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• Advantages	of	stellarators:	steady-state,	no	disruptions,	no	Greenwald	density	
limit,	no	power	recirculated	for	current	drive.
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vd ⋅∇r( )dt!∫ =0		in	axisymmetry,			 ≠0	in	a	general	stellarator.

• Advantages	of	stellarators:	steady-state,	no	disruptions,	no	Greenwald	density	
limit,	no	power	recirculated	for	current	drive.

• But,	alpha	losses	&	neoclassical	transport	would	be	too	large	unless	you	
carefully	choose	the	geometry.

r labels	flux	surfaces



• Advantages	of	stellarators:	steady-state,	no	disruptions,	no	Greenwald	density	
limit,	no	power	recirculated	for	current	drive.

• But,	alpha	losses	&	neoclassical	transport	would	be	too	large	unless	you	
carefully	choose	the	geometry.

• A	solution:	quasisymmetry
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vd ⋅∇r( )dt!∫ =0		in	axisymmetry,			 ≠0	in	a	general	stellarator.

B = B r , 	θ −Nζ( ) 				⇒ 				 vd ⋅∇r( )dt!∫ =0.
Boozer	angles

ζ

θ
Guiding-center	Lagrangian in	Boozer	
coordinates	depends	on	(!,")	only	
through	B=|B|.

• How	do	you	find	configurations	with	quasisymmetry?



ζθ
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Until now, understanding of quasisymmetric plasmas has been 
limited by the method of finding them numerically

			Want		J×B=∇p		and		B = B r , 	θ −Nζ( ).



ζθ

6

minimize		f x( )
Parameter	space:		x∈ toroidal	boundary	shapes{ }
			Objective:		Solve	J×B=∇p	numerically	inside	boundary,

		f = departure	from	quasisymmetry	in	the	result.
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• Computationally	expensive.
• What	is	the	size	&	character	of	the	solution	space?
• Result	depends	on	initial	condition.		⇒		Cannot	be	sure	you’ve	found	all	solutions.

			Want		J×B=∇p		and		B = B r , 	θ −Nζ( ).

minimize		f x( )
Parameter	space:		x∈ toroidal	boundary	shapes{ }
			Objective:		Solve	J×B=∇p	numerically	inside	boundary,

		f = departure	from	quasisymmetry	in	the	result.

Until now, understanding of quasisymmetric plasmas has been 
limited by the method of finding them numerically



Expansion about the magnetic axis can be a powerful practical tool 
for generating quasisymmetric stellarator configurations
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• Accurate	at	least	in	the	core	of	any	
configuration.

• Hasn’t	been	considered	much	since	
numerical	optimization	began.

Mercier	(1964),
Solov’ev &	Shafranov (1970),
Lortz &	Nührenberg (1976),
Garren &	Boozer	(1991)

Magnetic	axis

Revisit	expansions	with	modern	concepts	(e.g.	quasisymmetry,	gyrokinetics),	
computing,	&	optimization.
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• Accurate	at	least	in	the	core	of	any	
configuration.

• Hasn’t	been	considered	much	since	
numerical	optimization	began.

• Complements	the	traditional	optimization	approach:
– Many	orders	of	magnitude	faster.
– Opportunities	for	analytic	insights.
– Can	generate	new	initial	conditions	that	can	be	refined	by	optimization.

Magnetic	axis

Expansion about the magnetic axis can be a powerful practical tool 
for generating quasisymmetric stellarator configurations



Outline

• Constructing	quasisymmetric stellarator	shapes
• Evaluating	other	physics	properties
• Optimizing	configurations
• 1-stage	coil	optimization
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The expansion by Garren & Boozer (1991) has been converted into a practical algorithm 
for generating stellarator shapes
• Inputs:

– Shape	of	the	magnetic	axis.	

– 3-5	other	numbers	(e.g.	current	on	the	axis).

• Outputs:
– Shape	of	the	surfaces	around	the	axis.

– Rotational	transform	on	axis.

– …

• Quasisymmetry guaranteed	in	a	
neighborhood	of	axis.

• Can	pick	any	surface	to	pass	to	traditional	
3D	MHD	fixed-boundary	solve.
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O(r1) O(r2)
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The construction can be verified by running an MHD equilibrium code (e.g. VMEC) 
which does not make the expansion.
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The construction can be verified by running an MHD equilibrium code (e.g. VMEC) 
which does not make the expansion.
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We can now numerically demonstrate Garren & Boozer’s scaling: Bnonsymm ~ 1/A3
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S = 1
B0

Bm,n
2

m,n≠Nm
∑ = Symmetry-breaking



Accurate quasisymmetry is effective at curing alpha particle losses
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W7-X

NCSX
ARIES-CS

Wistell-A

Garabedian

Nuhrenberg-
Zille

CFQS

Henneberg

Constructed	nfp=3
(aspect	=	5)

Constructed	nfp=4
(aspect	=	5)

HSX
All	configurations	scaled	to	
ARIES-CS	minor	radius	(1.7m)	
and	|B|	(5.7	T)

3.5	MeV	alpha	particles	
initialized	at	!/!edge =	0.3.



The near-axis analysis can be generalized to construct configurations with omnigenity

17

 			 vd ⋅∇r( )dt!∫ =0			∀	magnetic	moments	&	energies.
Omnigenity:

bounce

G	G	Plunk,	ML,	and	P	Helander,		JPP	(2019)

• Weaker	condition	than	quasisymmetry.
• B contours	can	close	poloidally.



Outline

• Constructing	quasisymmetric stellarator	shapes
• Evaluating	other	physics	properties
• Optimizing	configurations
• 1-stage	coil	optimization
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From a near-axis solution, analytic expressions exist for all the 
geometric quantities in gyrokinetics

19

Rogerio Jorge	&	ML,	PPCF	63,	014001	(2021),					Rogerio Jorge	&	ML,	PPCF	63,	074002	(2021)	

			
E.g.			∇α ⋅∇α = 1

r2η2κ 2 η 4 cos2θ +κ 4 σ cosθ + sinθ( )2⎡
⎣⎢

⎤
⎦⎥
		where		B=∇ψ ×∇α

r/a	=	0.5



Mercier stability can be evaluated directly from a near-axis solution

20
ML	&	Jorge,	JPP	(2020)

Aspect	ratio	8 Aspect	ratio	20



Many properties of a stellarator can be computed in ~ 1 ms
directly from a solution of the near-axis equations 
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Available	so	far:
• Surface	shapes
• Rotational	transform
• Magnetic	well
• Mercier	stability
• All	the	geometric	factors	in	the	
gyrokinetic	equation	&	MHD	ballooning	
equation

• B vector	&	2	gradients
• Scale	length	in	B (proxy	for	coil	
complexity?)

Not	available	now:
• Magnetic	shear
• Ballooning	growth	rates
• Low-n	MHD	growth	rates
• Gyrokinetic	growth	rates
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Though quasisymmetry is guaranteed in a neighborhood of the axis, 
optimization can greatly increase the volume of good symmetry
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f = 1
L
dℓ∫
!

∇B
2
+ w∇∇

L
dℓ∫ ∇∇B

2
+wL L−L*( )2 +wι ι−ι*( )2

+wB20
L

dℓ∫ B20 −
1
L
d ′ℓ∫ B20

⎛
⎝⎜

⎞
⎠⎟" #$$$ %$$$

2

+wwell max 0,		 d
2V
dψ 2 −W*

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

Objective	function	to	minimize:

Average	along	
magnetic	axis

Desired	
wellMagnetic	well

Desired
rotational	
transform

w∇∇ , 		wL , 		wι , 		wB20 , 		wwell : 	Weights	chosen	by	user

Axis	
length

Desired
axis	
length

Deviation	from	
quasisymmetry at	O(r2)



The near-axis equations can be solved so quickly that tensor-product 
scans over many parameters are feasible
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2	field	period	QA
2	field	period	QH

5	field	period	QH

8	field	period	QH3.1×105 optimized	stellarators	shown	(O(r2))
5.1×106 optimizations	computed
6.0×1010 equilibria	computed

3	field	period	QH

7	field	period	QH

6	field	period	QH

4	field	period	
QH

(“wiggliness”)



The near-axis equations can be solved so quickly that tensor-product 
scans over many parameters are feasible
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3.1×105 optimized	stellarators	shown	(O(r2))
5.1×106 optimizations	computed
6.0×1010 equilibria	computed

(“wiggliness”)



Discovery: quasi-helical symmetry with 2 field periods
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Spitzer,	1958

But	now	with	quasisymmetry:



The near-axis expansion can yield configurations very similar to 
conventional optimization, but much faster
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Conventional	
optimization*

Optimized	
near-axis	
expansion

Conventional	
optimization

Optimized	near-
axis	expansion

Time	for	1	equilibrium	
solve 50	CPU-sec 5e-4	CPU-sec

Total	time	for	
optimization	(cold	start) 8e+5	CPU-sec 1	CPU-sec

*	ML	&	Paul,	arXiv (2021)

Conventional	optimization Optimized	near-axis	expansion
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The near-axis expansion can form the basis of a new design 
formulation for coils
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New	approach:		Directly	optimize	coil	shapes	for	consistency	with	
near-axis	quasisymmetry.	A	Giuliani	et	al,	arXiv (2020)
• Derivatives	are	available.
• Stochastic	optimization	yields	wider	coil	tolerances	
⇒	lower	cost.	F	Wechsung et	al,	arXiv (2021)

Previous	designs	(HSX,	W7-X)	used	a	2-stage	approach:
1. Optimize	plasma	shape,	ignoring	coils.
2. Find	coils	to	make	the	plasma	shape	from	stage	1.

Downside:	The	result	of	stage	1	may	be	hard	to	produce	with	
practical	coils.

Wechsung BO08.00011	

Giuliani	BO08.00012



The near-axis expansion can form the basis of a new design 
formulation for coils
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		min f X( )

		X = Coil	shapes,		magnetic	axis	shape{ }
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		Analytic	∂ f /∂X 	is	available!



Combined coil + quasisymmetry optimization using analytic derivatives 
successfully achieves flux surfaces & QA
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0.4	<	! <	0.5,
Decent	surfaces	out	to	aspect	ratio	3.2

|B|	is	quasisymmetric

<	2	minutes	on	a	laptop



Ongoing & future work using this expansion
• Better	understand	the	landscape	of	O(r2)	quasisymmetric configurations.

• Evaluate	more	aspects	of	MHD	&	gyrokinetic	stability.

• Higher	order:	compute	magnetic	shear	&	symmetry-breaking	B3.

• Construction	to	give	quasisymmetry at	an	off-axis	surface.

• Include	off-axis	quasisymmetry in	the	1-stage	coil	optimization.
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Closing thoughts
• The	high-aspect-ratio	expansion	enables	multiple	new	stellarator	design	paradigms:

– Directly	construct	plasma	geometries	with	good	confinement.
– Brute	force	parameter	scans,	enabled	by	orders-of-magnitude	speed-up.
– Derivative-based	1-stage	optimization	of	coils	for	quasisymmetry.

• There	is	hope	of	definitively	identifying	all	regions	of	parameter	space	with	practical	
quasisymmetric fields.

• We	may	still	discover	qualitatively	new	magnetic	confinement	configurations.
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