Achieving energetic particle confinement in stellarators with precise quasisymmetry

<u>M Landreman</u>^a, S Buller^a, A Cerfon^b, M Drevlak^c, A Giuliani^b, B Medasani^d, E J Paul^d, G Stadler^b, F Wechsung^b, C Zhu^e ^a U of Maryland, ^b New York U, ^c Max Planck Institute for Plasma Physics, ^d PPPL, ^e U of Science & Technology of China

Landreman & Paul, PRL (2022), Wechsung et al, PNAS (2022)

Fraction of alpha particle energy lost before thermalization

These new configurations with good alpha confinement use the principle of *quasisymmetry*.

$$B = B(s, \theta - N \varphi)$$

Boozer angles

 $\Rightarrow \oint (\mathbf{v}_d \cdot \nabla s) dt = 0$

- Optimizing stellarator geometry for precise quasisymmetry
- Constructing quasisymmetric geometries using near-axis expansion
- Self-consistent bootstrap current
- Future directions

- Optimizing stellarator geometry for precise quasisymmetry
- Constructing quasisymmetric geometries using near-axis expansion
- Self-consistent bootstrap current
- Future directions

Optimization problem

- 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
- Objective functions:

Goal: $B = B(s, \theta - N \varphi)$.

For quasi-axisymmetry, N = 0.

For quasi-helical symmetry, N is the number of field periods,

Optimization problem

- 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
- Objective functions:

• Parameter space: $R_{m,n} \& Z_{m,n}$ defining a toroidal boundary

$$R(\theta,\phi) = \sum_{m,n} R_{m,n} \cos(m\theta - n\phi), \quad Z(\theta,\phi) = \sum_{m,n} Z_{m,n} \sin(m\theta - n\phi)$$

- Codes used: SIMSOPT with VMEC
- Cold start: circular cross-section torus
- Vacuum fields at first, allowing precise checks
- Algorithm: default for least-squares in scipy (trust region reflective)
- 6 steps: increasing # of modes varied & VMEC resolution
- Run many optimizations, pick the best

Straight |B| contours are possible for quasi-axisymmetry

ML & Paul, PRL (2022). All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412 9

Straight |B| contours are possible for quasi-helical symmetry

ML & Paul, PRL (2022).

All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412 10

Good symmetry also exists with magnetic well

ML & Paul, PRL (2022).

All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412 11

16-coil solutions have been found for the quasi-axisymmetric configurations

Haven't looked at the QHs yet

Φ

2π ||B| @ s=1;

- 1.028

1.022

1.016

1.010

- 1.004

0.998

π

0.992

θ

0

With magnetic well

1.096

1.072

1.048

- 1.024

+1.000

0.976

0.952

번 0.928

π

Symmetry-breaking modes can be made extremely small

New QA configuration

|B|in Boozer coordinates was verified by independent SPEC calculations

(Ntor = Mpol, Lrad = Mpol + 4)

By Elizabeth Paul

Quasisymmetry works: alpha particle confinement is significantly improved

15

Alpha confinement in quasi-helical stellarators can be better than in a tokamak due to thinner bananas

Fraction of alpha particle energy lost before thermalization

16

The symmetry also yields extremely low collisional transport for a thermal plasma

- Optimizing stellarator geometry for precise quasisymmetry
- Constructing quasisymmetric geometries using near-axis expansion
- Self-consistent bootstrap current
- Future directions

Expansion about the magnetic axis reduces 3D PDE \rightarrow 1D ODEs

The expansion by Garren & Boozer (1991) has been converted into a practical algorithm for generating stellarator shapes

- Inputs:
 - Shape of the magnetic axis.
 - 3-5 other numbers (e.g. current on the axis).
- Outputs:
 - Shape of the surfaces around the axis.
 - Rotational transform on axis.

- Quasisymmetry guaranteed in a neighborhood of axis.
- Can pick any surface to pass to traditional 3D MHD fixed-boundary solve.

Though quasisymmetry can be guaranteed in a neighborhood of the axis, optimization can greatly increase the volume of good symmetry

 $w_{\nabla\nabla}$, w_L , w_i , w_{B20} , w_{well} : Weights chosen by user

The near-axis equations can be solved so quickly that tensor-product scans over many parameters are feasible

The near-axis equations can be solved so quickly that tensor-product scans over many parameters are feasible

The near-axis expansion can yield configurations very similar to finite-aspect-ratio optimization, but much faster

In some cases, the near-axis construction can directly generate configurations with excellent confinement

Fraction of alpha particle energy lost before thermalization

- Optimizing stellarator geometry for precise quasisymmetry
- Constructing quasisymmetric geometries using near-axis expansion
- Self-consistent bootstrap current
- Future directions

How can bootstrap current be included self-consistently in stellarator optimization?

- Need *self-consistency* between MHD equilibrium and drift-kinetic equation.
- Previous method: fixed-point iteration, only after an optimization.

MHD equilibrium code Drift-kinetic code $VMEC: given I_0(s), determine B_0.$ SFINCS: given B_0 , determine $I_1(s)$. VMEC: given $I_1(s)$, determine B_1 . SFINCS: given B_1 , determine $I_2(s)$.

 Accurate drift-kinetic bootstrap calculations in stellarators are computationally expensive.
 Preferably not in the optimization loop.

...

New idea: exploit quasisymmetry & use analytic expressions for tokamaks

Pytte & Boozer (1981), Boozer (1983):

Bootstrap current (& other quantities) in quasisymmetry are the same as in axisymmetry, up to some substitutions:

 $\iota \rightarrow \iota - N$

Should be accurate for the new precisely quasisymmetric configurations.

A new set of analytical formulae for the computation of the bootstrap current and the neoclassical conductivity in tokamaks

Cite as: Phys. Plasmas **28**, 022502 (2021); doi: 10.1063/5.0012664 Submitted: 6 May 2020 · Accepted: 11 December 2020 · Published Online: 2 February 2021

A. Redl,^{1,2,a)} (b) C. Angioni,¹ (b) E. Belli,³ (b) O. Sauter,⁴ (b) ASDEX Upgrade Team^{b)} and EUROfusion MSTI Team^{c)}

Before doing new optimizations: Redl formula is accurate in previous QA & QH stellarators

 $n_e = (1 - s^5) 4x 10^{20} m^{-3}$, $T_e = T_i = (1 - s) 12 keV$

(Not self-consistent yet)

Optimization recipe

- Objective function: $f = f_{QS} + f_{bootstrap} + (A - 6.5)^{2} + (a - a_{ARIES-CS})^{2} + (\langle B \rangle - \langle B \rangle_{ARIES-CS})^{2}$ Boundary aspect ratio $f_{QS} = \int d^{3}x \left(\frac{1}{B^{3}} \left[(N - \iota) \mathbf{B} \times \nabla B \cdot \nabla \psi - (G + NI) \mathbf{B} \cdot \nabla B \right] \right)^{2}$ $f_{bootstrap} = \frac{\int_{0}^{1} ds \left[\langle \mathbf{j} \cdot \mathbf{B} \rangle_{\text{vmec}} - \langle \mathbf{j} \cdot \mathbf{B} \rangle_{\text{RedI}} \right]^{2}}{\int_{0}^{1} ds \left[\langle \mathbf{j} \cdot \mathbf{B} \rangle_{\text{vmec}} + \langle \mathbf{j} \cdot \mathbf{B} \rangle_{\text{RedI}} \right]^{2}}$
- Parameter space: $\{R_{m,n}, Z_{m,n}, \text{ toroidal flux, current spline values}\}$ or $\{R_{m,n}, Z_{m,n}, \text{ toroidal flux, iota spline values}\}$
- Cold start
- Algorithm: default for least-squares in scipy (trust region reflective)
- Steps: increasing # of modes varied: m and |n/nfp| up to j in step j

Example of optimization with self-consistent bootstrap current

To reach reactor-relevant 5% beta in QH without crossing iota=1, a constraint on iota can be included

Crossing iota=1, the worst resonance, is probably unacceptable.

$$n_{e0} = 3e20/meters^3$$
, $T_{e0} = T_{i0} = 15 \text{ keV}$

To reach reactor-relevant 5% beta in QH without crossing iota=1, a constraint on iota can be included

Crossing iota=1, the worst resonance, is probably unacceptable.

If you want *perfectly* self-consistent current, you can do a few fixed-point iterations at the end

Bootstrap current profile

No significant degradation in quasisymmetry:

34

The optimization with self-consistent bootstrap current also works for quasi-axisymmetry

- Optimizing stellarator geometry for precise quasisymmetry
- Constructing quasisymmetric geometries using near-axis expansion
- Self-consistent bootstrap current
- Future directions

Future directions

- For the high β configurations, check surface quality, & eliminate any islands.
- Coils & MHD stability for the high β configurations.
- Check robustness to uncertainty in the pressure profile.
- Similar recipes for quasi-poloidal symmetry or quasi-isodynamic?

It is now possible to design stellarators with alpha confinement close to or better than a tokamak.

Extra slides

Advantages of stellarators: steady-state, no disruptions, no Greenwald density limit, no power recirculated for current drive.

But, alpha particle losses & collisional transport would be too large unless you carefully choose the geometry.

simsopt.readthedocs.io/en/latest/

latest

Search docs

C

CONTENTS

Getting started

Docker container

Concepts

Defining optimization problems

Testing

Source code on GitHub

Publications

Contributing to Simsopt

EXAMPLES

B Pood the Doce

the second se

Simsopt documentation

simsopt is a framework for optimizing stellarators. The high-level routines are in python, with calls to C++ or fortran where needed for performance. Several types of components are included:

- Interfaces to physics codes, e.g. for MHD equilibrium.
- Tools for defining objective functions and parameter spaces for optimization.
- Geometric objects that are important for stellarators surfaces and curves with several available parameterizations.
- Efficient implementations of the Biot-Savart law and other magnetic field representations, including derivatives.
- Tools for parallelized finite-difference gradient calculations.
- Handles both stage 1 (plasma shape) and stage 2 (coil shapes)
- 100% open source
- Both derivative-free and derivative-based problems
- Try out new objective functions or new surface/curve representations without touching any working code.

ML, B Medasani, F Wechsung, A Giuliani, R Jorge, & C Zhu, J. Open Source Software 6, 3525 (2021).

Why do the configurations with best quasisymmetry not have the best trajectory confinement?

2 types of quasisymmetry

Quasi-helical symmetry Quasi-axisymmetry General stellarator (QA): $B = B(r, \theta)$ (QH): $B = B(r, \theta - N\phi)$ (not symmetric) Φ6 Φ6 Φ6 Poloidal Boozer angle angle angle Boozer Poloidal Boozer Poloidal 0 0 0 6 Toroidal Boozer angle φ Toroidal Boozer angle φ Toroidal Boozer angle φ

Contours of $B = |\mathbf{B}|$: $B_{min} \square B_{max}$

Previous quasisymmetric configurations

(a) Zarnstorff et al (2001)
(b) Najambadi et al (2008)
(c) Garabedian (2008)
(d) Liu et al (2018)
(e) Henneberg et al (2019)
(f) Nuhrenberg & Zille (1988)
(g) Anderson et al (1995)
(h) Bader et al (2020)

We want $B = B(r, \theta - N \varphi)$

Is there an optimization recipe that can give consistently straight |B| contours?

The new configurations have small magnetic shear

Self-consistent bootstrap current profiles have previously been computed by fixedpoint iteration between VMEC and a bootstrap current code

Available codes: DKES/NTSS, SFINCS, + others for tokamaks.

VMEC: given $I_0(s)$, determine B_0 . SFINCS: given B_0 , determine $I_1(s)$. VMEC: given $I_1(s)$, determine B_1 . SFINCS: given B_1 , determine $I_2(s)$.

SFINCS: >20 node-seconds per surface for reactor n/T, cost much higher at low collisionality, uses PETSc, tricky to set resolution parameters

...

New idea: exploit quasisymmetry & use analytic expressions for tokamaks

Decent 16-coil solutions have been found for the new QAs

By Florian Wechsung @ NYU.

<R>/10 between filament centers.

2π

θ

0

Ω

|B| @ s=0.05

Φ

Haven't looked at the QHs yet

Φ

2π ||B| @ s=1;

1.028

1.022

1.016

1.010

- 1.004

0.998

L 0.992

E

π

θ

0

1.096

1.072

1.048

1.024

1.000

10.976

0.952

且_{0.928}

π

The symmetry yields extremely good confinement of collisionless trajectories

simsopt.readthedocs.io/en/latest/

latest

Search docs

C

CONTENTS

Getting started

Docker container

Concepts

Defining optimization problems

Testing

Source code on GitHub

Publications

Contributing to Simsopt

EXAMPLES

E Pood the Doce

and a second second

Simsopt documentation

simsopt is a framework for optimizing stellarators. The high-level routines are in python, with calls to C++ or fortran where needed for performance. Several types of components are included:

- Interfaces to physics codes, e.g. for MHD equilibrium.
- Tools for defining objective functions and parameter spaces for optimization.
- Geometric objects that are important for stellarators surfaces and curves with several available parameterizations.
- Efficient implementations of the Biot-Savart law and other magnetic field representations, including derivatives.
- Tools for parallelized finite-difference gradient calculations.

The design of **simsopt** is guided by several principles:

- Thorough unit testing, regression testing, and continuous integration.
- Extensibility. It should be possible to add new codes and terms to the objective function without editing modules that already work, i.e. the open-closed principle. This is because any edits to working code can potentially introduce bugs.
- Modularity: Physics modules that are not needed for your optimization problem do not need to be installed. For instance, to optimize SPEC equilibria, the VMEC module need not be installed.
- Flexibility: The components used to define an objective function can be re-used for applications other than standard optimization. For instance, a simsopt objective function is a standard python function that can be plotted, passed to optimization packages outside of simsopt, etc.

simsopt is fully open-source, and anyone is welcome to use it, make suggestions, and contribute.

Previous quasisymmetric configurations (s=0.5)

Previous quasisymmetric configurations (s=1)

B along a field line for new QA

|B| along a field line for new QH

|B| along a field line for new QA with magnetic well

SPEC confirms the new QA/QH configurations have good surfaces

Good flux surface exist with coils

Overview

- We'd like to minimize islands/chaos if they exist.
- But, many stellarator codes and objective functions assume nested surfaces, & build on the VMEC 3D MHD equilibrium code [1].
- Idea:
 - Compute two B representations at each iteration: one assuming surfaces (VMEC) and one not (SPEC [2]).
 - Include both island width (from SPEC) and surface-based quantities (from VMEC) in the objective function.
 - Measure island width using Greene's residue [3,4]

[1] Hirshman & Whitson, *Phys. Fluids* (1993)
 [3] Greene, *J. Math. Phys.* (1979)
 [2] Hudson, Dewar, et al, *Phys. Plasmas* (2012)
 [4] Hanson & Cary, *Phys. Fluids* (1984)

Example: Start with a configuration that has islands

Simsopt driver script applied:

SPEC told to use the same boundary surface object as VMEC.

```
mpi = MpiPartition()
vmec = Vmec("input.nfp2 QA", mpi)
surf = vmec.boundary
spec = Spec("nfp2 QA.sp", mpi)
spec.boundary = surf
 # Define parameter space:
surf.fix all()
surf.fixed range(mmin=0, mmax=3,
                 nmin=-3, nmax=3, fixed=False)
surf.fix("rc(0,0)") # Major radius
# Configure quasisymmetry objective:
qs = Quasisymmetry(Boozer(vmec),
                   0.5, # Radius s to target
                   1, 0) # (M, N) you want in |B|
```

```
# Specify resonant iota = p / q
p = -2; q = 5
residue1 = Residue(spec, p, q)
residue2 = Residue(spec, p, q, theta=np.pi)
```

```
# Define objective function
```

least_squares_mpi_solve(prob, mpi, grad=True)

Objective function includes both quasisymmetry from VMEC and residues from SPEC.

The optimization eliminates the islands

Quasisymmetry is simultaneously improved during the optimization

Expansion about the magnetic axis reduces 3D PDE -> 1D ODEs

