Innovations in stellarator optimization for quasisymmetry

<u>M. Landreman</u>^a, A. Giuliani^b, R. Jorge^c, B. Medasani^d, E. J. Paul^d, F. Wechsung^b, C. Zhu^d

^a University of Maryland, ^b New York University, ^c Max Planck Institute for Plasma Physics, ^d Princeton Plasma Physics Laboratory

Advantages of stellarators: steady-state, no disruptions, no Greenwald density limit, no power recirculated for current drive.

But,

- Good flux surfaces are not guaranteed.
- Alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

A solution: quasisymmetry

$$B = B(r, \theta - N \varphi)$$

Boozer angles
$$\Rightarrow \quad \oint (\mathbf{v}_d \cdot \nabla r) dt = 0$$

2 types of quasisymmetry

Quasi-helical symmetry Quasi-axisymmetry General stellarator (QA): $B = B(r, \theta)$ (QH): $B = B(r, \theta - N\phi)$ (not symmetric) Φ6 Φ6 Φ6 Poloidal Boozer angle angle angle Boozer Poloidal Boozer Poloidal 0 0 0 6 Toroidal Boozer angle φ Toroidal Boozer angle φ Toroidal Boozer angle φ

Contours of $B = |\mathbf{B}|$: $B_{min} \square B_{max}$

- Combined optimization for good flux surfaces & other features *ML, Medasani, & Zhu, Phys Plasmas (2021)*
- Precise quasisymmetry

ML & Paul, arXiv:2108.03711 (2021)

Both use new stellarator optimization framework SIMSOPT: https://github.com/hiddenSymmetries/simsopt *ML, Medasani, Wechsung, et al, J Open Source Software (2021)*

- Combined optimization for good flux surfaces & other features *ML, Medasani, & Zhu, Phys Plasmas (2021)*
- Precise quasisymmetry

ML & Paul, arXiv:2108.03711 (2021)

Both use new stellarator optimization framework SIMSOPT: https://github.com/hiddenSymmetries/simsopt *ML, Medasani, Wechsung, et al, J Open Source Software (2021)*

Overview

- We'd like to minimize islands/chaos if they exist.
- But, many stellarator codes and objective functions assume nested surfaces, & build on the VMEC 3D MHD equilibrium code [1].
- Idea:
 - Compute two B representations at each iteration: one assuming surfaces (VMEC) and one not (SPEC [2]).
 - Include both island width (from SPEC) and surface-based quantities (from VMEC) in the objective function.
 - Measure island width using Greene's residue [3,4]

[1] Hirshman & Whitson, *Phys. Fluids* (1993)
 [3] Greene, *J. Math. Phys.* (1979)
 [2] Hudson, Dewar, et al, *Phys. Plasmas* (2012)
 [4] Hanson & Cary, *Phys. Fluids* (1984)

Example: Start with a configuration that has islands

Simsopt driver script applied:

SPEC told to use the same boundary surface object as VMEC.

```
mpi = MpiPartition()
vmec = Vmec("input.nfp2 QA", mpi)
surf = vmec.boundary
spec = Spec("nfp2 QA.sp", mpi)
spec.boundary = surf
 # Define parameter space:
surf.fix all()
surf.fixed range(mmin=0, mmax=3,
                 nmin=-3, nmax=3, fixed=False)
surf.fix("rc(0,0)") # Major radius
# Configure quasisymmetry objective:
qs = Quasisymmetry(Boozer(vmec),
                   0.5, # Radius s to target
                   1, 0) # (M, N) you want in |B|
```

```
# Specify resonant iota = p / q
p = -2; q = 5
residue1 = Residue(spec, p, q)
residue2 = Residue(spec, p, q, theta=np.pi)
```

Define objective function

least_squares_mpi_solve(prob, mpi, grad=True)

Objective function includes both quasisymmetry from VMEC and residues from SPEC.

The optimization eliminates the islands

Quasisymmetry is simultaneously improved during the optimization

- Combined optimization for good flux surfaces & other features *ML, Medasani, & Zhu, Phys Plasmas (2021)*
- Precise quasisymmetry

ML & Paul, arXiv:2108.03711 (2021)

Previous quasisymmetric configurations

(a) Zarnstorff et al (2001)
(b) Najambadi et al (2008)
(c) Garabedian (2008)
(d) Liu et al (2018)
(e) Henneberg et al (2019)
(f) Nuhrenberg & Zille (1988)
(g) Anderson et al (1995)
(h) Bader et al (2020)

We want $B = B(r, \theta - N \phi)$

Can we get |B| contours to look truly straight if we optimize for only quasisymmetry?

Optimization problem

- 2 stage approach, as for W7-X: First optimize shape of boundary surface, then coils.
- Objective functions:

• The usual parameter space: $R_{m,n} \& Z_{m,n}$ defining a toroidal boundary

$$R(\theta,\phi) = \sum_{m,n} R_{m,n} \cos(m\theta - n\phi), \quad Z(\theta,\phi) = \sum_{m,n} Z_{m,n} \sin(m\theta - n\phi)$$

- SIMSOPT with VMEC
- Cold start
- Vacuum fields, allowing precise checks against SPEC & Biot-Savart
- Algorithm: default for least-squares in scipy (trust region reflective)
- 6 stages: increasing # of modes varied & VMEC resolution
- Run many optimizations, pick the best

Straight |B| contours are possible for QA

Straight |B| contours are possible for QH

Good symmetry also exists with magnetic well

Decent 16-coil solutions have been found for the new QAs

By Florian Wechsung @ NYU.

<R>/10 between filament centers.

2π

θ

0

Ω

|B| @ s=0.05

Φ

Haven't looked at the QHs yet

Φ

2π ||B| @ s=1;

1.028

1.022

1.016

1.010

- 1.004

0.998

L 0.992

E

π

θ

0

1.096

1.072

1.048

1.024

1.000

🗄 0.976

0.952

且_{0.928}

π

Symmetry-breaking modes can be made extremely small

New QA configuration

|B|in Boozer coordinates was verified by independent SPEC calculations

(Ntor = Mpol, Lrad = Mpol + 4)

By Elizabeth Paul

The new configurations have small magnetic shear

The symmetry yields extremely good confinement of collisionless trajectories

Why does the configuration with best symmetry not have the best trajectory confinement?

The symmetry also yields extremely low collisional transport for a thermal plasma

Conclusion: Quasisymmetry can be achieved throughout substantial volumes to high precision, giving excellent confinement

Many questions:

- Do similar solutions exist with substantial plasma pressure & bootstrap current?
- How close can you come to this confinement with additional objectives & constraints?
- What are the trade-offs for symmetry vs aspect ratio, iota, well depth?
- How precisely can you attain omnigenity with poloidally closed B contours?

Extra slides

simsopt.readthedocs.io/en/latest/

latest

Search docs

C

CONTENTS

Getting started

Docker container

Concepts

Defining optimization problems

Testing

Source code on GitHub

Publications

Contributing to Simsopt

EXAMPLES

B Pood the Doce

and a second second

Simsopt documentation

simsopt is a framework for optimizing stellarators. The high-level routines are in python, with calls to C++ or fortran where needed for performance. Several types of components are included:

- Interfaces to physics codes, e.g. for MHD equilibrium.
- Tools for defining objective functions and parameter spaces for optimization.
- Geometric objects that are important for stellarators surfaces and curves with several available parameterizations.
- Efficient implementations of the Biot-Savart law and other magnetic field representations, including derivatives.
- Tools for parallelized finite-difference gradient calculations.

The design of **simsopt** is guided by several principles:

- Thorough unit testing, regression testing, and continuous integration.
- Extensibility. It should be possible to add new codes and terms to the objective function without editing modules that already work, i.e. the open-closed principle. This is because any edits to working code can potentially introduce bugs.
- Modularity: Physics modules that are not needed for your optimization problem do not need to be installed. For instance, to optimize SPEC equilibria, the VMEC module need not be installed.
- Flexibility: The components used to define an objective function can be re-used for applications other than standard optimization. For instance, a simsopt objective function is a standard python function that can be plotted, passed to optimization packages outside of simsopt, etc.

simsopt is fully open-source, and anyone is welcome to use it, make suggestions, and contribute.

Previous quasisymmetric configurations (s=0.5)

Previous quasisymmetric configurations (s=1)

B along a field line for new QA

|B| along a field line for new QH

|B| along a field line for new QA with magnetic well

SPEC confirms the new QA/QH configurations have good surfaces

Good flux surface exist with coils

