$\nabla B \sim B / L$

Matt Landreman, John Kappel

University of Maryland

$\nabla B \sim B / L$

- Definitions of ∇B scale length
- Expanding volume of quasisymmetry in near-axis expansion "Mapping the space of quasisymmetric stellarators using optimized near-axis expansion", arXiv:2209.11849 (2022)
- Limits on the coil-to-plasma distance Why is it hard to find coils for Wistell-B?

Matt Landreman, John Kappel University of Maryland

$\nabla B \sim B / L$

- Definitions of ∇B scale length
- Expanding volume of quasisymmetry in near-axis expansion "Mapping the space of quasisymmetric stellarators using optimized near-axis expansion", arXiv:2209.11849 (2022)
- Limits on the coil-to-plasma distance Why is it hard to find coils for Wistell-B?

Matt Landreman, John Kappel University of Maryland

At any point, a magnetic field has multiple gradient length scales

 ∇B , $\nabla_{\parallel} B$, $\nabla_{\perp} B$, $\boldsymbol{b} \cdot \nabla \boldsymbol{b}$, $\|\nabla \boldsymbol{B}\| = \sqrt{\nabla \boldsymbol{B} : \nabla \boldsymbol{B}}$, "Frobenius norm"

eigenvalues of
$$\nabla B$$
, $\|\nabla \nabla B\|$...
 $(B = |B|, \ b = B/B)$

 $\|\nabla B\|$ captures largest gradient \Rightarrow shortest length scale

We can get some insights by considering vacuum fields:

 $B = \nabla \Phi$ so $\nabla B = \nabla \nabla \Phi$ is a symmetric 3×3 matrix \implies 6 degrees of freedom.

$$7B = \begin{pmatrix} \partial_{xx}\Phi & \partial_{xy}\Phi & \partial_{xz}\Phi \\ \partial_{yx}\Phi & \partial_{yy}\Phi & \partial_{yz}\Phi \\ \partial_{zx}\Phi & \partial_{zy}\Phi & \partial_{zz}\Phi \end{pmatrix}$$

-1 degree of freedom since $\nabla \cdot \mathbf{B} = 0$.

Some entries can be made to vanish by rotating the coordinate system.

The ∇B scale lengths can be normalized so that in the case of an infinite straight wire, they give the distance to the wire

The different **B** scale lengths are not identical, but have similarities, e.g. all are small on the inside of concave regions

 λ_j = eigenvalues of ∇B

$\nabla B \sim B / L$

- Definitions of ∇B scale length
- Expanding volume of quasisymmetry in near-axis expansion "Mapping the space of quasisymmetric stellarators using optimized near-axis expansion", arXiv:2209.11849 (2022)
- Limits on the coil-to-plasma distance Why is it hard to find coils for Wistell-B?

Expansion about the magnetic axis is a complementary method to traditional stellarator optimization

Traditional optimization: parameter space is the shape of toroidal boundary surface.

Near-axis expansion:

- Accurate in the core of any stellarator
- 3D PDEs \rightarrow 1D ODEs in ϕ .
- Opportunities for analytic insights.
- Can solve & characterize a configuration in < 1 ms
- Can generate new initial conditions that can be refined by optimization.

Mercier (1964), Solov'ev & Shafranov (1970), Lortz & Nührenberg (1976), Garren & Boozer (1991) ML, Sengupta, & Plunk (2019) Rodriguez & Bhattacharjee (2021) Jorge et al (2022)

...

The expansion by Garren & Boozer (1991) has been converted into a practical algorithm for generating stellarator shapes

- Inputs:
 - Shape of the magnetic axis.
 - 3-5 other numbers (e.g. current on the axis).
- Outputs:
 - Shape of the surfaces around the axis.
 - Rotational transform on axis.

- Quasisymmetry can be guaranteed in a neighborhood of axis: $B = B(r, \theta N\varphi)$
- Can pick any surface to pass to traditional 3D MHD fixed-boundary solve.

Problem: The radius of applicability of the expansion is typically small. ⇒ high aspect ratio

- Increasing scale length (decreasing ∇B) may increase the minor radius over which the expansion is accurate. Expansion parameter is ~ r/L_{∇B}.
- Quasisymmetry fails at O(r³) [Garren & Boozer (1991)], so increasing the scale length may improve quasisymmetry.

VB turns out to be a better cost function than aspect ratio: fewer local minima

Line through parameter space, linearly interpolating the Fourier modes in axis shape. 11

VB turns out to be a better cost function than aspect ratio: fewer local minima

Lesson: To minimize some quantity *Q*, even if *Q* is fast to compute, the best objective function is not necessarily *Q*.

Complete objective function used for near-axis expansion

The near-axis equations can be solved so quickly that tensor-product scans over many parameters are feasible

The near-axis equations can be solved so quickly that tensor-product scans over many parameters are feasible

Some intriguing configurations from these near-axis optimizations

R [m]

ML, arXiv:2209.11849 (2022)

$\nabla B \sim B / L$

- Definitions of ∇B scale length
- Expanding volume of quasisymmetry in near-axis expansion "Mapping the space of quasisymmetric stellarators using optimized near-axis expansion", arXiv:2209.11849 (2022)
- Limits on the coil-to-plasma distance Why is it hard to find coils for Wistell-B?

In a reactor, must fit ~ 1.5m "blanket" between plasma and coils to absorb neutrons

But at fixed plasma shape & size, coils shapes become impractical if they are too far away:

In a reactor, must fit ~ 1.5m "blanket" between plasma and coils to absorb neutrons

But at fixed plasma shape & size, coils shapes become impractical if they are too far away:

Hypothesis:

The coil-to-plasma distance scale for which coils are feasible is \sim the ∇B scale length

The small plasma-to-coil separation in stellarators is also a headache for engineering

"Lesson 1: A lack of generous margins, clearances and reasonable tolerance levels implies an unnecessary increase of the complexity and leads to late design changes. This has a strong impact on schedule, budget, man-power and potentially sours the relationship to funding bodies." *Klinger et al, Fusion Engineering & Design (2013)*

To test hypothesis that **∇B** is related to coil-plasma distance, scale length will be compared to "real" coil designs for a diverse set of 35 configurations

NCSX (li383 & c09r00) **ARIES-CS** HSX W7-X (std, high-mirror, ...) LHD, R=3.5, 3.6, 3.75 CFQS ML+Paul QA, QA+well ML+Paul OH, OH+well ML, Buller, Drevlak QH, QA Near-axis nfp=3 QH Near-axis nfp=4 QH Jorge et al nfp=1 QI Goodman et al nfp=1 QI

ESTELL ITER Garabedian QA Henneberg et al QA Wistell-A Wistell-B Wechsung et al QA Wechsung et al QA+well Giuliani et al QA Ku & Boozer nfp=4 QH Nuhrenberg & Zille QH **Drevlak QH**

All scaled to same minor radius (1.7 m) and $\langle B \rangle$ = 5.9 T.

VB scale length will be compared to "real" coil designs from Regcoil

Regcoil is preferable to Focus/Simsopt for this study for comparison across many stellarators:

- *Linear* least-squares: no local optima besides the global one.
- Only 2 parameters to vary: coil-to-plasma distance and λ .

Methodology: Adjust regularization λ and coil-to-plasma separation to match **B** error and coil current density between configurations

At fixed coil-to-plasma separation, λ trades off between *B* field error and coil complexity.

 10^{0} [H] 10⁻¹ ار target 10⁻³ $\lambda \rightarrow 0$ 10^{-4} 10 20 30 max current density K [MA/m] (Coil complexity)

At the target **B** field error, coil complexity increases with coil-to-plasma separation

Main result: **VB** length is well correlated with real coil designs

Main result: **VB** length is well correlated with real coil designs

Regcoil coil-to-plasma distance is actually well correlated with other definitions of B length scale too

Regcoil coil-to-plasma distance is actually well correlated with other definitions of B length scale too

The location of limiting **∇**B length and coil complexity are also correlated *spatially*

28

Conclusion: We should pay attention to **VB** length scales in stellarators

- Since quasisymmetry is allowed only to O(r²), reducing ∇B can expand the volume of good quasisymmetry.
- ∇B appears to explain the maximum coil-to-plasma distance
 - Driver of size and costs!
 - Significant variation between configurations. 1-field-period QIs look promising.

Future work:

- Compare & understand different scale lengths.
- For $\beta > 0$, check if $\|\nabla B_{\text{external}}\|$ is more meaningful than $\|\nabla B\|$.
- Optimize for small $\|\nabla B\|$ (already in StellaratorOptimizationMetrics.jl).

Extra slides

Main result: **VB** length is well correlated with real coil designs

