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> 100x variation

Applying machine learning to a set of random 
stellarator geometries, we can predict the geometry-
dependence of turbulence

Regression

Turbulence simulations Prediction on unseen geometries:
R2 = 0.96



Step 1: Generate equilibria with random geometries

• Each RBC and ZBS coefficient sampled from normal distribution, fit to collection of well-known stellarators.
• All aspect ratio 6, same major & minor radius, same toroidal flux, so identical gyro-Bohm normalizations.



dT/dr scanned in nonlinear GX turbulence simulations for a few 
configurations. Critical gradient and stiffness are correlated.

Zoomed out Zoomed in
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Nonlinear turbulence simulations run with GX in every equilibrium
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Distribution of heat fluxes

Heat flux from GX (GB units)
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• Fixed (a/T) dT/dr = 3, adiabatic electrons.

• ∼ 8 minutes to get heat flux on 1 GPU

• So far N > 32k (8k equilibria * 4 flux tubes in each).
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Raw feature space: 7x 1D functions that enter the turbulence simulations
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∇𝜓 % ∇𝜓∇𝛼 % ∇𝜓∇𝛼 % ∇𝛼

𝑩 = ∇𝜓×∇𝛼

Flux tube simulation domain

𝒃 " ∇𝑧 is constant and the same for all configs, as are tube lengths in 
meters, so Fourier modes (kll) can be compared between configurations.



Raw features should not be directly fed to classical regression or fully-
connected neural network, since model should be translation-invariant
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• GK equation, hence heat flux, is invariant under 
periodic translation of the raw features.

• Similar to computer vision, where convolutional 
neural networks give approximate translation-
invariance.

• Demo: apply np.roll() to GX geometry input arrays, 
then re-run GX

Number of grid points shifted with np.roll()
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The configurations with lowest & highest heat flux have distinctive features
Smallest heat flux:

Largest heat flux:



Configurations with smallest heat flux



Configurations with largest heat flux



Convolutional neural networks give a very 
accurate prediction of the turbulence

R2 = 0.96

Actual ln(heat flux) from gyrokinetic simulation
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DeepHyper analysis by Caio Alvez, ORNL



A more interpretable ML approach:
Feature engineering & selection
• Supplement the original GX inputs (|B|, B×∇B⋅∇α, |∇α|², …) with local shear = 

d/dz (∇ψ⋅∇α / |∇ψ|²).

• Make many combinations of these “raw features”, giving new functions of z (e.g. 
|∇ψ|² * B×∇B⋅∇ψ).

• To each, apply many different reductions over z that preserve translation-
invariance (e.g. max, mean, etc). The results become the features to use for 
machine learning.

• Discard any features that have the same value for > 95% of the data.

• Apply forward sequential feature selection to pick out the few features that 
contribute most to R2.



Feature set
Start with GX inputs, local shear, & inverses of the positive-definite quantities:
F = {B, B-3B×∇B⋅∇α, B-3B×∇B⋅∇ψ, |∇α|², ∇ψ⋅∇α, |∇ψ|², localShear, 1/B, 1/|∇α|², 
1/|∇ψ|²}. Use vacuum fields to reduce raw features by 1 since B×κ⋅∇α = b×∇B⋅∇α.

C(F) = all pairwise products in F (excluding x/x for x in B, |∇α|², |∇ψ|²).

M(F) = {Heaviside(x), Heaviside(-x)} for each x in F that can be both >0 and <0:            
B-3B×∇B⋅∇α, B-3B×∇B⋅∇ψ, ∇ψ⋅∇α, localShear

J = {1, 1/B}, in case Jacobian ∝ 1/B helps.

Reductions: R = {min, max, max-min, mean, median, RMS, variance, skewness, 
quantiles 0.1..0.9, abs of fft coefficients 1-3, k|| with largest amplitude, expected k||, 
count above [-2, -1.5, … 6]}

Features: R(F * J), R(M * F * J), R(C * J), R(M * C * J)
Includes e.g. mean[|∇ψ|² * Heaviside(B×∇B⋅∇α)], similar to Goodman et al (2024)

⟹ 22,446 features



Apply forward sequential feature selection
Features added when using LightGBM:
1: meanSquared(Heaviside(B×∇B⋅∇α) * |∇ψ|² / B²)
2: mean(Heaviside(B×∇B⋅∇ψ) * (B×∇B⋅∇ψ) / B5)
3: argmax_kpar(Heaviside(B×∇B⋅∇α) / B²)
4: |FFTCoefficient1(B)|
5: quantile0.2(Heaviside(-B×∇B⋅∇ψ) * |∇ψ|² * S)
6: mean(Heaviside(-S) * (B×∇B⋅∇α) / B4)
7: |FFTCoefficient1(B-3B×∇B⋅∇ψ)|
8: mean(B * |∇ψ|²)

Features added when using XGBoost:
1: meanSquared(Heaviside(B×∇B⋅∇α) * |∇ψ|² / B²)
2: mean(Heaviside(B×∇B⋅∇ψ) * (B×∇B⋅∇ψ) / B5)
3: argmax_kpar(Heaviside(B×∇B⋅∇α) / B²)
4: quantile0.4(Heaviside(-S) * S * |∇ψ|² / B)
5: |FFTCoefficient1(B-3B×∇B⋅∇ψ)|
6: mean((B×∇B⋅∇α) / B2)
7: mean(Heaviside(∇ψ⋅∇α) * B * |∇ψ|²)
8: |FFTCoefficient2(B-3B×∇B⋅∇ψ)|

S = local shear = d/dz (∇ψ⋅∇α / |∇ψ|²).



Results of forward sequential feature selection

← No regression model,
Just showing correlation with just the 1 top feature



Shapley values show the sign and 
magnitude of each feature’s effect 

Positive correlation with Q

|FFTCoefficient1(B-3B×∇B⋅∇ψ)|

mean(Heaviside(B×∇B⋅∇ψ) * (B×∇B⋅∇ψ) / B5)

argmax_kpar(Heaviside(B×∇B⋅∇α) / B²)

|FFTCoefficient1(B)|

quantile0.2(Heaviside(-B×∇B⋅∇ψ) * |∇ψ|² * S)

mean(Heaviside(-S) * (B×∇B⋅∇α) / B4)

mean(B * |∇ψ|²)

meanSquared(Heaviside(B×∇B⋅∇α) * |∇ψ|² / B²)

Negative correlation with Q



The most important features are consistent with 
recent quantities suggested from theory

Top features selected:

1: meanSquared(Heaviside(B×∇B⋅∇α) * |∇ψ|² / B²), positive correlation with Q

2: mean(Heaviside(B×∇B⋅∇ψ) * (B×∇B⋅∇ψ) / B5), positive correlation with Q

3: argmax_kpar(Heaviside(B×∇B⋅∇α) / B²), negative correlation with Q

Where there is bad curvature,

Consistent with Nakata (2022):
Larger geodesic curvature (radial drift)  →  smaller zonal flows  →  higher Q

local temperature gradient (squared) in real space

Jacobian (squared)

Dominant k|| of the bad curvature - possibly related to critical balance?
Sign of correlation is consistent with Barnes et al PRL (2011).

Similar to ideas in Stroteich (2022), Goodman (2024). 



Other classical ML regression methods 
work also but are somewhat less accurate

All using the set of 20 features selected via LightGBM



Importance of a feature can be measured 
by randomly permuting it

• For each of the raw features, randomly swap it with another configuration.
• To ensure k⟂ ≥ 0, also cap ∇𝛼 % ∇𝜓 at ∇𝜓 % ∇𝜓 ∇𝛼 % ∇𝛼 .
• No machine learning model – Just re-run GX with the altered geometry inputs.

𝐵 𝐵!"𝑩×∇𝐵 % ∇𝛼 𝐵!#𝑩×𝜿 % ∇𝛼

∇𝜓 % ∇𝜓∇𝛼 % ∇𝜓∇𝛼 % ∇𝛼

𝐵!"𝑩×∇𝐵 % ∇𝜓

𝐵!#𝑩×𝜿 % ∇𝜓



Importance of a feature can be measured 
by randomly permuting it

Curvature drift is the least important, while ∇B drift is the most important!

Can we understand this physically from the gyrokinetic equation?
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Mean squared error in ln(Q) when feature is randomized
Most
important

Least
important



There are many extensions possible
• Try larger sets of possible features

• Understand physically why later features affect turbulence.

• Understand why curvature drift is ≪ important than ∇B drift.

• Saliency maps to understand the features learned by the CNNs.

• Symbolic regression.

• Kolmogorov-Arnold Networks.

• Expand to multiple values of nfp, aspect ratio, gradients.

• Kinetic electrons.


