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Advantages of stellarators: steady-state, no disruptions, no 
Greenwald density limit, no power recirculated for current drive.
But, alpha particle losses & collisional transport would be too large 
unless you carefully choose the geometry.
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Magnetic field lines
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This & 
next 
talk

Remarkable progress in stellarator 
confinement in the last year

All configurations scaled to same minor radius and |B|.
See also Bader et al, Nuclear Fusion (2021). 



Advantages of stellarators: steady-state, no disruptions, no 
Greenwald density limit, no power recirculated for current drive.
But, alpha particle losses & collisional transport would be too large 
unless you carefully choose the geometry.

A solution: quasisymmetry
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Boozer angles

B = B(s, ! − N ")

!

"
⇒ 				 vd ⋅∇s( )dt!∫ =0

Constant-s surfaces (“flux surfaces”)

Magnetic field lines



Since 2021

ML & Paul,
Phys Rev Lett (2022)

Wechsung et al,
PNAS (2022)

Giuliani et al,
1-stage, arXiv (2022)

Nies & Paul
Adjoint method

5% !, Self-consistent 
plasma current

Near-axis 
expansion

Quasi-axisymmetry (QA) Quasi-helical symmetry (QH)

Goal: B = B(s, " − N #)



• Optimizing stellarator geometry for precise quasisymmetry

• Constructing quasisymmetric geometries using near-axis 
expansion

• Self-consistent current in the plasma

• Future directions
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Optimization problem
• 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
• Objective functions:

• Parameter space: Rm,n & Zm,n defining a toroidal boundary

• SIMSOPT with VMEC
• Cold start: circular cross-section torus
• Vacuum fields at first, allowing precise checks against SPEC & Biot-Savart
• Algorithm: default for least-squares in scipy (trust region reflective)
• 6 steps: increasing # of modes varied & VMEC resolution
• Run many optimizations, pick the best

8

fQH = A− A*( )2 + fQS fQA = A− A*( )2 + ι* − ιds
0

1
∫⎛

⎝
⎞
⎠

2
+ fQS

			
fQS = d3x∫ 	 1

B3 N −ι( )B×∇B ⋅∇ψ − G+NI( )B⋅∇B⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟

2

R θ ,φ( )= Rm,n cos mθ −nφ( )
m,n
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Boundary aspect ratio



• Handles both stage 1 (plasma shape) and stage 2 (coil shapes)
• 100% open source
• Both derivative-free and derivative-based problems
• Try out new objective functions or new surface/curve 

representations without touching any working code.

ML, B Medasani, F Wechsung, A Giuliani, R Jorge, & C Zhu,               
J. Open Source Software 6, 3525 (2021).



Straight |B| contours are possible for quasi-axisymmetry
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aspect = 6

ML & Paul, PRL (2022).        All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412



Straight |B| contours are possible for quasi-helical symmetry
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aspect = 8

ML & Paul, PRL (2022).        All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412



Good symmetry also exists with magnetic well
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aspect = 6

d2 flux	surface	volume( )
d toroidal	flux( )2

<0		everywhere

QA QH

ML & Paul, PRL (2022).        All input/output files and optimization scripts online at doi.org/10.5281/zenodo.5645412



B s ,θ ,ϕ( )= Bm,n s( )cos mθ −nϕ( )
m,n
∑

Symmetry-breaking modes can be made extremely small
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New QA configuration

Dotted = with coils



|B|in Boozer coordinates was verified by independent SPEC calculations
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By Elizabeth Paul

Boozer toroidal angle
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Quasisymmetry works: alpha particle confinement is significantly improved
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• All configs scaled to minor radius 
and |B| of ARIES-CS

• Fusion alpha birth distribution
• ANTS code, with collisions
• Particle considered lost when s > 1



Alpha confinement in quasi-helical stellarators can be better than in a tokamak
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Width	of	banana	orbit		Δs ∝ 1
ι−N

.

N =0		for	QA,		N =#	of	field	periods	for	QH.

⇒ 			ΔsQH ≪ΔsQA



The symmetry also yields extremely low collisional transport for a thermal plasma
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Dotted = with coils

Radial neoclassical transport coefficient

Wechsung et al, PNAS (2022)



• Optimizing stellarator geometry for precise quasisymmetry

• Constructing quasisymmetric geometries using near-axis 
expansion

• Self-consistent current in the plasma

• Future directions



Expansion about the magnetic axis reduces 3D PDE → 1D ODEs
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Magnetic	axis

Garren &	Boozer	(1991),	
ML	&	Sengupta	(2019)	

Magnetic	field	lines

Flux	surfaces

2x	minor	radius	r

r
radius	of	curvature	of	axis≪1

r = aeff s



The expansion by Garren & Boozer (1991) has been converted into a practical algorithm 
for generating stellarator shapes
• Inputs:

– Shape	of	the	magnetic	axis.	

– 3-5	other	numbers	(e.g.	current	on	the	axis).

• Outputs:
– Shape	of	the	surfaces	around	the	axis.

– Rotational	transform	on	axis.

– …

• Quasisymmetry guaranteed	in	a	
neighborhood	of	axis.

• Can	pick	any	surface	to	pass	to	traditional	
3D	MHD	fixed-boundary	solve.
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O(r1) O(r2)



Though quasisymmetry can be guaranteed in a neighborhood of the axis, 
optimization can greatly increase the volume of good symmetry
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Objective	function	to	minimize:
Average	along	
magnetic	axis

Desired	
wellMagnetic	well

Desired
rotational	
transform

w∇∇ , 		wL , 		wι , 		wB20 , 		wwell : 	Weights	chosen	by	user

Axis	
length

Desired
axis	
length

Deviation	from	
quasisymmetry at	O(r2)

Parameter	space:	axis	shape,	few	other	parameters.



The near-axis equations can be solved so quickly that tensor-product 
scans over many parameters are feasible
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2	field	period	QA
2	field	period	QH

5	field	period	QH

8	field	period	QH3.1×105 optimized	stellarators	shown	(O(r2))
5.1×106 optimizations	computed
6.0×1010 equilibria	computed

3	field	period	QH

7	field	period	QH

6	field	period	QH

4	field	period	
QH

(helical	excursion	of	the	axis)



The near-axis equations can be solved so quickly that tensor-product 
scans over many parameters are feasible
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3.1×105 optimized	stellarators	shown	(O(r2))
5.1×106 optimizations	computed
6.0×1010 equilibria	computed

(helical	excursion	of	the	axis)



The near-axis expansion can yield configurations very similar to 
finite-aspect-ratio optimization, but much faster
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Finite	
aspect	ratio	
optimization*

Optimized	
near-axis	
expansion

Time	for	1	objective	evaluation: 5e-4	CPU-sec

Total	time	for	optimization	(cold	start): 1	CPU-sec

*	ML	&	Paul,	PRL	(2022)

Finite	aspect	ratio	optimization Optimized	near-axis	expansion



In some cases, the near-axis construction can directly generate 
configurations with excellent confinement
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• Optimizing stellarator geometry for precise quasisymmetry

• Constructing quasisymmetric geometries using near-axis 
expansion

• Self-consistent current in the plasma

• Future directions



The bootstrap current arises in tokamaks & stellarators when the 
density & temperature become significant

• Ions and electrons have different trajectories. 
Different mean flows = electric current.

• Current depends on geometry, density, & 
temperature.

• For ! > 0, we don’t know B until we include this effect.

• Computing the bootstrap current requires kinetic 
theory: coupled 4D advection-dominated integro-
differential equations.

• Need self-consistency between MHD equilibrium and 
kinetic equation.

• How can a self-consistent bootstrap current 
calculation be integrated with stellarator 
optimization?

27

electronion



New idea: exploit quasisymmetry & use analytic expressions for tokamaks 
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Pytte & Boozer (1981), Boozer (1983):

Bootstrap current (& other quantities) in 
quasisymmetry are the same as in 
axisymmetry, up to some substitutions:

ι	→ 	ι−N
Should be accurate for the new 
precisely quasisymmetric
configurations.



Before doing new optimizations: Redl formula is accurate in previous QA & QH stellarators 
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QA (Landreman & Paul (2021))

Normalized toroidal flux sNormalized toroidal flux s

QH (Landreman & Paul (2021))

(Not self-consistent yet)

Redl analytic 
formula

SFINCS 
kinetic 
code

ne = (1 – s5) 4x1020 m-3,     Te = Ti = (1 – s) 12 keV



Optimization recipe
• Objective function:

• Parameter space: {Rm,n, Zm,n, toroidal flux, current spline values} 
or {Rm,n, Zm,n, toroidal flux, iota spline values}

• Cold start
• Algorithm: default for least-squares in scipy (trust region reflective)
• Steps: increasing # of modes varied: m and |n/nfp| up to j in step j
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Example of optimization with self-consistent bootstrap current
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ne0 = 2.5e20/meters3

Te0 = Ti0 = 10 keV

! = 2.8%,
Ip = 1.3 MA



To reach reactor-relevant 5% beta in QH without crossing iota=1, a 
constraint on iota can be included
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Crossing iota=1, the worst resonance, is probably unacceptable.

! = 0

! = 5%

ne0 = 3e20/meters3, Te0 = Ti0 = 15 keV



To reach reactor-relevant 5% beta in QH without crossing iota=1, a 
constraint on iota can be included

Crossing iota=1, the worst resonance, is probably unacceptable.

! = 0

! = 5%

! = 5% with 
" barrier

f 	+ = 	 ds
0

1
∫ min ι s( ) −1.03,	0( )⎡

⎣⎢
⎤
⎦⎥
2

Solution: Add barrier term in objective

Quasisymmetry & bootstrap consistency remain good:

Normalized toroidal flux s



If you want perfectly self-consistent current, 
you can do a few fixed-point iterations at the end
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No significant degradation in quasisymmetry:

Optimization with Redl current

After SFINCS fixed-point iterations

!-particle losses < 0.3%

β =5%,						εeff3/2 <6×10−5

VMECSFINCS (kinetic 
bootstrap calculation)



The optimization with self-consistent bootstrap current also works 
for quasi-axisymmetry
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Symmetry is not as good as for vacuum, 
but sufficient for excellent confinement

Possible islands where ! = 2/3,
! = 4/7 = 0.57?

VMECSFINCS (kinetic 
bootstrap calculation)

β =3%,						εeff3/2 <7×10−6

"-particle losses < 1%



• Optimizing stellarator geometry for precise quasisymmetry

• Constructing quasisymmetric geometries using near-axis 
expansion

• Self-consistent current in the plasma

• Future directions



Future directions
• Eliminate islands at high ! (plasma pressure & 

current)

• Coils & MHD stability for the high !
configurations

• Quasi-isodynamic (|B| contours close poloidally)

• Understand trade-offs using multi-objective 
optimization

• Robustness to uncertainty in the pressure profile

• Interact with systems codes & reactor studies

• Combined coil + confinement (1-stage) 
optimization

• Optimization of turbulence & divertor
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...... SPEC

Before optimization

After optimization

ML, Medasani & Zhu (2021)



The Hidden Symmetries project has enabled significant progress 
in stellarator optimization & confinement

! particle loss fraction:



Extra slides



Why do the configurations with best quasisymmetry not have the best trajectory confinement?
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QA + magnetic well

QA

Lost trajectories 
in the new QA 
look like this:
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Width	of	banana	orbit		Δs ≈ mvR 2rη
ι−N( )ψ edgeZe

∝ 1
ι−N

For	fixed	minor	radius,	 ΔsQA
ΔsQH

~4

QH



2 types of quasisymmetry

41
Contours of B = |B|:



Previous quasisymmetric configurations

42Is there an optimization recipe that can give consistently straight |B| contours?

(a) Zarnstorff et al (2001)
(b) Najambadi et al (2008)
(c) Garabedian (2008)
(d) Liu et al (2018) 
(e) Henneberg et al (2019)
(f) Nuhrenberg & Zille (1988)
(g) Anderson et al (1995)
(h) Bader et al (2020)

We want
B = B(r, ! − N ")



The new configurations have small magnetic shear
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New QH

New QA

VMEC
...... SPEC



Self-consistent bootstrap current profiles have previously been computed by fixed-
point iteration between VMEC and a bootstrap current code  

Available codes: DKES/NTSS, SFINCS, + others for tokamaks.

VMEC: given I0(s), determine B0.
SFINCS: given B0, determine I1(s).
VMEC: given I1(s), determine B1.
SFINCS: given B1, determine I2(s).
…
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SFINCS: >20 node-seconds per 
surface for reactor n/T, cost 
much higher at low 
collisionality, uses PETSc, tricky 
to set resolution parameters 



New idea: exploit quasisymmetry & use analytic expressions for tokamaks 
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Redl (2021)

NEO = kinetic calculation

Geometry enters through

Flux surface label (minor radius)
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Decent 16-coil solutions have been found for the new QAs

By Florian Wechsung @ NYU.            <R>/10 between filament centers.         Haven’t looked at the QHs yet



The symmetry yields extremely good confinement of collisionless trajectories
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All configurations scaled to 
ARIES-CS minor radius (1.7 m) 
and |B| (5.7 T).

5000 alpha particles initialized 
isotropically at s=0.3.

SIMPLE code: Albert et al, JCP (2020).

New QA with coils
New QA+well with coils

Wistell-A

New QH, New QH+well
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Previous quasisymmetric configurations    (s=0.5)
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Previous quasisymmetric configurations    (s=1)
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|B| along a field line for new QA
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|B| along a field line for new QH
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|B| along a field line for new QA with magnetic well
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SPEC confirms the new QA/QH configurations have good surfaces

55

New QHNew QA

New 
QA+well

VMEC
...... SPEC

New QH+well



Good flux surface exist with coils
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New QA New QA+well



Overview

• We’d like to minimize islands/chaos if they exist.

• But, many stellarator codes and objective functions assume nested surfaces, & 

build on the VMEC 3D MHD equilibrium code [1].

• Idea: 

– Compute two B representations at each iteration: one assuming surfaces 

(VMEC) and one not (SPEC [2]).

– Include both island width (from SPEC) and surface-based quantities (from 

VMEC) in the objective function.

– Measure island width using Greene’s residue [3,4]
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[1] Hirshman & Whitson, Phys. Fluids (1993)

[2] Hudson, Dewar, et al, Phys. Plasmas (2012)

[3] Greene, J. Math. Phys. (1979)

[4] Hanson & Cary, Phys. Fluids (1984)



Example: Start with a configuration that has islands
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nfp = 2, decent quasi-axisymetry (QA), aspect = 6,

! = 0, island chain at " = 2/5 = 0.4

...... SPEC

Z 
[m

]

R [m]

0.15

-0.15

0.6 1.00.8

0
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mpi = MpiPartition()
vmec = Vmec("input.nfp2_QA”, mpi)
surf = vmec.boundary

spec = Spec("nfp2_QA.sp", mpi)
spec.boundary = surf

# Define parameter space: 
surf.fix_all()
surf.fixed_range(mmin=0, mmax=3,

nmin=-3, nmax=3, fixed=False)
surf.fix("rc(0,0)") # Major radius                                                                        

# Configure quasisymmetry objective:                                                                            
qs = Quasisymmetry(Boozer(vmec),

0.5, # Radius s to target                                                                      
1, 0) # (M, N) you want in |B|                                                               

# Specify resonant iota = p / q                                                                                              
p = -2; q = 5
residue1 = Residue(spec, p, q)
residue2 = Residue(spec, p, q, theta=np.pi)

# Define objective function                                                                                     
prob = LeastSquaresProblem([(vmec.aspect, 6, 1),

(vmec.iota_axis, 0.39, 1),
(vmec.iota_edge, 0.42, 1),
(qs, 0, 2),
(residue1, 0, 2),
(residue2, 0, 2)]) 

least_squares_mpi_solve(prob, mpi, grad=True)

Simsopt driver 
script applied:

SPEC told to use 
the same boundary 
surface object as 
VMEC.

Objective function includes 
both quasisymmetry from 
VMEC and residues from 
SPEC.



The optimization eliminates the islands
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...... SPEC
Before optimization

After optimization



Quasisymmetry is simultaneously improved during the optimization
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Expansion about the magnetic axis reduces 3D PDE -> 1D ODEs
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High	aspect	ratio
tori

Low	aspect	ratio
tori

Major	
radius	R

2x	Minor	radius	r

Aspect	ratio= R
r

r
radius	of	curvature	of	axis≪1


