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* Motivation
* Reducing 3D and 5D integrals to 1D

e Efficient quadrature for the 1D integrals



Tokamak & stellarator design requires calculations for the

internal field and | x B force

e Superconductor quench limits depend on local B.
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A Superconducting Region
* Forces « B2. High B limited by support structure.

e Coil shapes can probably be optimized for force & B.
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Field and force on coil 2 due to current in coil 1 can be
computed quickly: 1D filament models are ok.
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Tricky part is the self-field: singularity in Biot-Savart Law  B(r) = —j do



Accurate calculation of the internal field and self-force

appear to require high-dimensional integrals

Field: 3D integral
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Force per unit length: 5D integral
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Can we simplify/approximate these integrals for fast evaluation inside an optimization loop?



Simply skipping the singular point in a 1D filament calculation

10 ~ F

ives a non-converging result with signifciant error
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* Filament, skipping singular point
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The analytic formula for a circular coil shows that the
finite cross-section cannot be ignored
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df 4nmR
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Diverges if minor radius a = 0

Could a modified 1D filament model work if we supplement it with a value for a?



Calculations of internal field and self-force are also of interest for
many other subjects, e.g. solar flares
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Some related work

* Garren & Chen, Phys. Plasmas (1994). Looked at force but not internal field. Solution is to do a
1D integral over an incomplete loop, with a specific segment removed.

* Dengler, Advanced Electromagnetics (2016). Computed self-inductance using 1D integral.

* Lion, Warmer, et al Nuclear Fusion (2021). Computed B in conductor by summing analytical
result for rectangular prism of J.

* Robin & Volpe, Nuclear Fusion (2022). Computed force for sheet current on a winding surface.

Our contribution:
* Compute both the self-force and the spatially-resolved internal field using only 1D integrals.

* Integration is over a periodic domain, so quadrature can be spectrally accurate, & can re-use
points/data from other coil optimization objectives.
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Rectangular
cross-section
is a next step.
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Methodology for finding an accurate reduced model

Parameterize the coil volume:
r(p,,9) =r.(¢)+pacos6n () + pasin6b (¢)

centerline

Expansion parameter: a / R < 1, where R ~ scales of curve centerline.
Introduce intermediate scale b, with a <K b < R.

Split integrals into “near part” + “far part”.

Far part defined by |r—r’| > b. Finite cross-section can be neglected.

Near part defined by |r—1r’| < b. Coil centerline can be Taylor-expanded, so integrals
can be done explicitly.

Identify a 1D integral that has the same near part and far part as the above “high
fidelity” calculation fora / R «< 1.

11



Methodology for finding an accurate reduced model

High fidelity 3D model

New 1D filament model

a/RK1

B =B,cur + Bfar

Far contribution:
lr=r'|>b

Near contribution:
l[r—r'| <b
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Limit of the 3D integral for the internal field fora /R « 1

B =B,cor +Brar r(r,0,0)=r.(¢)+rcosOn(¢)+rsin6b(¢)
. :&I/mw—%d(p, dr. | t' x (r.—r) 6o = b/R
=41 Jo100 do'| |r.—r!)
B,.cor :[L;O;Z [—nsinG—I—bcosG]]
wlx [ p? . ,  p? 1 |dr,
iR _ P _p24 B S 1%<l) 421n
- [ 5 sm29n—|—<21n2 p-+ > c0s260 +2In 2| do +2In¢y | b

Intuition:

* Leading order near-field is same as a straight wire. But corrections contribute to the force.
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Our new 1D filament model reproduces the same limit as the original 3D integral

B =Bjcar + Breg

ol (%% ., |dr. t' x (r.—r.)
(Ire 12> +{a2/ e
Biye = P [ nsing +beos 8]+ P [P Gnoont (2~ p2 4 2 cos26 )b
focal = o ta 8w | 2 2 2
Intuition:

* Regularization added to Biot-Savart. Makes a difference when source and evaluation
points are as close as the coil radius.
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The new filament model agrees with the high-fidelity 3D integral

for B in stellarator coils

HSX coil 1

The individual
B components
also agree:
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If curve centerline is a circle, the new filament model
matches analytic formula for B

I
B = ,';Onp [exsinB® — e, cos O]
ol . p* Ro
+87rRO (_pzsng)ex+(6ln2—p2+7c0329+21n;> ez]
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Integrating the ) x B force over the conductor cross-section, our method

reduces the 5D integral for the self-force to a 1D integral

dF  pl? 2m 27 27 drl | tx [t x (r—1)]
77 47r3/ dp/ dG/ dp/ do' [ d¢'pp’ (1—xkpacos8)(1—«'p'acost’) 7Y -
dF Hol 27 dr, t' x (r.—rl)
— = B, =2 | dg'|Ze <L
dr ItXBreg, eg 471:/0 ¢ d¢’

(TN

@ If rois a circle

dF  uJ?[ (8R\ 3
= ln<_) ]eR

df ~ 4nR 4

Same as analytic result
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The 1D integral accurately approximates high-fidelity calculations for

the self-force in stellarator coils
dE,/d¥ [kN / m] for HSX coil 1, @ 150 kA
a=10cm

a=1cm
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* Motivation
* Reducing 3D and 5D integrals to 1D

e Efficient quadrature for the 1D integrals
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Remaining 1D integral is still tricky since integrand has fine structure

t'x (r.—rl)

reg

d¢’

A solution: subtract and add a function to
the integrand with the same near-singular
behavior that can be integrated
analytically.

Also examining a partition-of-unity method
like Malhotra et al.

3/2
re—r+a/ve)

integrand

4.5

35}

Circular coil, a/R=0.1

phi [radians]
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To make integrand smooth, we subtract and add a function with the

same singular behavior that can be integrated analytically.

_ Mol S 1 dr’ O / Hol / /
B, = 47:/0 do (|r_r/|2+i)3/2d¢/><(r r')—Q(¢') e /d¢ Q(¢9')
\/E

Compute Q by Taylor expansion of integrand about ¢’ = ¢.

Result:
_ k! S 1 dr’ I, ldzl' dr 2—2cos(¢'—9)
Breg ~ 4rn 0 do 2 2 3/2d¢’x(r r)—|—2d¢2xd¢ ; ) 373
(ir-r?+ %) ([2—2cos<¢'—¢>] (&) +%)
_I_NOI d’r . dr]|dr -3 3 (8 dr
Aw [d¢> d¢||de| |4 aldol|) |’
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The singularity-subtraction method allows B and the force to be

evaluated with very few quadrature points.

Force per unit length |dF/dZ| [KN / m]
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Summary of main results

nternal field: B — Bpeys +Breg £(p,0,) = re(§) +pacos On(9) + pasin 0b (9)
tlp - . tolx [ p* . 3 ,.P°
B =1 [— = = i L
local = 7 [—nsin 6 +bcos 0] + py [ 5 sin26n + (2 p-+ 5 cos260 | b
Mol 1 dr’ ~ 1d’r dr 2—2cos(¢' —¢)
Bre = Y4x )y 4 N 3/2d¢fx(r_r)+§d¢2xd¢ 2 o\
(1ee+ %) (220050001 () + )
| Kol dzrxdr dr|™> 3 (8
A |de? " de||do| |4 aldel|)|
Self-force: a¥ _ B
- reg

d’
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Conclusions & future work

To compute internal B field and self-force of a
coil, the finite cross-section matters, & it is
not accurate to just drop the singular point.

These quantities can be computed using just a
1D integral if formulated carefully.

New method agrees with high-fidelity finite-
cross-section calculations & analytic results
for a circular coil.

Next steps:

Extend to rectangular cross-section
Apply in coil optimization

Would welcome collaboration with this!
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