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Advantages of stellarators: steady-state, no disruptions, no 
Greenwald density limit, no power recirculated for current drive.
But, alpha particle losses & collisional transport would be too large 
unless you carefully choose the geometry.

2

Magnetic field lines
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Remarkable progress in stellarator 
confinement in the last year

All configurations scaled to same minor radius and |B|.
See also Bader et al, Nuclear Fusion (2021). 



Advantages of stellarators: steady-state, no disruptions, no 
Greenwald density limit, no power recirculated for current drive.
But, alpha particle losses & collisional transport would be too large 
unless you carefully choose the geometry.

A solution: quasisymmetry
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Boozer angles

B = B(s, ! − N ")

!

"
⇒ 				 vd ⋅∇s( )dt!∫ =0

Constant s = normalized toroidal flux

Magnetic field lines



Since 2021

ML & Paul,
Phys Rev Lett (2022)

Wechsung et al,
PNAS (2022)

Giuliani et al,
1-stage, arXiv (2022)

Nies & Paul
Adjoint method

5% !, Self-consistent 
plasma current

Near-axis 
expansion

Quasi-axisymmetry (QA)
N = 0

Quasi-helical symmetry (QH)
N ≠ 0

Goal: B = B(s, " − N #)
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Optimization problem
• 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
• Objective functions:
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Boundary aspect ratio

For quasi-axisymmetry,
N = 0.

For quasi-helical symmetry, 
N is the “number of field periods”, e.g. N = 4

here

Goal: B = B(s, ! − N ").



Optimization problem
• 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.

• Objective functions:

• Parameter space: Rm,n & Zm,n defining a toroidal boundary

• Codes used: SIMSOPT with VMEC

• Cold start: circular cross-section torus

• Vacuum fields at first, allowing precise checks

• Algorithm: default for least-squares in scipy (trust region reflective)

• 6 steps: increasing # of modes varied & VMEC resolution

• Run many optimizations, pick the best
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R θ ,φ( )= Rm,n cos mθ −nφ( )
m,n
∑ ,						Z θ ,φ( )= Zm,n sin mθ −nφ( )

m,n
∑

Boundary aspect ratio



Straight |B| contours are possible for quasi-axisymmetry
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aspect = 6

ML & Paul, PRL (2022).        



Straight |B| contours are possible for quasi-helical symmetry
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aspect = 8

ML & Paul, PRL (2022).        



Good symmetry also exists with magnetic well
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aspect = 6

d2 flux	surface	volume( )
d toroidal	flux( )2

<0		everywhere

QA QH

ML & Paul, PRL (2022).        



16-coil solutions have been found for the quasi-axisymmetric configurations

Wechsung et al, PNAS (2022).            <R> / 10 between filament centers.         Haven’t looked at the QHs yet

With magnetic wellWithout magnetic well



B s ,θ ,ϕ( )= Bm,n s( )cos mθ −nϕ( )
m,n
∑

Symmetry-breaking modes can be made extremely small
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New QA configuration

Dotted = with coils



Quasisymmetry works: alpha particle confinement is significantly improved
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• All configs scaled to minor radius 
and |B| of ARIES-CS

• Fusion alpha birth distribution
• ANTS code, with collisions
• Particle considered lost when s > 1



Alpha confinement in quasi-helical stellarators can be better than in a tokamak
due to thinner bananas
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Width	of	banana	orbit		Δs ∝1/ ι −N .
N =0		for	QA,		N =#	of	field	periods	for	QH.

See	poster	by	
Elizabeth	Paul	
(session	3)

QA+well

QA

QH+well
QH
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How can bootstrap current be included self-consistently in stellarator optimization?
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• Need self-consistency between MHD equilibrium 
and drift-kinetic equation.

• Previous method: fixed-point iteration, only after 
an optimization.

• Accurate drift-kinetic bootstrap calculations in 
stellarators are computationally expensive. 
Preferably not in the optimization loop.

VMEC: given I0(s), determine B0.
SFINCS: given B0, determine I1(s).
VMEC: given I1(s), determine B1.
SFINCS: given B1, determine I2(s).
…

Normalized toroidal flux s

		− J⋅B 	[MA	T]	from	VMEC

MHD 
equilibrium 
code

Drift-kinetic 
code



New idea: exploit quasisymmetry & use analytic expressions for tokamaks 
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Pytte & Boozer (1981), Boozer (1983):

Bootstrap current (& other quantities) in 
quasisymmetry are the same as in 
axisymmetry, up to some substitutions:

ι	→ 	ι−N
Should be accurate for the new 
precisely quasisymmetric
configurations.



New idea: exploit quasisymmetry & use analytic expressions for tokamaks 
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Pytte & Boozer (1981), Boozer (1983):

Bootstrap current (& other quantities) in 
quasisymmetry are the same as in 
axisymmetry, up to some substitutions:

ι	→ 	ι−N
Should be accurate for the new 
precisely quasisymmetric
configurations.



Before doing new optimizations: Redl formula is accurate in previous QA & QH stellarators 
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QA (Landreman & Paul (2021))

Normalized toroidal flux sNormalized toroidal flux s

QH (Landreman & Paul (2021))

(Not self-consistent yet)

Redl analytic 
formula

SFINCS 
kinetic 
code

ne = (1 – s5) 4x1020 m-3,     Te = Ti = (1 – s) 12 keV



Optimization recipe
• Objective function:

• Parameter space: {Rm,n, Zm,n, toroidal flux, current spline values} 
or {Rm,n, Zm,n, toroidal flux, iota spline values}

• Cold start
• Algorithm: default for least-squares in scipy (trust region reflective)
• Steps: increasing # of modes varied: m and |n/nfp| up to j in step j
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Example of optimization with self-consistent bootstrap current
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ne0 = 2.5e20/meters3

Te0 = Ti0 = 10 keV

! = 2.8%,
Ip = 1.3 MA



If you want perfectly self-consistent current, 
you can do a few fixed-point iterations at the end
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No significant degradation in quasisymmetry:

Optimization with Redl current

After SFINCS fixed-point iterations

! energy losses < 0.3%
		 β =5%						εeff3/2 <6×10−5

VMECSFINCS (kinetic 
bootstrap calculation)
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It is now possible to design stellarators with alpha confinement 
comparable to or better than a tokamak.

! energy loss fraction:

More to do:  coils, surface quality, & MHD stability at high ", robustness to pressure profile, ...



Extra slides



The bootstrap current arises in tokamaks & stellarators when the 
density & temperature become significant

• Ions and electrons have different trajectories. 
Different mean flows = electric current.

• Current depends on geometry, density, & 
temperature.

• For ! > 0, we don’t know B until we include this effect.

• Computing the bootstrap current requires kinetic 
theory: coupled 4D advection-dominated integro-
differential equations.

• Need self-consistency between MHD equilibrium and 
kinetic equation.

• How can a self-consistent bootstrap current 
calculation be integrated with stellarator 
optimization?
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electronion



The symmetry also yields extremely low collisional transport for a thermal plasma
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Dotted = with coils

Radial neoclassical transport coefficient

Wechsung et al, PNAS (2022)



The optimization with self-consistent bootstrap current also works 
for quasi-axisymmetry
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Symmetry is not as good as for vacuum, 
but sufficient for excellent confinement

Possible islands where ! = 2/3,
! = 4/7 = 0.57?

VMECSFINCS (kinetic 
bootstrap calculation)

β =3%,						εeff3/2 <7×10−6

"-particle losses < 1%



|B|in Boozer coordinates was verified by independent SPEC calculations
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By Elizabeth Paul

Boozer toroidal angle
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(Ntor = Mpol, Lrad = Mpol + 4)



To reach reactor-relevant 5% beta in QH without crossing iota=1, a 
constraint on iota can be included
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Crossing iota=1, the worst resonance, is probably unacceptable.

! = 0

! = 5%

ne0 = 3e20/meters3, Te0 = Ti0 = 15 keV



To reach reactor-relevant 5% beta in QH without crossing iota=1, a 
constraint on iota can be included

Crossing iota=1, the worst resonance, is probably unacceptable.

! = 0

! = 5%

! = 5% with 
" barrier

f 	+ = 	 ds
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Solution: Add barrier term in objective

Quasisymmetry & bootstrap consistency remain good:

Normalized toroidal flux s



Why do the configurations with best quasisymmetry not have the best trajectory confinement?
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QA + magnetic well

QA

Lost trajectories 
in the new QA 
look like this:
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ι−N( )ψ edgeZe
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For	fixed	minor	radius,	 ΔsQA
ΔsQH

~4

QH



2 types of quasisymmetry
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Contours of B = |B|:



Previous quasisymmetric configurations

36Is there an optimization recipe that can give consistently straight |B| contours?

(a) Zarnstorff et al (2001)
(b) Najambadi et al (2008)
(c) Garabedian (2008)
(d) Liu et al (2018) 
(e) Henneberg et al (2019)
(f) Nuhrenberg & Zille (1988)
(g) Anderson et al (1995)
(h) Bader et al (2020)

We want
B = B(r, ! − N ")



The new configurations have small magnetic shear
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New QH

New QA

VMEC
...... SPEC



New idea: exploit quasisymmetry & use analytic expressions for tokamaks 
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Redl (2021)

NEO = kinetic calculation

Geometry enters through

Flux surface label (minor radius)
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The symmetry yields extremely good confinement of collisionless trajectories
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All configurations scaled to 
ARIES-CS minor radius (1.7 m) 
and |B| (5.7 T).

5000 alpha particles initialized 
isotropically at s=0.3.

SIMPLE code: Albert et al, JCP (2020).

New QA with coils
New QA+well with coils

Wistell-A

New QH, New QH+well
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Previous quasisymmetric configurations    (s=0.5)
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Previous quasisymmetric configurations    (s=1)
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|B| along a field line for new QA
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|B| along a field line for new QH
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|B| along a field line for new QA with magnetic well
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SPEC confirms the new QA/QH configurations have good surfaces
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New QHNew QA

New 
QA+well

VMEC
...... SPEC

New QH+well



Good flux surface exist with coils
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New QA New QA+well



Future directions
• Eliminate islands at high ! (plasma pressure & 

current)

• Coils & MHD stability for the high !
configurations

• Quasi-isodynamic (|B| contours close poloidally)

• Understand trade-offs using multi-objective 
optimization

• Robustness to uncertainty in the pressure profile

• Interact with systems codes & reactor studies

• Combined coil + confinement (1-stage) 
optimization

• Optimization of turbulence & divertor
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...... SPEC

Before optimization

After optimization

ML, Medasani & Zhu (2021)


