New approaches to stellarator optimization using expansion in aspect ratio

Matt Landreman¹, Antoine Cerfon², Andrew Giuliani², Per Helander³, Rogerio Jorge¹, Gabe Plunk³, Wrick Sengupta², Georg Stadler², Florian Wechsung² 1. University of Maryland 2. NYU 3. IPP

• Advantages of stellarators: steady-state, no disruptions, no Greenwald density limit, no power recirculated for current drive.

- Advantages of stellarators: steady-state, no disruptions, no Greenwald density limit, no power recirculated for current drive.
- But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

 $\oint (\mathbf{v}_d \cdot \nabla r) dt = 0 \text{ in axisymmetry, } \neq 0 \text{ in a general stellarator.}$

- Advantages of stellarators: steady-state, no disruptions, no Greenwald density limit, no power recirculated for current drive.
- But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

 $\oint (\mathbf{v}_d \cdot \nabla r) dt = 0 \text{ in axisymmetry, } \neq 0 \text{ in a general stellarator.}$

- A solution: quasisymmetry $B = B(r, \theta - N\zeta) \Rightarrow \oint (\mathbf{v}_d \cdot \nabla r) dt = 0.$ Boozer angles Guiding-center Lagrangian in Boozer coordinates depends on (θ, ζ) only through $B = |\mathbf{B}|.$
- How do you find configurations with quasisymmetry?

Until now, understanding of quasisymmetric plasmas has been limited by the method of finding them numerically

Want
$$\mathbf{J} \times \mathbf{B} = \nabla p$$
 and $B = B(r, \theta - N\zeta)$.

Until now, understanding of quasisymmetric plasmas has been limited by the method of finding them numerically

Want
$$\mathbf{J} \times \mathbf{B} = \nabla p$$
 and $B = B(r, \theta - N\zeta)$.
minimize $f(x)$
Parameter space: $x \in \{\text{toroidal boundary shapes}\}$
Objective: Solve $\mathbf{J} \times \mathbf{B} = \nabla p$ numerically inside boundary,
 $f = \text{departure from quasisymmetry in the result.}$

Until now, understanding of quasisymmetric plasmas has been limited by the method of finding them numerically

Want $\mathbf{J} \times \mathbf{B} = \nabla p$ and $B = B(r, \theta - N\zeta)$. minimize f(x)Parameter space: $x \in \{\text{toroidal boundary shapes}\}$ Objective: Solve $\mathbf{J} \times \mathbf{B} = \nabla p$ numerically inside boundary, f = departure from quasisymmetry in the result.

- Computationally expensive.
- What is the size & character of the solution space?
- Result depends on initial condition. ⇒ Cannot be sure you've found all solutions.

Expansion about the magnetic axis can be a powerful practical tool for generating quasisymmetric stellarator configurations

- Accurate at least in the core of any configuration.
- Hasn't been considered much since numerical optimization began.

Mercier (1964), Solov'ev & Shafranov (1970), Lortz & Nührenberg (1976), Garren & Boozer (1991)

Revisit expansions with modern concepts (e.g. quasisymmetry, gyrokinetics), computing, & optimization.

Expansion about the magnetic axis can be a powerful practical tool for generating quasisymmetric stellarator configurations

- Accurate at least in the core of any configuration.
- Hasn't been considered much since numerical optimization began.

- Complements the traditional optimization approach:
 - Many orders of magnitude faster.
 - Opportunities for analytic insights.
 - Can generate new initial conditions that can be refined by optimization.

Outline

- Constructing quasisymmetric stellarator shapes
- Evaluating other physics properties
- Optimizing configurations
- 1-stage coil optimization

Outline

- Constructing quasisymmetric stellarator shapes
- Evaluating other physics properties
- Optimizing configurations
- 1-stage coil optimization

The expansion by Garren & Boozer (1991) has been converted into a practical algorithm for generating stellarator shapes

- Inputs:
 - Shape of the magnetic axis.
 - 3-5 other numbers (e.g. current on the axis).
- Outputs:
 - Shape of the surfaces around the axis.
 - Rotational transform on axis.

- Quasisymmetry guaranteed in a neighborhood of axis.
- Can pick any surface to pass to traditional 3D MHD fixed-boundary solve.

The construction can be verified by running an MHD equilibrium code (e.g. VMEC) which does not make the expansion.

1.05

0.95

5

6

2

3

Boozer toroidal angle ζ

0

0

The construction can be verified by running an MHD equilibrium code (e.g. VMEC) which does not make the expansion.

We can now numerically demonstrate Garren & Boozer's scaling: B_{nonsymm} ~ 1/A³

Accurate quasisymmetry is effective at curing alpha particle losses

The near-axis analysis can be generalized to construct configurations with omnigenity

G G Plunk, ML, and P Helander, JPP (2019)

Omnigenity:

 $\oint (\mathbf{v}_d \cdot \nabla r) dt = 0 \quad \forall \text{ magnetic moments \& energies.}$

- Weaker condition than quasisymmetry.
- *B* contours can close poloidally.

Outline

- Constructing quasisymmetric stellarator shapes
- Evaluating other physics properties
- Optimizing configurations
- 1-stage coil optimization

From a near-axis solution, analytic expressions exist for all the geometric quantities in gyrokinetics

Rogerio Jorge & ML, PPCF 63, 014001 (2021), Rogerio Jorge & ML, PPCF 63, 074002 (2021)

E.g.
$$\nabla \alpha \cdot \nabla \alpha = \frac{1}{r^2 \overline{\eta}^2 \kappa^2} \left[\overline{\eta}^4 \cos^2 \theta + \kappa^4 \left(\sigma \cos \theta + \sin \theta \right)^2 \right]$$
 where $\mathbf{B} = \nabla \psi \times \nabla \alpha$

Mercier stability can be evaluated directly from a near-axis solution

ML & Jorge, JPP (2020)

Many properties of a stellarator can be computed in ~ 1 ms directly from a solution of the near-axis equations

<u>Available so far:</u>

- Surface shapes
- Rotational transform
- Magnetic well
- Mercier stability
- All the geometric factors in the gyrokinetic equation & MHD ballooning equation
- **B** vector & 2 gradients
- Scale length in **B** (proxy for coil complexity?)

Not available now:

- Magnetic shear
- Ballooning growth rates
- Low-n MHD growth rates
- Gyrokinetic growth rates

Outline

- Constructing quasisymmetric stellarator shapes
- Evaluating other physics properties
- Optimizing configurations
- 1-stage coil optimization

Though quasisymmetry is guaranteed in a neighborhood of the axis, optimization can greatly increase the volume of good symmetry

 $w_{\nabla\nabla}$, w_L , w_i , w_{B20} , w_{well} : Weights chosen by user

The near-axis equations can be solved so quickly that tensor-product scans over many parameters are feasible

The near-axis equations can be solved so quickly that tensor-product scans over many parameters are feasible

Discovery: quasi-helical symmetry with 2 field periods

FIG. 2. Top and end views of a figure-eight stellarator.

But now with quasisymmetry:

The near-axis expansion can yield configurations very similar to conventional optimization, but much faster

0.4 -	Conventional optimization Optimized		near-axis expansion
0.2 - 0.0 - -0.2 - -0.4 -			
0.8 1.0 1.2 R [meters] Optimized Conventional near-axis optimization* expansion		Conventional optimization	Optimized near- axis expansion
	Time for 1 equilibrium solve	50 CPU-sec	5e-4 CPU-sec
	Total time for optimization (cold start)	8e+5 CPU-sec	1 CPU-sec

Outline

- Constructing quasisymmetric stellarator shapes
- Evaluating other physics properties
- Optimizing configurations
- 1-stage coil optimization

The near-axis expansion can form the basis of a new design formulation for *coils*

Previous designs (HSX, W7-X) used a 2-stage approach:

- 1. Optimize plasma shape, ignoring coils.
- 2. Find coils to make the plasma shape from stage 1.

Downside: The result of stage 1 may be hard to produce with practical coils.

- Derivatives are available.
- Stochastic optimization yields wider coil tolerances
 ⇒ lower cost. F Wechsung et al, arXiv (2021)

Wechsung B008.00011 Giuliani B008.00012

The near-axis expansion can form the basis of a new design formulation for *coils*

$$\min f(X)$$
$$X = \{ \text{Coil shapes, magnetic axis shape} \}$$

Analytic $\partial f / \partial X$ is available!

Combined coil + quasisymmetry optimization using analytic derivatives successfully achieves flux surfaces & QA

 $0.4 < \iota < 0.5$,

Ongoing & future work using this expansion

- Better understand the landscape of $O(r^2)$ quasisymmetric configurations.
- Evaluate more aspects of MHD & gyrokinetic stability.
- Higher order: compute magnetic shear & symmetry-breaking B_3 .
- Construction to give quasisymmetry at an off-axis surface.
- Include off-axis quasisymmetry in the 1-stage coil optimization.

Closing thoughts

- The high-aspect-ratio expansion enables multiple new stellarator design paradigms:
 - Directly construct plasma geometries with good confinement.
 - Brute force parameter scans, enabled by orders-of-magnitude speed-up.
 - Derivative-based 1-stage optimization of coils for quasisymmetry.
- There is hope of definitively identifying all regions of parameter space with practical quasisymmetric fields.
- We may still discover qualitatively new magnetic confinement configurations.

