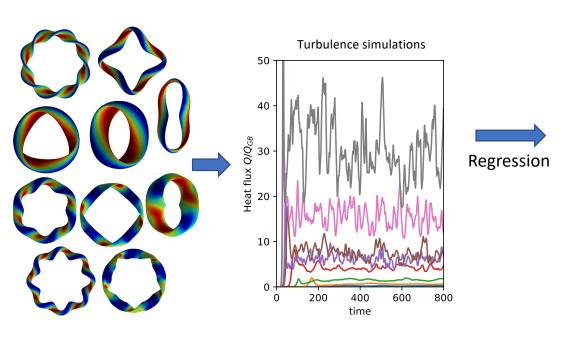
Fixed-gradient dataset

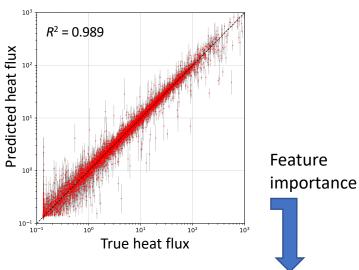
XGBoost regression model using only a/LT and a/Ln



XGBoost regression model for fixed gradients using 2 features



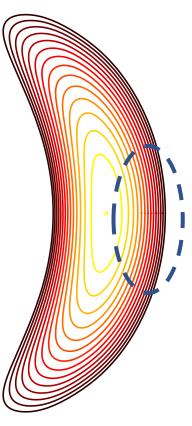




mean(
$$[\Theta(\mathbf{B} \times \kappa \cdot \nabla y) + 0.2] |\nabla x|^3 / B$$
)
median($(\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^8$)

Multiple lines of evidence agree that the most important geometric feature is $|\nabla\psi|$ in regions of bad curvature

- Highest Spearman correlation at fixed gradients.
- Consistently the first geometric feature chosen in sequential feature selection:
 - In regression on the heat flux above the critical gradient
 - And in the classifier for stability vs instability (i.e. determines critical gradient)
 - Chosen by XGBoost, nearest-neighbors, & other algorithms
- Also the largest Shapley values



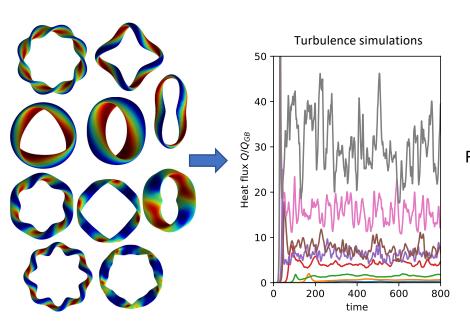
There are many extensions possible

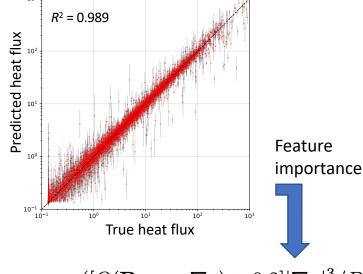
- Try larger sets of possible features
- From the gyrokinetic equation, understand how these features affect turbulence.
- Kinetic electrons, magnetic fluctuations.
- Saliency maps to understand the features learned by the neural networks.
- Symbolic regression.
- Kolmogorov-Arnold Networks.
- Optimization, profile prediction.
- Include & test other physics-motivated features.

Data is online at doi:10.5281/zenodo.14867776, so have a go at it!

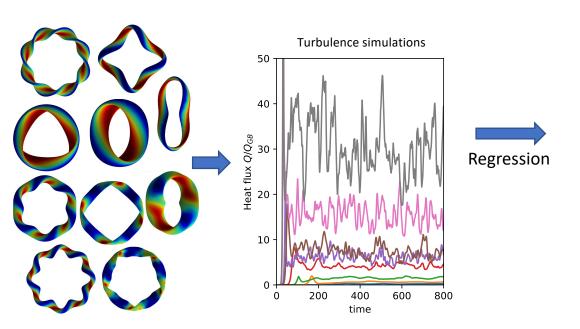
Paper: arXiv:2502.11657

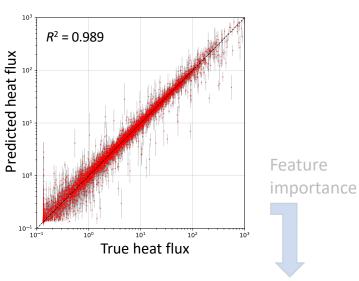
Dataset doi:10.5281/zenodo.14867776





mean($[\Theta(\mathbf{B} \times \kappa \cdot \nabla y) + 0.2] |\nabla x|^3 / B$) median($(\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^8$)





$$\operatorname{mean}([\Theta(\mathbf{B} \times \kappa \cdot \nabla y) + 0.2] |\nabla x|^3 / B)$$
$$\operatorname{median}((\mathbf{B} \times \nabla B \cdot \nabla x)^2 |\nabla x|^8 / B^8)$$

To create library of candidate features, apply any translation-invariant reduction to translation-equivariant operations

Start with inputs to the gyrokinetic equation & local shear:

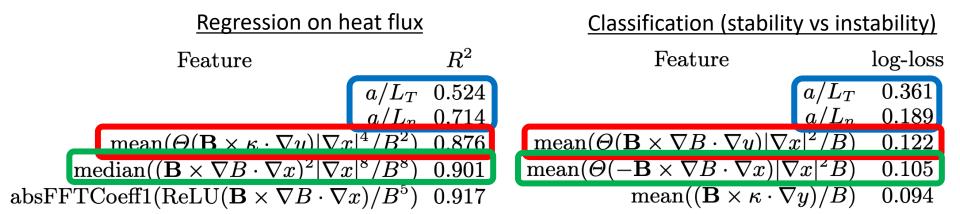
B, $B^{-3}\mathbf{B} \times \nabla B \cdot \nabla y$, $B^{-2}\mathbf{B} \times \mathbf{\kappa} \cdot \nabla y$, $B^{-3}\mathbf{B} \times \nabla B \cdot \nabla x$, $|\nabla x|^2$, $\nabla x \cdot \nabla y$, $|\nabla y|^2$, $d/dz(\nabla x \cdot \nabla y / |\nabla x|^2)$.

Apply unary operations on f(z): f², df/dz, Heaviside(f), etc.,

Include all pairwise products,

Reductions: max, median, abs of fft coefficients, k_{\parallel} with largest amplitude, etc.

Most important features from sequential feature selection

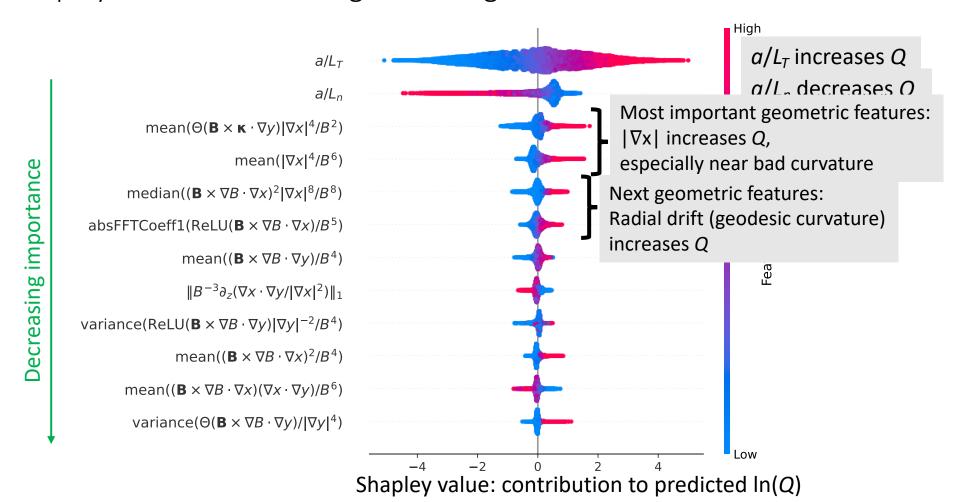


The Bed most important geometric feature is the kear faces coforces in provincing a per condition is bad if t

Xanthopoulos et al (2011), Nakata & Matsuoka (2022):

Larger geodesic curvature (= radial drift) \Rightarrow Stronger damping of zonal flows \Rightarrow higher heat flux

Shapley values show the sign and magnitude of each feature's effect



Summary

- Interpretable ML can reveal trends and stimulate theory.
- Most important feature for ITG seems to be $|\nabla\psi|$ in regions of bad curvature.

Future work

Paper:

arXiv:2502.11657

- From the gyrokinetic equation, understand how top features affect turbulence.
- Saliency maps to understand the features learned by the neural networks.
- Other interpretable methods (symbolic regression, Kolmogorov-Arnold Networks)
- Kinetic electrons, magnetic fluctuations.
- Optimization & profile prediction.

Dataset doi:10.5281/zenodo.14867776

