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Tokamak & stellarator design requires calculations for the

| x B force, internal field, and stored energ
* Forces « B2, High B limited by support structure.

* Superconductor quench limits depend on local B.

* Need to be able to dissipate stored energy W = }4L/2.

* Coil shapes can probably be optimized for these quantities.

Field and force on coil 2 due to current in coil 1 can be
computed quickly: 1D filament models are ok.

Tricky part is the self-field: singularity in Biot-Savart Law
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Accurate calculation of the internal field and self-force

appear to require high-dimensional integrals
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Force per unit length: 5D integral

Field: 3D integral
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Self-inductance & stored energy: 6D integral
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Can we simplify/approximate these integrals for fast evaluation inside an optimization loop?
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Background

Reducing 3D/5D/6D integrals to 1D/2D

Efficient quadrature for the 1D/2D integrals

Future work & conclusions



Simply skipping the singular point in a 1D filament calculation

10 ~ F

ives a non-converging result with signifciant error
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Analytic formulas for a circular coil show that the
finite cross-section cannot be ignored

dF  pol?
df 4nmR

(8R) 3
na 4eR

Diverges if minor radius a = 0

Could a modified 1D filament model work if we supplement it with a value for a?



Calculations of internal field and self-force are also of interest for
many other subjects, e.g. solar flares
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Some related work

* Garren & Chen, Phys. Plasmas (1994). Looked at force but not internal field. Solution is to do a
1D integral over an incomplete loop, with a specific segment removed.

* Dengler, Advanced Electromagnetics (2016). Computed self-inductance using 2D integral.

* Lion, Warmer, et al Nuclear Fusion (2021). Computed B in conductor by summing analytical
result for rectangular prism of J.

* Robin & Volpe, Nuclear Fusion (2022). Computed force for sheet current on a winding surface.

Our contribution:

» Compute self-force, stored energy / inductance, and spatially-resolved internal field using only
1D/2D integrals.

* Integration is over a periodic domain, so quadrature can be spectrally accurate, & can re-use
points/data from other coil optimization objectives.
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Assumption: current density J is uniform

I I = current Jin YBCO
J= Zt A = x-sectional area

G
t = unit tangent along conductor
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Ok if multiple turns in both dimensions
of the x-section.

Not necessarily accurate for
superconductors, particularly HTS tapes.

Good enough for optimization?
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We can do the calculations for cross-sections that are either

circular or rectangular

£ (p,0,9) = (9)+pacosbn (9) +pasin6h (9) (v, 0) =re(9)+ S p(9) + 2 a(9)
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Methodology for finding an accurate reduced model

Parameterize the coil volume:  r(u,v,¢) =r.(¢)+ %p(qb) +—q(9)

centerline

Expansion parameter: a / R < 1, where R ~ scales of curve centerline, and b ~ a.
Introduce intermediate scale d, with a <K d < R.

Split integrals into “near part” + “far part”.

Far part defined by | — | > d. Finite cross-section can be neglected.

Near part defined by |r — ¥| < d. Coil centerline can be Taylor-expanded, so integrals
can be done explicitly.

Identify a 1D integral that has the same near part and far part as the above “high
fidelity” calculation fora / R «< 1.
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Methodology for finding an accurate reduced model

High fidelity 3D model

New 1D filament model

a/RK1

B =Bear + Bfar

Far contribution:
Ir—7|>d

Near contribution:
Ir—7r| <d
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Limit of the 3D integral for the internal field fora /R « 1

B = Bpear +Byar r(r,6,¢) =rc(¢)+rcoson(¢)+rsinbb(¢)

dr,
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Intuition:

* Leading order near-field is same as a straight wire. But corrections contribute to the force.
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Our new 1D filament model reproduces the same limit as the original 3D integral

B = Biocal + Breg

ol (2% _|dF, tx (r.—F)
BregI H/() ¢ d@' "0 3/2
(Ire — e[+ a2/ ve)
Holp . Holx [ p* . 3. ,,pP°
— _ il B 2 024+ P cos2
Biocal 27ta[ nsin 6 +bcos 6] + o [ 5 sin26n + (2 P+ 5 cos 0|b
Intuition:

* Regularization added to Biot-Savart. Makes a difference when source and evaluation
points are as close as the coil radius.
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The new filament model agrees with the high-fidelity 3D integral

for B in stellarator coils

The individual B components also agree:
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If curve centerline is a circle, the new filament model
matches analytic formula for B

I
B = ,';Onp [exsinB® — e, cos O]
ol . p* Ro
+87rRO (_pzsng)ex+(6ln2—p2+7c0329+21n;> ez]
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Integrating the J x B force over the conductor cross-section, our method

reduces the 5D integral for the self-force to a 1D integral
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The 1D integral accurately approximates high-fidelity calculations for

the self-force in stellarator coils
z component of self-force per length, dF'./d¢ [KN/m]

HSX coil 1
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Similarly, the inductance & stored energy can be computed accurately
with only a 2D integral

= —/d3r/d3FJ—( il |
Anl? Ir—F| ' a=0.001 m,
D - oD
- 1 dr. dr '
2D L=%/d¢/d¢ s
Vie—g+a%0 40 2.
g
A=ad*/\/e for circular x-section, 5
3
B 25 4 _,a 4a_ _, b o
A-abexp( 6 +3atan b—i—3btan p Q|
+£1né+a—21ng—a4_6a2b2+b4ln Q_l_lj i a=%,|% m,
6a’ a 6b2 b 6a%b? b a '
_ - a=0.1 m,
for rectangular x-section. _ 2D

For circular centerline, matches analytic result by 10 107 10°? 107! 10°
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Motivation

Reducing 3D/5D/6D integrals to 1D/2D

Efficient quadrature for the 1D/2D integrals

Future work & conclusions
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Remaining 1D integral is still tricky since integrand has fine structure

df. tx (r.—f£.)

Uol 2
Breg:H/o d¢

dé

A solution: subtract and add a function to
the integrand with the same near-singular
behavior that can be integrated
analytically.
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To make integrand smooth, we subtract and add a function with the

same singular behavior that can be integrated analytically.

L dE
(r-i+4)2 8 F=H-Q(9)

Compute Q by Taylor expansion of integrand about (ﬁ = ¢.

Result:
uol (27 1 df . d* ar 1—cos (¢ —9)
By = — do =X (r—F)+ X
4 3 3/2 4 do? d y 3/2
S R o (I2-2c05(6-0)] (%) +2)
uol [d*r dr]|dr|™> 64 | dr |*
87 [d¢2 deP] do [_2+1n (X d¢ )]
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The singularity-subtraction method allows B and the force to be

evaluated with very few quadrature points.
Force per unit length |dF/d{| [kN / m]

HSX coil 1 60
e s, With singularity subtraction, eq (23)
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A possible reduced model for the critical current?

Given a model for how the local critical current density Curent Density, J
depends on B, e.g. A Superconducting Region
. ja
.]C(x’ }’) —
1+ VB & »)+BIE ) \P
BO -----

Gomory and Klincok (2006)

Temperature, T

estimate the global critical current as

azom.com

He

IC = m¢in j dza ]C(B(u, 17, (p)) Magnetic Field, H

x—section

Not self-consistent, but is it good enough to be useful? 26



Conclusions & future work

 To compute internal B field, self-force, & stored
energy of a coil, the finite cross-section matters,
& it is not accurate to just drop the singular point.

* These quantities can be computed using just a
1D/2D integral if formulated carefully.

* New method agrees with high-fidelity finite-cross-
section calculations & analytic results.

Next steps:

* Apply in coil optimization
* Improve applicability to superconductors

 Would welcome collaboration with this!
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Extra slides



The new filament model agrees with the high-fidelity 3D integral

for B in stellarator coils

HSX coil 1

The individual
B components
also agree:
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The 1D integral accurately approximates high-fidelity calculations for

the self-force in stellarator coils
dE,/d¥ [kN / m] for HSX coil 1, @ 150 kA
a=10cm

a=1cm
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Summary of main results

nternal field: B — Bpeys +Breg £(p,0,) = re(§) +pacos On(9) + pasin 0b (9)
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