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Chart from Fusion Industry Association



Turbulence in fusion plasmas: we want to understand & optimize
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• Gradients of plasma density & 
temperature cause instabilities & 
turbulence. 

• Causes heat to leak out.

• Known to depend on plasma 
shape, but how exactly?

• Geometry could be optimized to 
reduce turbulence

• Turbulence simulations: ~10 GPU-
min to 106s of CPU-hours.

• 5D + time

Nunami 2012

Electrostatic	potential



Turbulence in fusion plasmas is highly anisotropic due to magnetic field
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Nunami 2012

Electrostatic	potential

Magnetic field line

Particle trajectory



Approach here: learn how turbulence depends on geometry using data
Start with direct numerical simulations of turbulence in 105 geometries

“Flux tube” simulation domain
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Equations describing the turbulence
Electrostatic potential:

Ion distribution function:

Gyrokinetic equation:

Quasineutrality:

Heat flux:



Nonlinear turbulence simulations were run in 105 geometries
• 1 simulation in each tube with random dT/dx and dn/dx.

• 1 simulation in each tube with (a/T) dT/dx = 3, (a/n) dn/dx=0.9

• 8 minutes to get heat flux on 1 GPU

• 2×105 nonlinear simulations took < 7000 node-hours

104
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Flux tube simulation domain

Raw feature space: 7x 1D functions that enter the turbulence simulations
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Raw features should not be directly fed to classical regression or fully-
connected neural network, since model should be translation-invariant
• Gyrokinetic equation, hence heat flux, is invariant under periodic translation of the raw features in z.

• Similar to computer vision, where convolutional neural networks give approximate translation-invariance.
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Convolutional neural networks give accurate prediction 
of the turbulence, but lack interpretabilityInput feature
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Regression/classification method to achieve invariance & interpretability

1. Define library of candidate features which are all translation-invariant. (Akin to SINDy).

2. Apply a fast regression/classification method like decision trees to these features.

3. Use forward sequential feature selection to pick out only the most important features.

• Guarantees that model will respect the invariance.

• Each feature is an analytic expression   ⇒ partially interpretable.

• Step 2 allows extra nonlinearity beyond functions in the library.

• Method in step 2 must be fast to fit because we will fit millions of models.



To create library of candidate features, apply any translation-invariant 
reduction to translation-equivariant operations 

Invariance Equivariance

Figure by Bernhard Kainz



Start with inputs to the gyrokinetic equation:
F = {B, B-3B×∇B⋅∇y, B-2B×κ⋅∇y, B-3B×∇B⋅∇x, |∇x|², ∇x⋅∇y, |∇y|²}.

U = unary operations on f(z): identity, df/dz, Heaviside(f), Heaviside(-f), ReLU(f), 
ReLU(-f), 1/f, f2, f/B (Jacobian), f*B

C(U(F)) = U(F) and all pairwise products of functions in U(F)

Reductions: R = {min, max, max-min, mean, median, mean square, variance, 
skewness, L1 norm, quantiles 0.1, 0.25, 0.75, or 0.9, abs of fft coefficients 1-3, k|| with 
largest amplitude, expected k||, count above [-2, -1, 0, 1, 2]}

Features: R(U(C(U(F))))        ⟹ > 1 million combinations

To create library of candidate features, apply any translation-invariant 
reduction to translation-equivariant operations 
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Forward sequential feature selection

Using decision trees (XGBoost library), varied-gradient dataset



Most important features from sequential feature selection

The gradients are more important than any geometric feature

Classification (stability vs instability)Regression on heat flux

Xanthopoulos et al (2011), Nakata & Matsuoka (2022):
Larger geodesic curvature (= radial drift)  ⇒ Stronger damping of zonal flows ⇒ higher heat flux

Most important geometric feature:
Local temperature gradient in real space |∇T| = (dT/dx) |∇x|, where there is bad curvature.

Similar to proposed physics-inspired surrogates 
[Mynick (2010), Xanthopoulos (2014), Stroteich (2022), Goodman (2024)].



Sequential feature 
selection allows 
closer fit to the 
data as more 
geometric features 
are included 

Performance shown on 20% held-out test data



The first geometric feature can be fine-tuned for even better fit



Summary

• Use model for optimizing geometry & predicting temperature.
• Compare to saliency maps for the neural networks.
• Include physics-motivated features (e.g. linear growth rates).
• Generate data with higher physics fidelity, repeat analysis.
• Other suggestions for methods to try?

Future work

• Interpretable regression/classification guaranteeing translation-invariance.
• Library of candidate invariant features + decision trees + feature selection.
• Most important features align with recent physics-motivated surrogates.

Journal of Plasma Physics 91, E120 (2025)
arXiv:2502.11657



Extra slides



How does magnetic geometry affect ITG turbulence?
Insights from data & machine learning

M Landreman, J Y Choi, C Alves, P Balaprakash, R M Churchill , R Conlin, G Roberg-Clark           arXiv:2502.11657
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Roberg-Clark (2022)
N = 8

Mackenbach (2022)
N = 15

Proll (2016)
N = 10

TEM proxy
This work:
N = 100,705



Motivations

Profile predictionOptimizationUnderstanding

Optimize geometry for maximum fusion power

Kim (2024)
Mandell (2024)



Motivations
Profile predictionOptimizationUnderstanding

Mandell (2024)

Kim (2024)
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Equilibria include rotating ellipses, quasi-symmetric, and random shapes

Aspect ratio,
elongation, q = 1 / ι,
β, and number of field 
periods are all varied.

All configurations 
scaled to have same 
gyroBohm
normalizations

(Tokamak generation 
underway by Ralf 
Mackenbach)
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Equilibria group 1: random rotating ellipses

Nfp, 
aspect ratio,
elongation,
axis torsion,
and beta are 
all random.

All 
configurations 
have same 
minor radius & 
toroidal flux, 
so same 
gyroBohm
normalization



Equilibria group 2: QUASR QA & QH (Giuliani 2024)

Random 
pressure 
added for 
even more 
diversity



Equilibria group 3: random boundary modes

RBC and ZBS 
boundary 
Fourier modes 
sampled from 
normal 
distributions, 
fit to 44 “real” 
stellarators





Our interpretable models use a large library of 
candidate features, all translation-invariant

Start with inputs to the gyrokinetic equation & local shear:
F = {B, B-3B×∇B⋅∇y, B-2B×κ⋅∇y, B-3B×∇B⋅∇x, |∇x|², ∇x⋅∇y, |∇y|², d/dz(∇x⋅∇y / |∇x|²)}.

U = unary operations on f(z): identity, df/dz, Heaviside(f), Heaviside(-f), ReLU(f), 
ReLU(-f), 1/f, f2, f/B (Jacobian), f*B

C(U(F)) = U(F) and all pairwise products of functions in U(F)

Reductions: R = {min, max, max-min, mean, median, mean square, variance, 
skewness, L1 norm, quantiles 0.1, 0.25, 0.75, or 0.9, abs of fft coefficients 1-3, k|| with 
largest amplitude, expected k||, count above [-2, -1, 0, 1, 2]}

Features: R(U(C(U(F))))        ⟹ > 1 million combinations



Spearman correlation is a quick tool to find the most important feature
• Spearman correlation is the regular Pearson correlation of the the sorted rank of the 

target with the sorted rank of the feature.
• Its magnitude is invariant to any monotonic nonlinear function, e.g. corr(x, exp(x)) = 1
• No regression model required.
• Features with highest correlation to heat flux Q at fixed dT/dx & dn/dx:

Heaviside function: Where there is bad curvature,
local temperature gradient in real space (to various powers)

Jacobian (maybe squared)

Extremely similar to Mynick (2010), Xanthopoulos (2014), Stroteich (2022), Goodman (2024)! 

|∇T| = (dT/dx) |∇x|



Forward sequential feature selection: ∼3 features can be 
almost as predictive as all features

Stiffness Critical gradient



Sequential feature 
selection allows 
closer fit to the 
data as more 
geometric features 
are included 

Performance shown on 20% held-out test data



At each step, the top features are variations on a theme

Regression for the random-gradient dataset



Spearman correlation is a quick tool to find the most important feature
• Unlike Pearson, Spearman is invariant to any monotonic function.
• Features with highest correlation to heat flux Q at fixed dT/dx & dn/dx:

Heaviside function: Where there is bad curvature,
local temperature gradient in real space (to various powers)

Jacobian (maybe squared)

Extremely similar to Mynick (2010), Xanthopoulos (2014), Stroteich (2022), Goodman (2024)! 

|∇T| = (dT/dx) |∇x|



Previously proposed proxies can be tested



Other machine learning regression methods work also

All using a/LT, a/Ln, and the top 10 geometric features selected via XGBoost



XGBoost regression model with 1 feature

XGBoost fit

Fixed-gradient dataset



XGBoost regression model using only a/LT and a/Ln

Same plot, showing 
data as dots 



XGBoost regression model for fixed gradients using 2 features

Same plot, showing 
data as dots 
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Multiple lines of evidence agree that the most important 
geometric feature is |∇ψ| in regions of bad curvature
• Highest Spearman correlation at fixed gradients.

• Consistently the first geometric feature chosen in             
sequential feature selection:

• In regression on the heat flux above the critical gradient

• And in the classifier for stability vs instability                      
(i.e. determines critical gradient)

• Chosen by XGBoost, nearest-neighbors, & other algorithms.

• Also the largest Shapley values



There are many extensions possible
• Try larger sets of possible features

• From the gyrokinetic equation, understand how these features affect turbulence.

• Kinetic electrons, magnetic fluctuations.

• Saliency maps to understand the features learned by the neural networks.

• Symbolic regression.

• Kolmogorov-Arnold Networks.

• Optimization, profile prediction.

• Include & test other physics-motivated features.

Data is online at doi:10.5281/zenodo.14867776, so have a go at it!
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Start with inputs to the gyrokinetic equation & local shear:
B,     B-3B×∇B⋅∇y,     B-2B×κ⋅∇y,     B-3B×∇B⋅∇x, 
|∇x|²,     ∇x⋅∇y, |∇y|²,     d/dz(∇x⋅∇y / |∇x|²).

Apply unary operations on f(z): f2, df/dz, Heaviside(f), etc.,

Include all pairwise products,

Reductions: max, median, abs of fft coefficients, k|| with largest amplitude, etc.

⟹ > 1 million combinations

To create library of candidate features, apply any translation-invariant 
reduction to translation-equivariant operations 



Most important features from sequential feature selection

The gradients are more important than any geometric featureThe most important geometric feature is flux surface compression where curvature is badThe 2nd most important geometric feature involves flux surface compression and radial ∇B drift

Classification (stability vs instability)Regression on heat flux

Xanthopoulos et al (2011), Nakata & Matsuoka (2022):
Larger geodesic curvature (= radial drift)  ⇒ Stronger damping of zonal flows ⇒ higher heat flux



Shapley values show the sign and magnitude of each feature’s effect 
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a/LT increases Q
a/Ln decreases Q

Shapley value: contribution to predicted ln(Q)

Most important geometric features:
|∇x| increases Q,
especially near bad curvature

Next geometric features:
Radial drift (geodesic curvature)
increases Q



Summary

• From the gyrokinetic equation, understand how top features affect turbulence.
• Saliency maps to understand the features learned by the neural networks.
• Other interpretable methods (symbolic regression, Kolmogorov-Arnold Networks)
• Kinetic electrons, magnetic fluctuations.
• Optimization & profile prediction.

Future work

• Interpretable ML can reveal trends and stimulate theory.
• Most important feature for ITG seems to be |∇ψ| in regions of bad curvature.

Paper:
arXiv:2502.11657

Dataset
doi:10.5281/zenodo.14867776 




