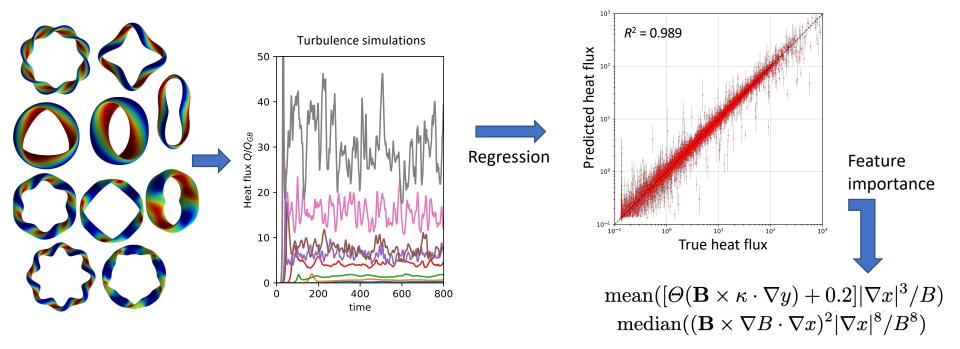
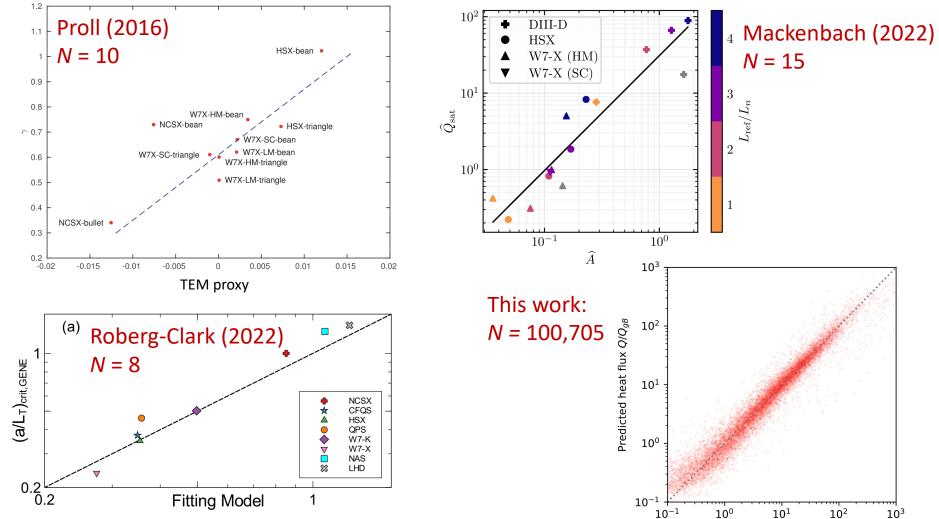
How does magnetic geometry affect ITG turbulence? Insights from data & machine learning



M Landreman, J Y Choi, C Alves, P Balaprakash, R M Churchill, R Conlin, G Roberg-Clark

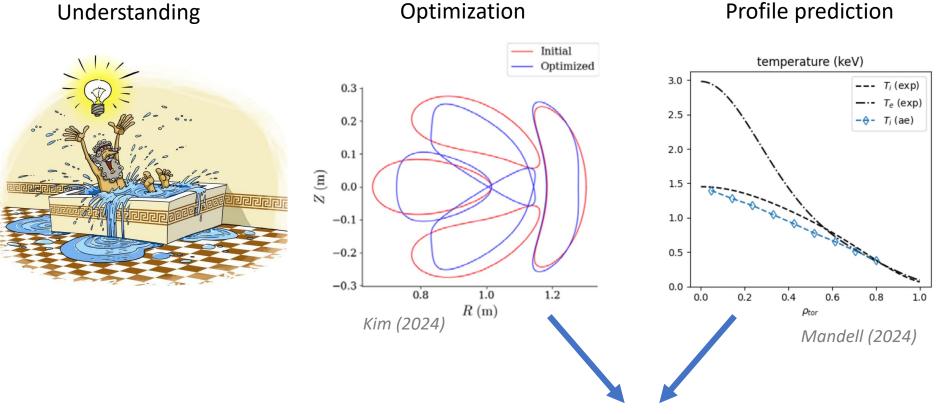
Thanks to many others who gave suggestions

Supported by the US DOE StellFoundry SciDAC

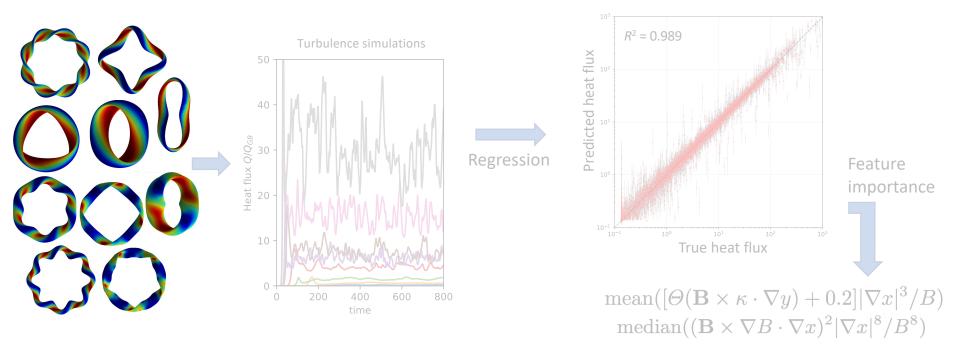


True heat flux Q/Q_{qB} from GX

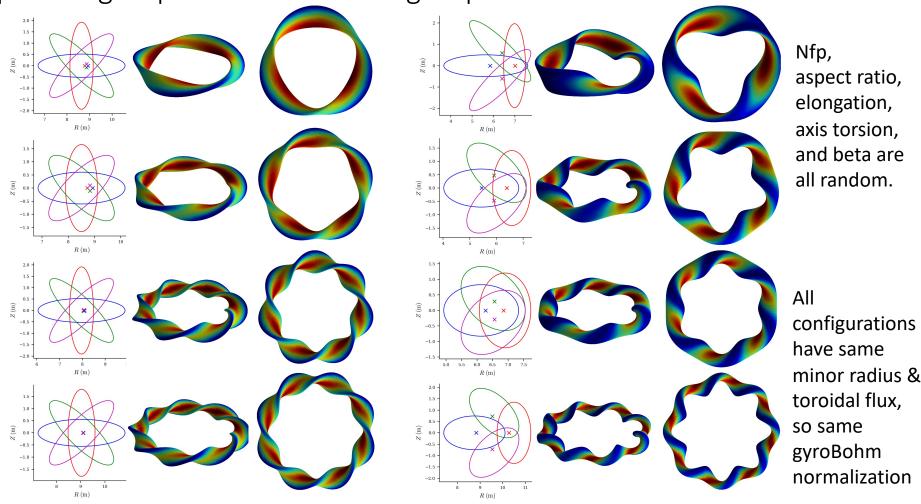
Motivations



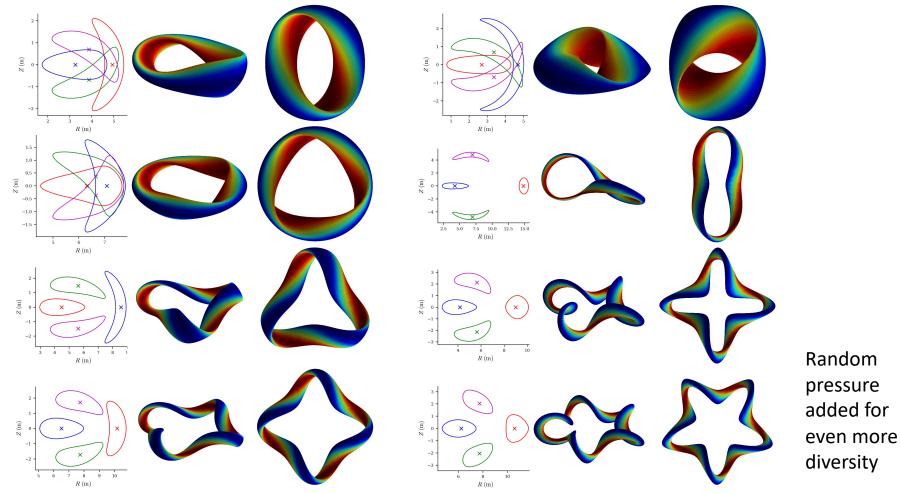
Optimize geometry for maximum fusion power



Equilibria group 1: random rotating ellipses

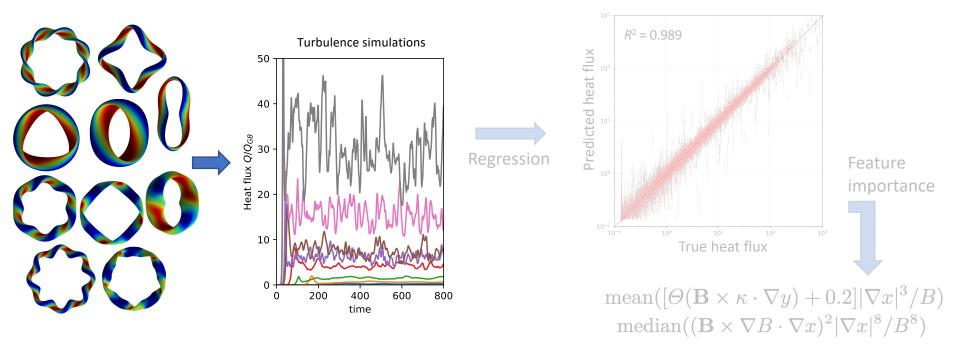


Equilibria group 2: QUASR QA & QH (Giuliani 2024)

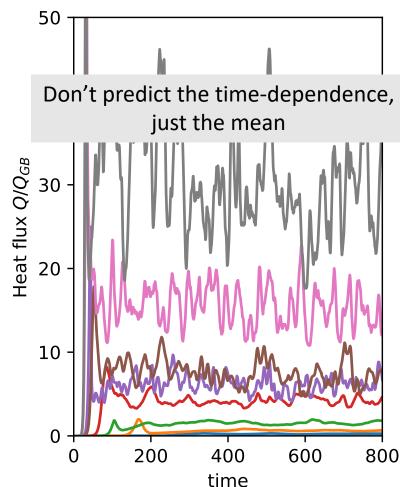


Equilibria group 3: random boundary modes

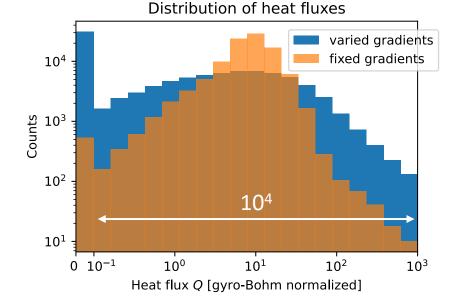




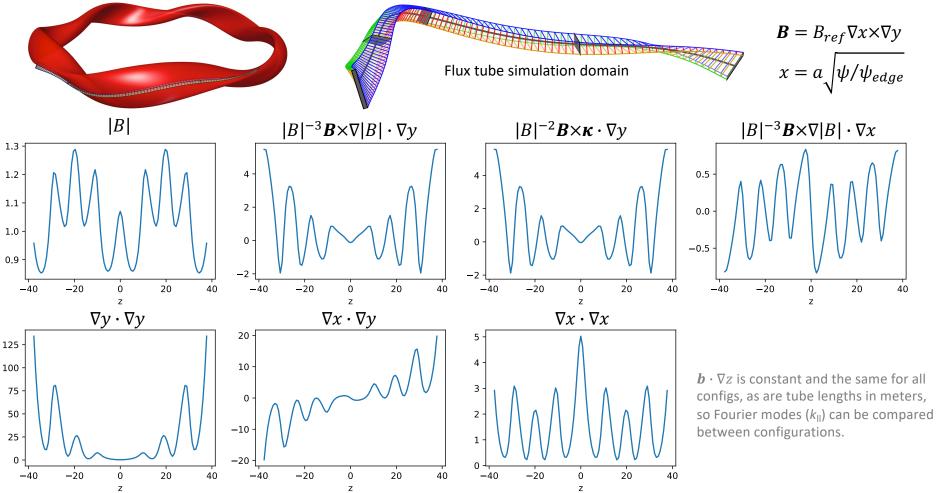
Nonlinear turbulence simulations were run with GX in every equilibrium

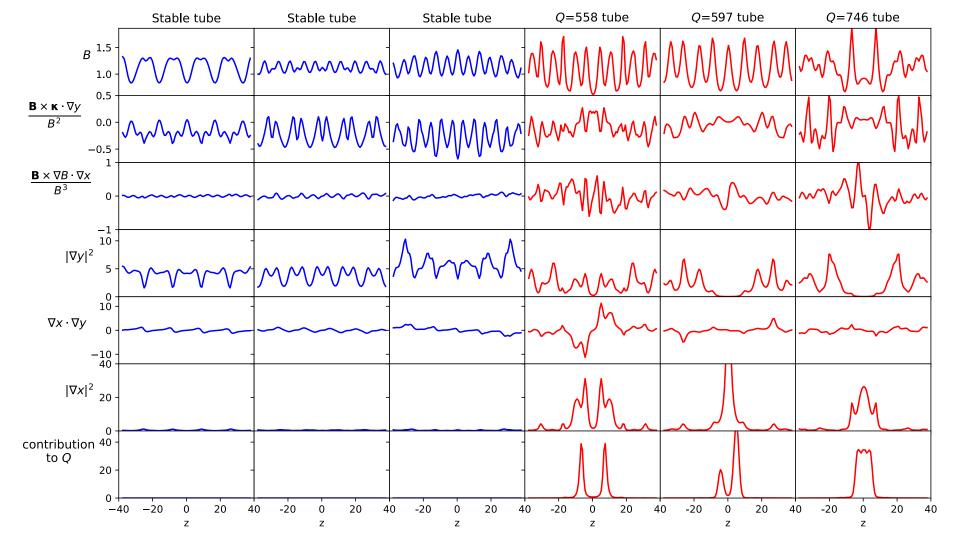


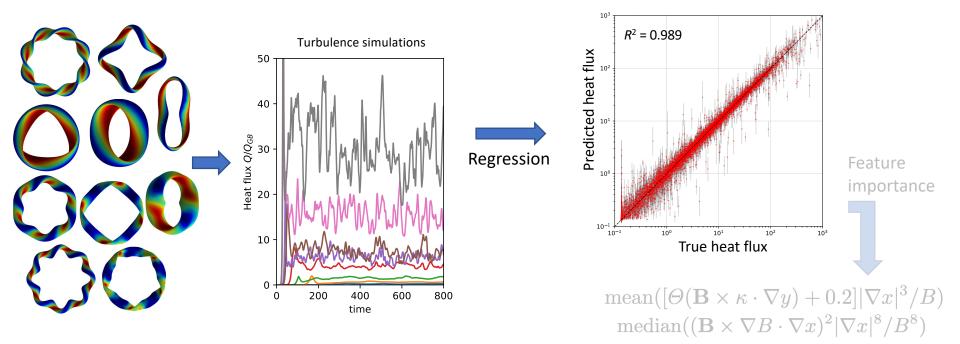
- Electrostatic, adiabatic electrons.
- 1 simulation in each tube with random dT/dx and dn/dx.
- 1 simulation in each tube with (a/T) dT/dx = 3, (a/n) dn/dx=0.9
- 8 minutes to get heat flux on 1 GPU
- 2×10⁵ nonlinear simulations took < 7000 node-hours (1/8 allocation)



Raw feature space: 7x 1D functions that enter the turbulence simulations

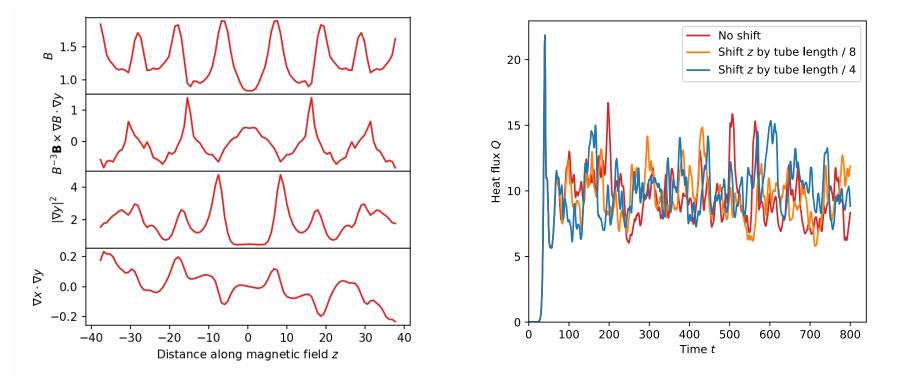




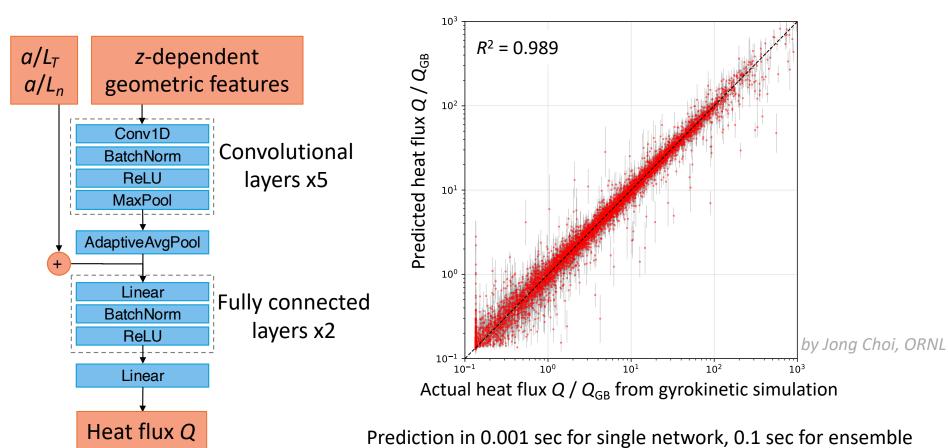


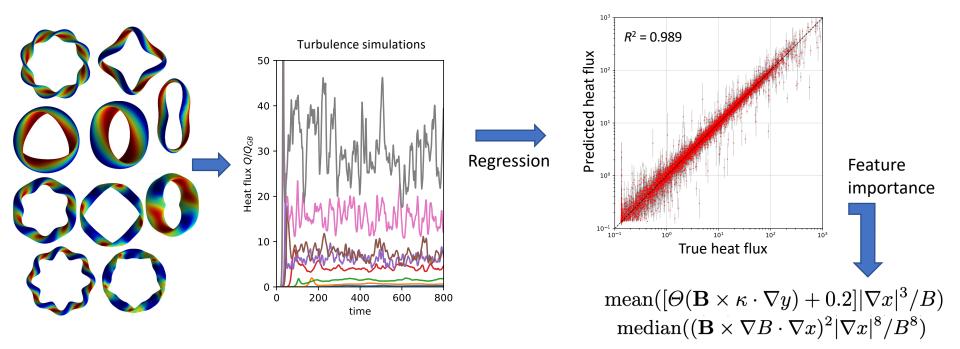
Raw features should *not* be directly fed to classical regression or fullyconnected neural network, since model should be translation-invariant

- GK equation, hence heat flux, is invariant under periodic translation of the raw features in z.
- Similar to computer vision, where convolutional neural networks give approximate translation-invariance.



Convolutional neural networks give accurate prediction of the turbulence





Our interpretable models use a large library of candidate features, all translation-invariant

Start with inputs to the gyrokinetic equation & local shear: $F = \{B, B^{-3}B \times \nabla B \cdot \nabla y, B^{-2}B \times \kappa \cdot \nabla y, B^{-3}B \times \nabla B \cdot \nabla x, |\nabla x|^2, \nabla x \cdot \nabla y, |\nabla y|^2, d/dz(\nabla x \cdot \nabla y / |\nabla x|^2)\}.$

U = unary operations on f(z): identity, df/dz, Heaviside(f), Heaviside(-f), ReLU(f), ReLU(-f), 1/f, f², f/B (Jacobian), f*B

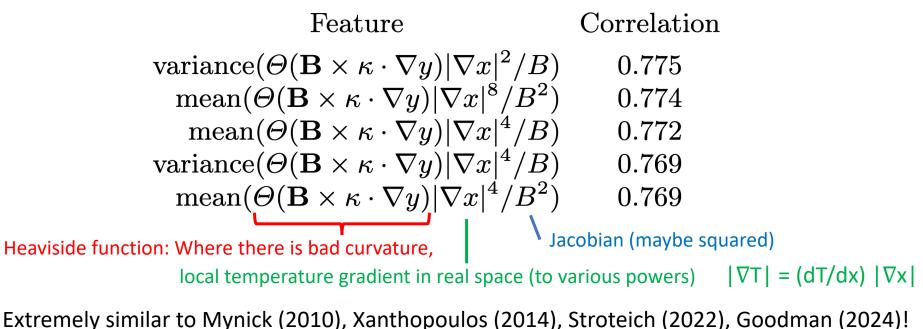
C(U(F)) = U(F) and all pairwise products of functions in U(F)

Reductions: R = {min, max, max-min, mean, median, mean square, variance, skewness, L₁ norm, quantiles 0.1, 0.25, 0.75, or 0.9, abs of fft coefficients 1-3, $k_{||}$ with largest amplitude, expected $k_{||}$, count above [-2, -1, 0, 1, 2]}

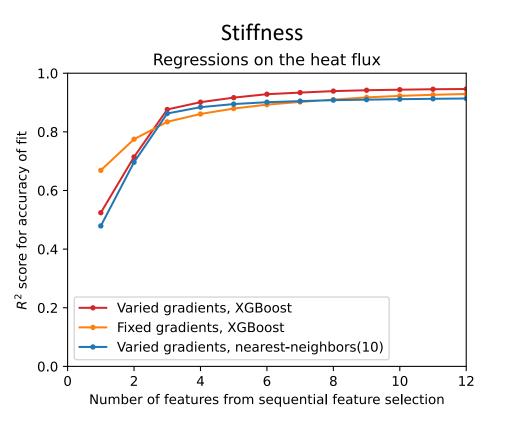
Features: $R(U(C(U(F)))) \implies > 1$ million combinations

Spearman correlation is a quick tool to find the most important feature

- Spearman correlation is the regular Pearson correlation of the the sorted rank of the target with the sorted rank of the feature.
- Its magnitude is invariant to any monotonic nonlinear function, e.g. corr(x, exp(x)) = 1
- No regression model required.
- Features with highest correlation to heat flux *Q* at fixed dT/dx & dn/dx:

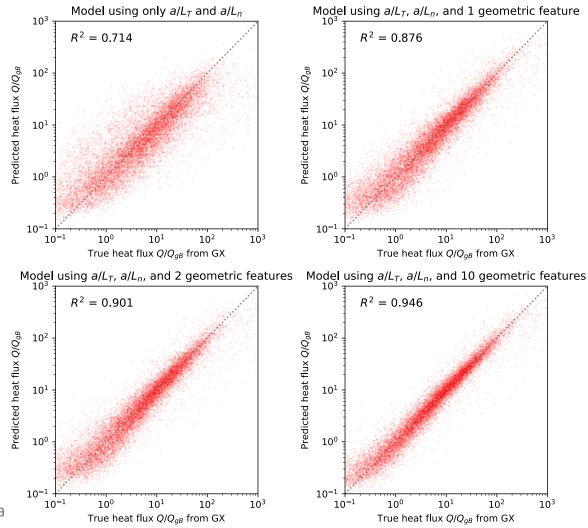


Forward sequential feature selection: \sim 3 features can be almost as predictive as all features



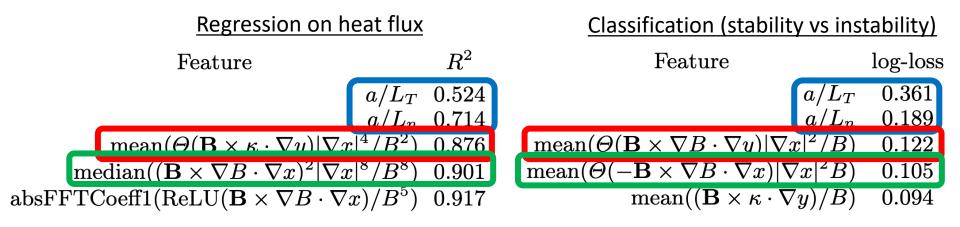
Critical gradient

Sequential feature selection allows closer fit to the data as more geometric features are included



Performance shown on 20% held-out test data

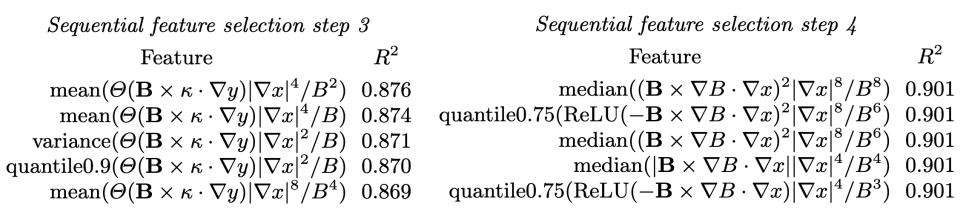
Most important features from sequential feature selection



The Bed most important genometric feature is flakes of a greasion while a closed is Badift

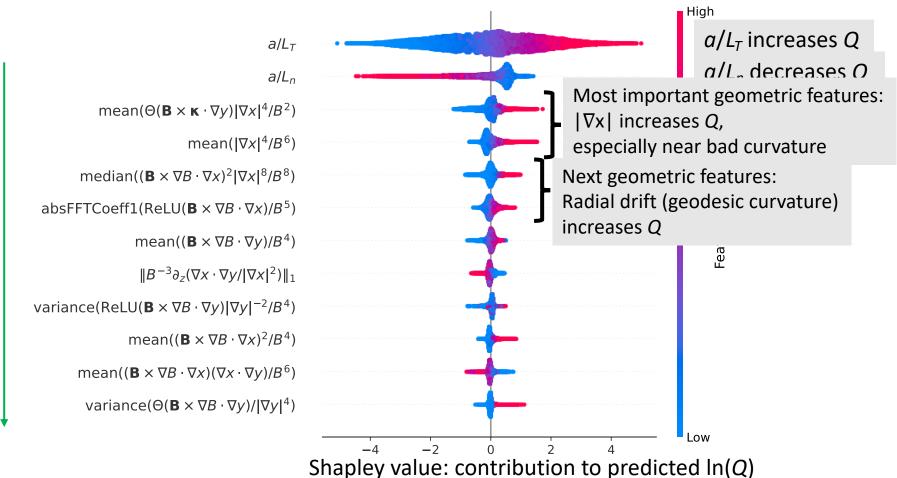
Xanthopoulos et al (2011), Nakata & Matsuoka (2022): Larger geodesic curvature (= radial drift) \Rightarrow Stronger damping of zonal flows \Rightarrow higher heat flux

At each step, the top features are variations on a theme

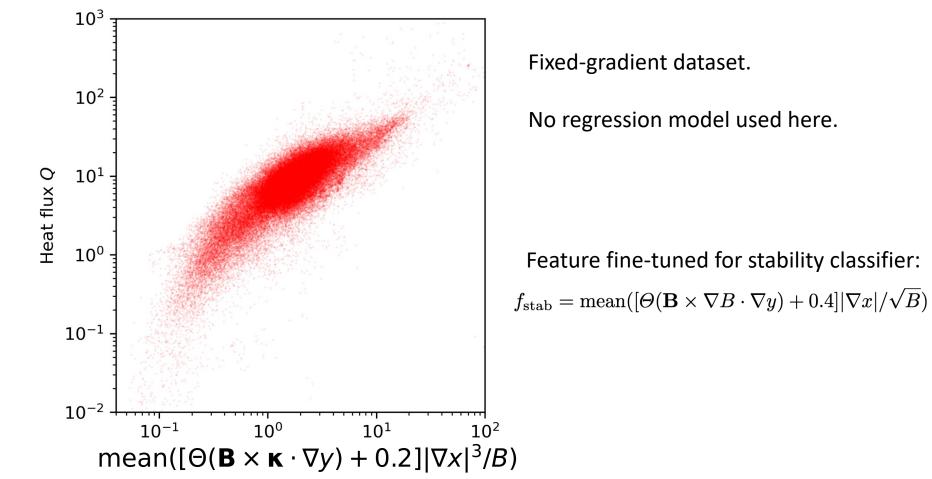


Regression for the random-gradient dataset

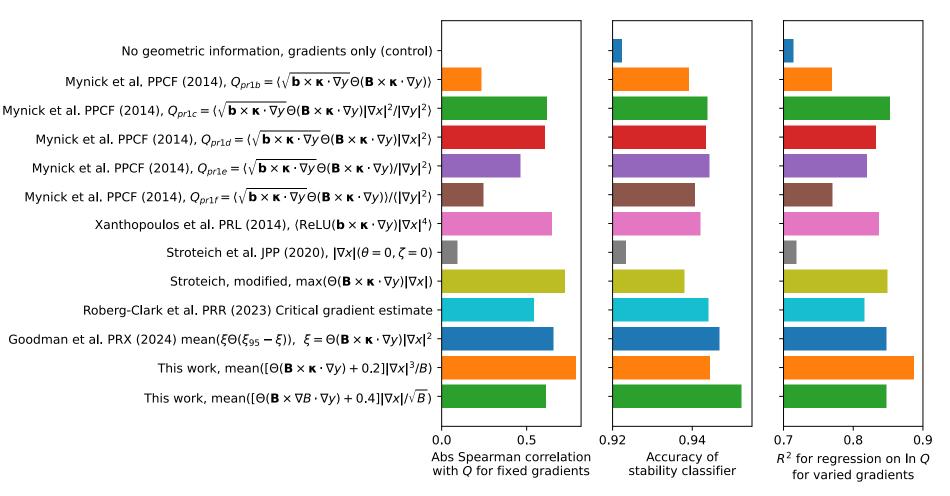
Shapley values show the sign and magnitude of each feature's effect



The first geometric feature can be fine-tuned for even better fit

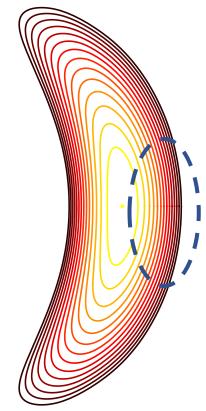


Previously proposed proxies can be tested



Multiple lines of evidence agree that the most important geometric feature is $|\nabla\psi|$ in regions of bad curvature

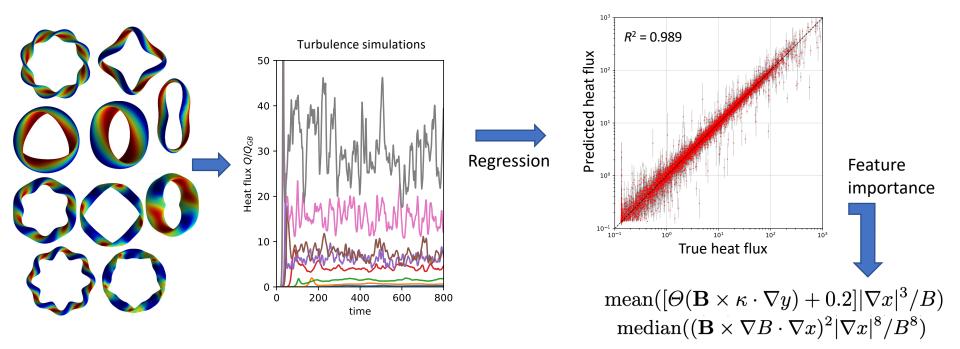
- Highest Spearman correlation at fixed gradients.
- Consistently the first geometric feature chosen in sequential feature selection:
 - In regression on the heat flux above the critical gradient
 - And in the classifier for stability vs instability (i.e. determines critical gradient)
 - Chosen by both XGBoost and nearest-neighbors.
- Also the largest Shapley values



There are many extensions possible

- Try larger sets of possible features
- From the gyrokinetic equation, understand how these features affect turbulence.
- Kinetic electrons, magnetic fluctuations.
- Saliency maps to understand the features learned by the neural networks.
- Symbolic regression.
- Kolmogorov-Arnold Networks.
- Optimization, profile prediction.
- Include & test other physics-motivated features.

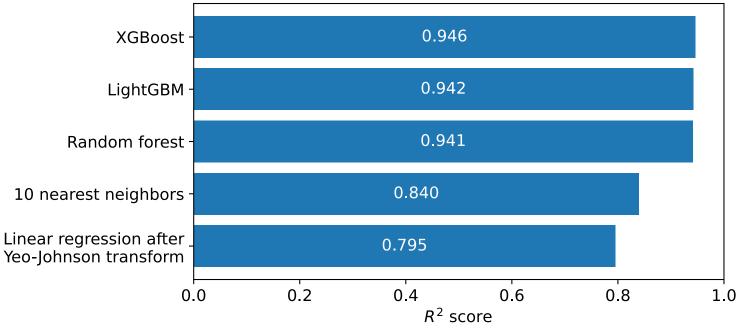
Data will be released on Zenodo with the paper, so have a go at it!



Extra slides

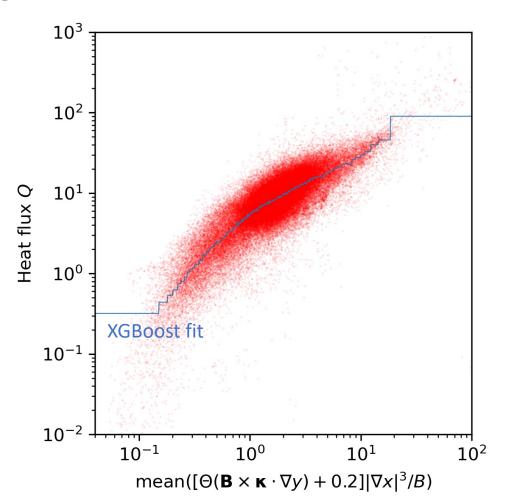
Other machine learning regression methods work also

Comparison of regression methods for random-gradient dataset with 12 features



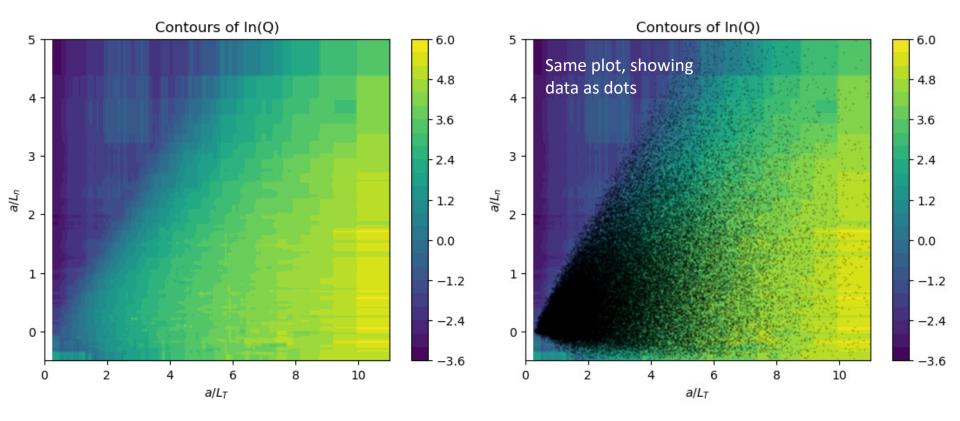
All using $a/L_{\overline{\nu}}$ a/L_{n} , and the top 10 geometric features selected via XGBoost

XGBoost regression model with 1 feature



Fixed-gradient dataset

XGBoost regression model using only a/LT and a/Ln



XGBoost regression model for fixed gradients using 2 features

