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Roberg-Clark (2022)
N = 8

Mackenbach (2022)
N = 15

Proll (2016)
N = 10

TEM proxy
This work:
N = 100,705



Motivations

Profile predictionOptimizationUnderstanding

Optimize geometry for maximum fusion power

Kim (2024)
Mandell (2024)
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Equilibria group 1: random rotating ellipses

Nfp, 
aspect ratio,
elongation,
axis torsion,
and beta are 
all random.

All 
configurations 
have same 
minor radius & 
toroidal flux, 
so same 
gyroBohm
normalization



Equilibria group 2: QUASR QA & QH (Giuliani 2024)

Random 
pressure 
added for 
even more 
diversity



Equilibria group 3: random boundary modes

RBC and ZBS 
boundary 
Fourier modes 
sampled from 
normal 
distributions, 
fit to 44 “real” 
stellarators
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Nonlinear turbulence simulations were run with GX in every equilibrium
• Electrostatic, adiabatic electrons.

• 1 simulation in each tube with random dT/dx and dn/dx.

• 1 simulation in each tube with (a/T) dT/dx = 3, (a/n) dn/dx=0.9

• 8 minutes to get heat flux on 1 GPU

• 2×105 nonlinear simulations took < 7000 node-hours (1/8 allocation)

104

Don’t predict the time-dependence,
just the mean



𝑩 = 𝐵!"#∇𝑥×∇𝑦

Flux tube simulation domain

𝒃 " ∇𝑧 is constant and the same for all 
configs, as are tube lengths in meters, 
so Fourier modes (kll) can be compared 
between configurations.

Raw feature space: 7x 1D functions that enter the turbulence simulations

𝑥 = 𝑎 ⁄𝜓 𝜓"$%"

𝐵 𝐵 &'𝑩×∇ 𝐵 + ∇𝑦 𝐵 &(𝑩×𝜿 + ∇𝑦 𝐵 &'𝑩×∇ 𝐵 + ∇𝑥
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Raw features should not be directly fed to classical regression or fully-
connected neural network, since model should be translation-invariant
• GK equation, hence heat flux, is invariant under periodic translation of the raw features in z.

• Similar to computer vision, where convolutional neural networks give approximate translation-invariance.



Convolutional neural networks give accurate prediction 
of the turbulenceInput feature
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by Jong Choi, ORNL

Prediction in 0.001 sec for single network, 0.1 sec for ensemble
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Our interpretable models use a large library of 
candidate features, all translation-invariant

Start with inputs to the gyrokinetic equation & local shear:
F = {B, B-3B×∇B⋅∇y, B-2B×κ⋅∇y, B-3B×∇B⋅∇x, |∇x|², ∇x⋅∇y, |∇y|², d/dz(∇x⋅∇y / |∇x|²)}.

U = unary operations on f(z): identity, df/dz, Heaviside(f), Heaviside(-f), ReLU(f), 
ReLU(-f), 1/f, f2, f/B (Jacobian), f*B

C(U(F)) = U(F) and all pairwise products of functions in U(F)

Reductions: R = {min, max, max-min, mean, median, mean square, variance, 
skewness, L1 norm, quantiles 0.1, 0.25, 0.75, or 0.9, abs of fft coefficients 1-3, k|| with 
largest amplitude, expected k||, count above [-2, -1, 0, 1, 2]}

Features: R(U(C(U(F))))        ⟹ > 1 million combinations



Spearman correlation is a quick tool to find the most important feature
• Spearman correlation is the regular Pearson correlation of the the sorted rank of the 

target with the sorted rank of the feature.
• Its magnitude is invariant to any monotonic nonlinear function, e.g. corr(x, exp(x)) = 1
• No regression model required.
• Features with highest correlation to heat flux Q at fixed dT/dx & dn/dx:

Heaviside function: Where there is bad curvature,
local temperature gradient in real space (to various powers)

Jacobian (maybe squared)

Extremely similar to Mynick (2010), Xanthopoulos (2014), Stroteich (2022), Goodman (2024)! 

|∇T| = (dT/dx) |∇x|



Forward sequential feature selection: ∼3 features can be 
almost as predictive as all features

Stiffness Critical gradient



Sequential feature 
selection allows 
closer fit to the 
data as more 
geometric features 
are included 

Performance shown on 20% held-out test data



Most important features from sequential feature selection

The gradients are more important than any geometric featureThe most important geometric feature is flux surface compression where curvature is badThe 2nd most important geometric feature involves flux surface compression and radial ∇B drift

Classification (stability vs instability)Regression on heat flux

Xanthopoulos et al (2011), Nakata & Matsuoka (2022):
Larger geodesic curvature (= radial drift)  ⇒ Stronger damping of zonal flows ⇒ higher heat flux



At each step, the top features are variations on a theme

Regression for the random-gradient dataset



Shapley values show the sign and magnitude of each feature’s effect 
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a/LT increases Q
a/Ln decreases Q

Shapley value: contribution to predicted ln(Q)

Most important geometric features:
|∇x| increases Q,
especially near bad curvature

Next geometric features:
Radial drift (geodesic curvature)
increases Q



The first geometric feature can be fine-tuned for even better fit

Fixed-gradient dataset.

No regression model used here.

Feature fine-tuned for stability classifier:



Previously proposed proxies can be tested



Multiple lines of evidence agree that the most important 
geometric feature is |∇ψ| in regions of bad curvature
• Highest Spearman correlation at fixed gradients.

• Consistently the first geometric feature chosen in             
sequential feature selection:

• In regression on the heat flux above the critical gradient

• And in the classifier for stability vs instability                      
(i.e. determines critical gradient)

• Chosen by both XGBoost and nearest-neighbors.

• Also the largest Shapley values



There are many extensions possible
• Try larger sets of possible features

• From the gyrokinetic equation, understand how these features affect turbulence.

• Kinetic electrons, magnetic fluctuations.

• Saliency maps to understand the features learned by the neural networks.

• Symbolic regression.

• Kolmogorov-Arnold Networks.

• Optimization, profile prediction.

• Include & test other physics-motivated features.

Data will be released on Zenodo with the paper, so have a go at it!



Turbulence simulations

Feature 
importance

Regression

True heat flux

Pr
ed

ic
te

d 
he

at
 fl

ux

R2 = 0.989



Extra slides



Other machine learning regression methods work also

All using a/LT, a/Ln, and the top 10 geometric features selected via XGBoost



XGBoost regression model with 1 feature

XGBoost fit

Fixed-gradient dataset



XGBoost regression model using only a/LT and a/Ln

Same plot, showing 
data as dots 



XGBoost regression model for fixed gradients using 2 features

Same plot, showing 
data as dots 


