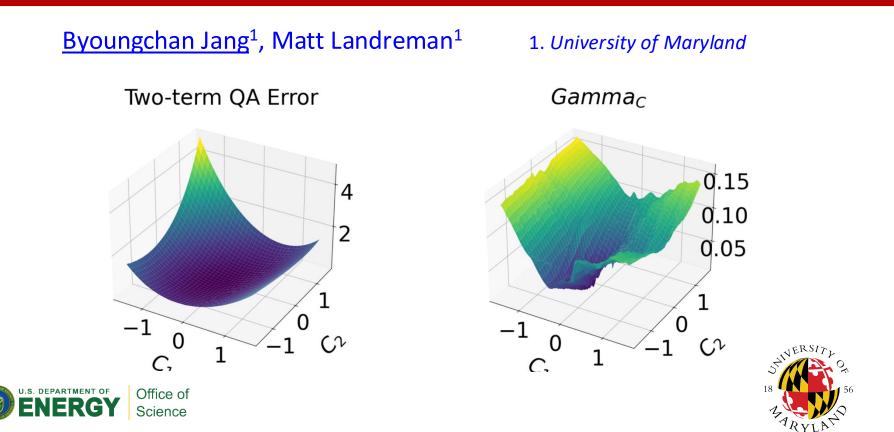
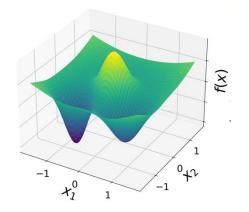
Visualizing Stellarator Objective Functions



- In optimization for stellarators, the optimization algorithms(i.e. optimizers) can get stuck, and the solution depends on initial condition.
- This limits us from finding all solutions from the parameter space.

To avoid local minima and ultimately to explore more of the parameter space

➡ Need to understand the landscape of the stellarator optimization problems

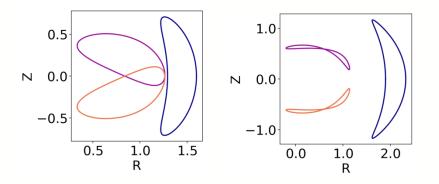


Given a "objective function" $f : \mathbb{R}^n \to \mathbb{R}$, minimize f(x)(aka "loss function", "cost function")

```
Parameter space: x
```

x = shape of toroidal surface (25 - 121 dofs)

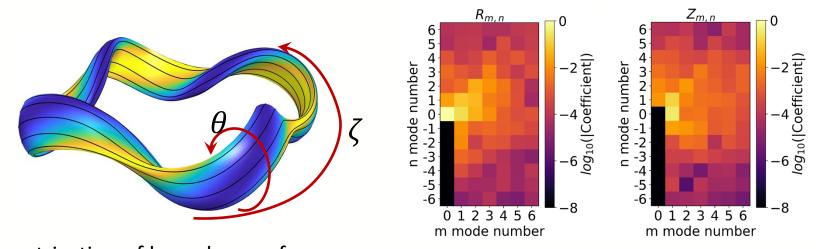
• Part of the parameter space corresponds to unphysical self-intersecting shapes



Objective functions: f

- Large volume of good magnetic surfaces (no islands and chaos)
- Rotational transform (i.e. inverse safety factor)
- Good confinement of particle trajectories
- Low neoclassical transport
- Low turbulent transport
- Magnetohydrodynamic (MHD) stability

Parameter space



Parametrization of boundary surface:

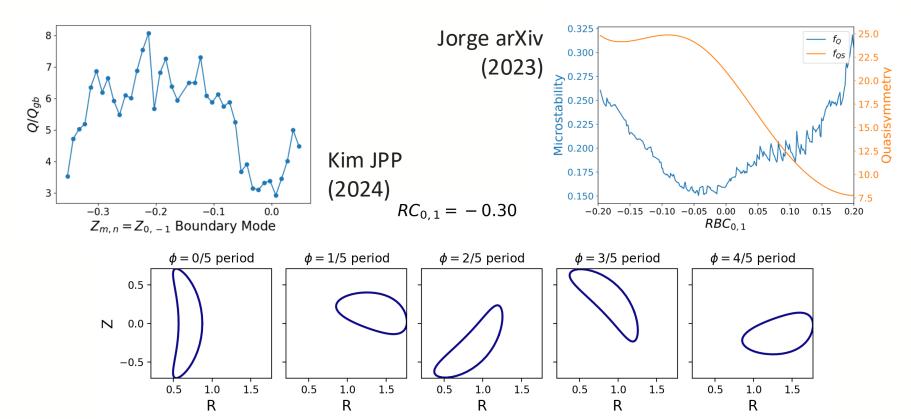
$$R(\theta,\zeta) = \sum_{m,n} R_{m,n} \cos(m\theta - n_{fp}n\zeta) \qquad Z(\theta,\zeta) = \sum_{m,n} Z_{m,n} \sin(m\theta - n_{fp}n\zeta)$$

 ζ = toroidal angle, θ = poloidal angle, n_{fp} = number of field periods

Parameter space for optimization: $x = [R_{m,n}, Z_{m,n}]$

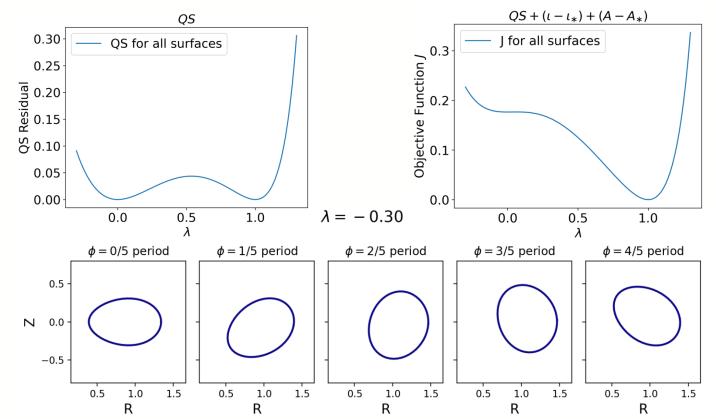
1D landscape

1D Interpolation: Changing one of the modes $\rightarrow x = [R_{m,n}, Z_{m,n}]$ $R_{0,1} \in [-0.2, 0.2]$

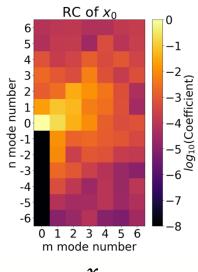


1D landscape

1D Interpolation between two configurations $\implies x' = (1 - \lambda)x_1 + \lambda x_2$

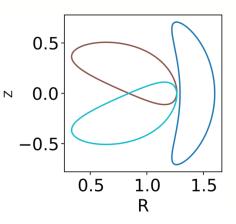


Method of Visualization



 $R(\theta,\zeta) = \sum_{m,n} R_{m,n} \cos(m\theta - n\zeta)$

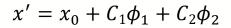
$$Z(\theta,\zeta) = \sum_{m,n} Z_{m,n} \sin(m\theta - n\zeta)$$

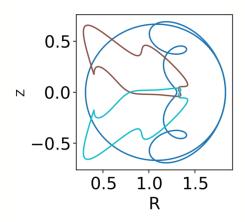


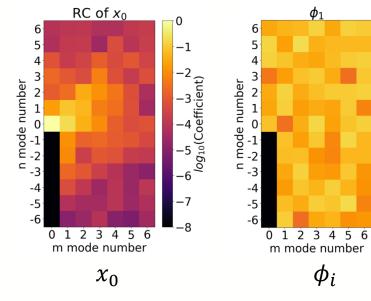
 x_0

Array of Flattened Fourier Coefficients

Method of Visualization







Array of Flattened **Fourier Coefficients**

Random Sample from Gaussian Distribution

 ϕ_i

 ϕ_1

0

 $^{-1}$

2

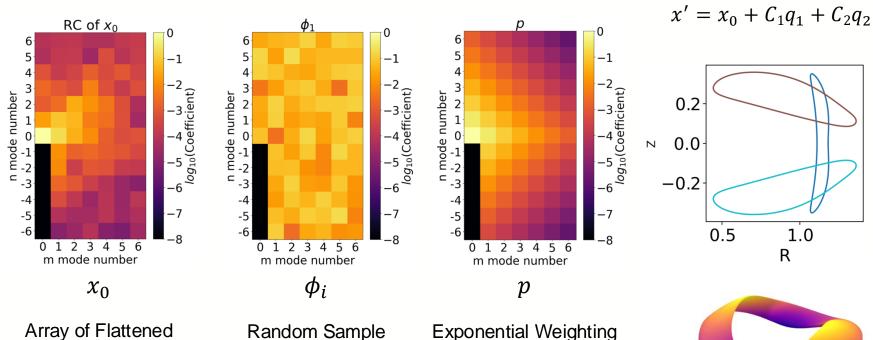
og₁₀(Coefficient)

-6

-7

-8

Method of Visualization

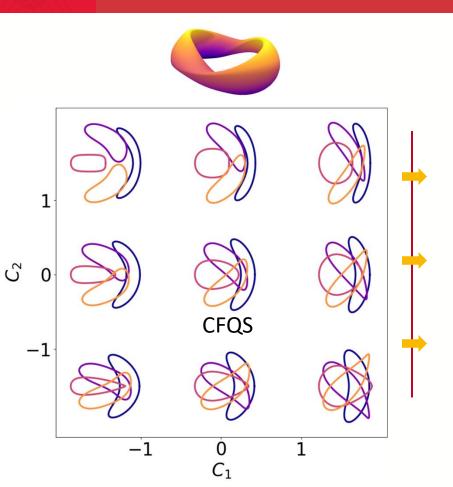


Fourier Coefficients

Random Sample from Gaussian Distribution Exponential Weighting for Smooth Surfaces

 $q_i = p \odot \phi_i$

Comparing different proxies for neoclassical confinement

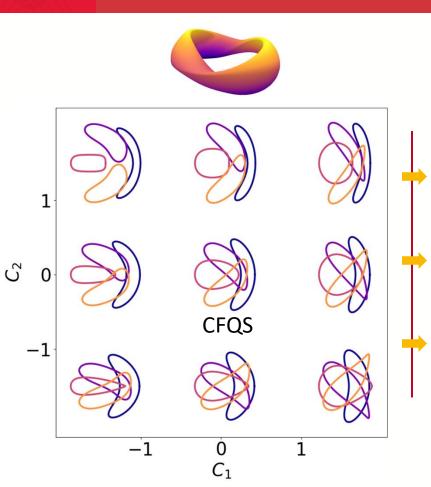


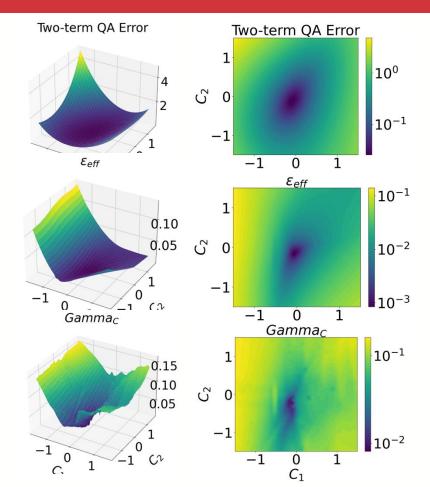
Two-term quasisymmetry

 ϵ_{eff} : effective ripple

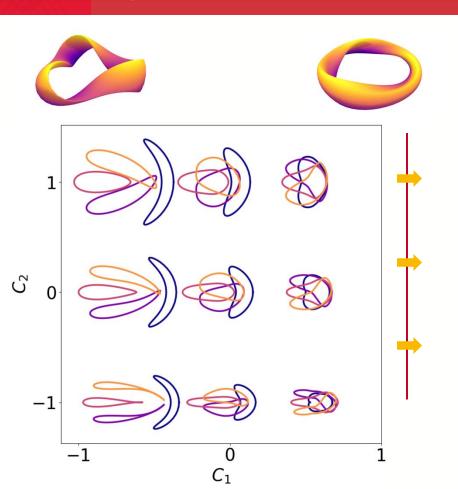
Gamma_c

Comparing different proxies for neoclassical confinement





1D interpolation + 1D random direction



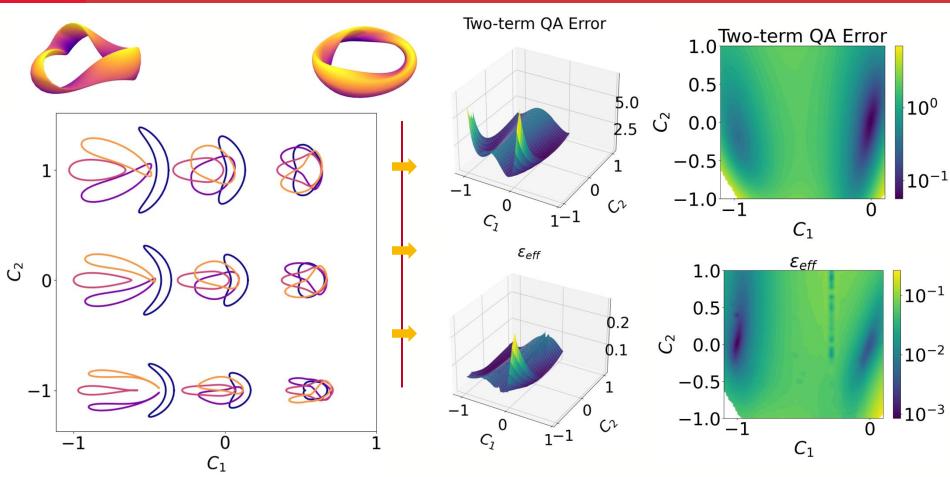
$$x' = x_1 + C_1(x_2 - x_1) + C_2 q_2$$

Two-term quasisymmetry

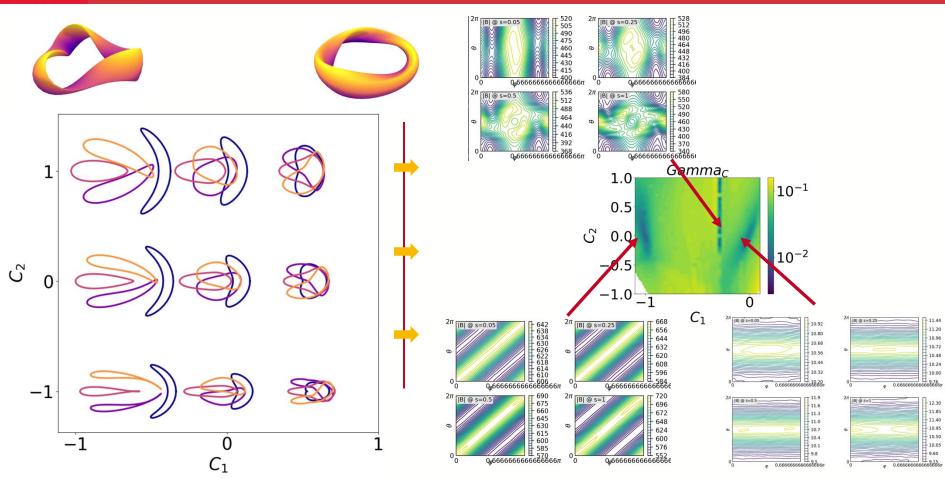
 ϵ_{eff} : effective ripple

Gamma_c

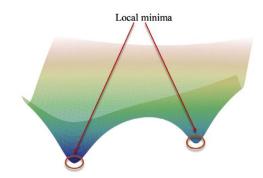
1D interpolation + 1D random direction



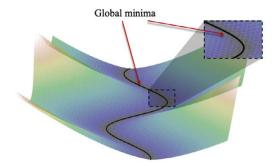
1D interpolation + 1D random direction



Ongoing work: Closing the gap

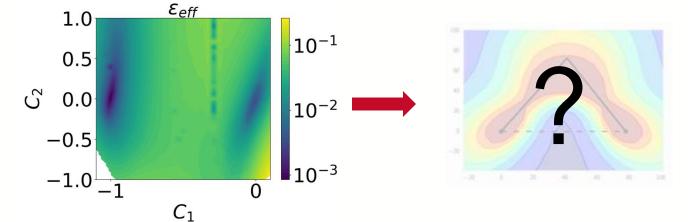


(a) Loss landscape of under-parameterized models



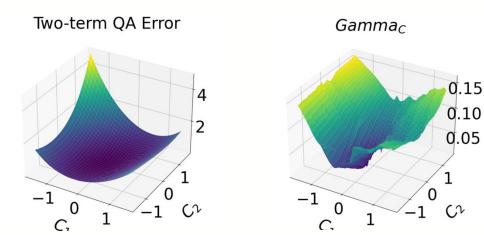
Liu, C., Zhu, L. and Belkin, M., 2022 *Applied and Computational Harmonic Analysis*.

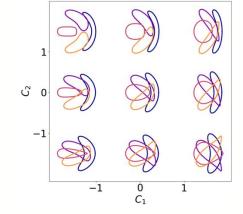
(b) Loss landscape of over-parameterized models



Garipov, Timur, et al. 2018. NeurIPS

- The new visualization methods can be used to explore objective functions in stellarator optimization
- There seems to be a clear favorite for optimizer for certain objective functions due to its smoothness.
- We can further build qualitative intuition about the stellarator objective function landscape.





Closing thoughts

Thank you

byoungj@umd.edu