SIMSOPT: New software tools for stellarator optimization

Matt Landreman, University of Maryland REE= \
‘ AN
TV

autll

Australian National University: Zhisong Qu

Cornell: David Bindel, Misha Padidar

EPFL: Antoine Baillod, Joaquim Loizu

IPP: Jonathan Schilling

Maryland: Rogerio Jorge

NYU: Andrew Giuliani, Florian Wechsung

PPPL: Stuart Hudson, Bharat Medasani, Caoxiang Zhu
Wisconsin: Aaron Bader, Ben Faber, Thomas Kruger

SIMONS FOUNDATION

e \ision
e Examples
e Design

e Next steps

e Extensibility: It should be possible to add new codes and terms to an objective function
without editing the core infrastructure or build system. Any edits to working code can
potentially introduce bugs.

e Modularity: Physics modules that are not needed for your optimization problem do not
need to be downloaded.

e Flexibility: Components can be used for many purposes, not just standard optimization.
e Thorough unit testing, regression testing, and continuous integration.

Projects with similar goals: Plasma Equilibrium Toolkit & LASSO (Wisconsin), DESC (Princeton).

Simsopt components

e |nterfaces to physics codes
e Surface & curve objects, with several parameterizations

e Tools for defining objective function & parameter space, e.g.
fixed vs free degrees of freedom

e Biot-Savart and other magnetic field types, with derivatives
e Parallelized finite differences

e Plotting & graphics

C @ github.com/hiddenSymmetries

The Hidden Symmetries and Fusion Energy Collaboration

e https://hiddensymmetries.princeto...

(] Repositories 7) Packages 2 People 15 2: Teams [l Projects 5! Settings

Q_ Find a repository... Type ~ Language v Sort v Customize pins m

Top languages

simsopt
Simons Stellarator Optimizer Code / ® C++ @ Python @ Fortran
A
plasma optimization fusion plasma-physics nuclear-fusion @ Jupyter Notebook

stellarator stellarators

@ Python &8 LGPL-3.0 7 w5 @ 0 Ii 0 Updated 16 hours ago People 15 >
booz_xform
Calculates Boozer coordinates for toroidal MHD equilibria, including

stellarators and tokamaks. @ i
@c++ B&BBsD-2-Clause %o vr1 (Do §10 Updated 2 days ago @ ﬁ ﬂ

AT A S

C @ simsopt.readthedocs.io/en/latest/

Search docs

Getting started

Concepts
Defining optimization problems
Testing

Source code on GitHub

Optimizing an equilibrium code
Optimizing for quasisymmetry

Eliminating magnetic islands

& Read the Docs

Simsopt documentation

simsopt is a system for optimizing stellarators. The high-level routines are in python, with calls to
C++ or fortran where needed for performance. Several types of components are included:

« Interfaces to physics codes, e.g. for MHD equilibrium.

« Tools for defining objective functions and parameter spaces for optimization.

« Geometric objects that are important for stellarators - surfaces and curves - with several
available parameterizations.

« An efficient implementation of the Biot-Savart law, including derivatives.

« Tools for parallelized finite-difference gradient calculations.

Some of the physics modules with compiled code reside in separate repositories. These separate
modules include

o« VMEC, for MHD equilibrium.
e SPEC, for MHD equilibrium. (This repository is private.)
e booz_xform, for Boozer coordinates and quasisymmetry.

The design of simsopt is guided by several principles:

¢ Thorough unit testing, regression testing, and continuous integration.

o Extensibility: It should be possible to add new codes and terms to the objective function
without editing modules that already work, i.e. the open-closed principle . This is because any
edits to working code can potentially introduce bugs.

¢ Modularity: Physics modules that are not needed for your optimization problem do not need to
be installed. For instance, to optimize SPEC equilibria, the VMEC module need not be installed.

How to get involved

e https://github.com/hiddenSymmetries/simsopt

Everyone is welcome at development meetings: Mondays @ 9am NY, 3pm Europe
simsopt slack workspace, #developers channel
Play around with the code and examples

Try container: docker run -it --rm hiddensymmetries/simsopt

Fork the repository, add a feature, submit pull request

e \ision
e Examples
e Design

e Next steps

Simsopt can optimize SPEC configurations to eliminate magnetic islands

Magnetic
island

Starting point: a quasi-helically symmetric
configuration from Wisconsin [Bader et al (2020)]

0.3+

0.2

0.11

0.0+

We'll minimize Greene’s residue, similar to Hanson & Cary (1984)

Islands can be eliminated by optimizing Greene’s residue

residue = l(Z—Tr 1\71)
4

M ="full orbit tangent map":
0.3+
OR Yy OR
5Z final 52 initial
1 0.21
Residue = 0 for a good surface. 0.1-

Greene, | Math Phys (1979)
0.0

Islands can be eliminated by optimizing Greene’s residue

residue= l(2— Tr M)
4

M ="full orbit tangent map":

OR Yy OR
5Z final 5Z initial

Residue = 0 for a good surface.

Greene, | Math Phys (1979)

with simsopt using a high-level python script

spec = Spec()
spec.boundary.change resolution(mpol=12, ntor=12)

spec.boundary.all fixed()
spec.boundary.set fixed(

Residue(spec, 8, 7)
Residue(spec, 12, 11)

residuel
residue?2

prob = LeastSquaresProblem([(residuel,
(residue2,

least squares serial solve(prob)

Optimization of boundary shape successfully results in good surfaces

Unoptimized Optimized

Optimized

......
T
-
-~
:

Unoptimized

12

Optimization for good surfaces can also be done in the parameter

space of coil shapes rather than the boundary shape
Reproduction of Cary & Hanson (1986) with simsopt by Rogerio Jorge

Unoptimized Optimized

0.02
.g 0.00 jlaa
S A
_0.02 T T T T T T T _0.02 T T T
0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050 0.850 0.875 0.900 0.925 0.950 0.975 1.000 1.025 1.050

R [m] R [m]

13

We are now optimizing for integrability with plasma current & pressure

Baillod & Loizu

0.8}
0.6
0.4
0.2

-0.2r
-0.4r
-0.6
-0.8

Unoptimized Optimized

-0.8r1

Optimized

Unoptimized

8.5

9 9.5 10 10.5 11 8.5 9 9.5 10 10.5 11

14

Like STELLOPT & RQOSE, SIMSOPT can optimize VMEC configurations
for quasisymmetry

mpi = MpiPartition()
vimec = Vmec("input.nfp4 QOH”, mpi)

surf = vmec.boundary
surf.all fixed()
surf.fixed range(mmin=0, mmax=3,
nmin=-3, nmax=3, fixed=False)
surf.set fixed("rc(0,0)")

gs = Quasisymmetry(Boozer (vmec),
0.5,
1, 1)

prob = LeastSquaresProblem([(gs, 0, 1),
(vmec.aspect, 7, 1)1])

Boozer poloidal angle 6

least squares mpi solve(prob, mpi, grad=True)

1.0 1.5
Boozer toroidal angle ¢

Scripting allows dynamic increase
in resolution during optimization

>
g
S)
c
©
1o
ke
9
o
Qo
—
g]
N
o
o
2]

|B| [Tesla] on surface s=0.5

1 2
Boozer toroidal angle ¢

mpi = MpiPartition()
vmec = Vmec (
surf vmec .boundary

, mpi=mpi)

boozer = Boozer (vmec)
gs = Quasisymmetry(boozer, 0.5,
1, 0)

prob = LeastSquaresProblem([(vmec.aspect, 6, 1),
(vmec.iota axis, 0.465, 1),
(vmec.iota edge, 0.495, 1),

(as, 0, 1)1])

for step in range(4):
vmec.indata.mpol = 3 + step
vmec.indata.ntor = vmec.indata.mpol
boozer.mpol = 16 + step * 8
boozer.ntor boozer.mpol

surf.all fixed()

max_mode = step + 1

surf.fixed range(mmin=0, mmax=max_mode,
nmin=-max_mode, nmax=max_mode,
fixed=False)

surf.set fixed()

least squares mpi_solve(prob, mpi, grad=True)

Simsopt can generate configurations with decent alpha particle confinement

Bader et al, arXiv:2106.00716

Collisional Energy Losses

0.30
— \\ist-A
0.25 — \\/iSt-B
—_— Ku5
c - = W7X
£0.201 ARIES
E . NCSX
§015 - Simsopt o
> ITER
5010 —— LHDIn
o LHD out
005 ‘.-’
ammE E - .-en
ST Ll gl ¥ bt et
0.0, -

Configurations scaled to the ARIES-CS volume and average |B]|. .

Simsopt can also optimize for quasisymmetry & good surfaces simultaneously,

with both VMEC and SPEC in the loop.

Starting point: nfp=2, QA, aspect = 6,
Island chain atiota=2/5=0.4

0.151 VMEC
Rotational transform t E]
0.4201 %, N
.-.. O -
0.415 ,
0.410 - -.... i X \\4:. S \ - ; 7, / / (/ /4« //_,
...'o | Z % 7 "/
04951 Before °‘-. =
0.400 4-ORUMIZAtION | . /
0.395 - -
-0.154
0.390 A T T T T T T

0.6 0.8 1.0

Simsopt driver
script applied:

SPEC told to use
the same boundary
surface object as
VMEC.

mpi = MpiPartition()
vmec = Vmec (, mpi)
surf vmec .boundary

spec = Spec(, mpi)
spec.boundary = surf

surf.all fixed()
surf.fixed range(mmin=0, mmax=3,

nmin=-3, nmax=3, fixed=False)
surf.set fixed()

gs = Quasisymmetry(Boozer (vmec),
0.5,
1, 0)

p=-2; 9=5
residuel = Residue(spec, p, 9)
residue? Residue(spec, p, g, theta=np.pi)

prob = LeastSquaresProblem([(vmec.aspect, 6, 1),
(vmec.iota_axis, 8739,
(vmec.iota edge, 0,42,
(as, 0, 2),
(residuel, 0, 2),
(residue2, 0, 2)])

least squares mpi_solve(prob, mpi, grad=True)

1),
1),

Objective function includes

both quasisymmetry from
VMEC + booz_xform and
residues from SPEC +
pyoculus.

The optimization eliminates the islands

0.15-
0.10-

0.420 %,
0.415
0.410 1
0.405 -
0.400 -

0.395 A1

0.390 A

Z [m]

0.70

R [m]

0.75

0.05-
0.00-
—0.051
—0.101

—-0.15+,

After optimization

Boozer poloidal angle 6

(0)]

()]

o

w

N

[

o

|B| [Tesla] on surface s=0.5

= —

_—

1 2 3
Boozer toroidal angle ¢

o

11.044

-1.026
-1.008
-0.990
-0.972
-0.954
-0.936
-0.918

-0.900

Fourier amplitudes |B,, »| [Tesla]

102_

101_
100_

— m=0,
— m=0,
— m=0,
— m=0,

n = 0 (Background)

n = 0 (Quasiaxisymmetric)
n = 0 (Mirror)

n # 0 (Helical)

10—1_

10—2_/,/’/—’__—_—*

10—3_

10—4_,

1075 1

10—6_

0.0

7
SN ‘gf//

02 04

0.6 0.8 1.0

s = Normalized toroidal flux

Simsopt objective functions can be plugged into outside libraries

from turbo import TurboM
from simsopt import LeastSquaresProblem,

prob = LeastSquaresProblem([(vmec.aspect, 6, 1),
vmec.iota axis, 0.465, 1),
vmec.iota edge, 0.495, 1),

gs, 0, 1)1)

turbo = TurboM(prob.objective, ...)
turbo.optimize()

Simsopt is used for NYU derivative-based stochastic coil optimization

Perfect coil

\ coil

| As-built

Distribution of objective function
given coil shape errors

T T ‘ ‘
—— Deterministic
——— Stochastic (4 samples)

300 ’ —— Stochastic (1024 samples)
200
100 - =
0 -
\ \ \ \ \ \
0 0.5 1 1.5 2 2.5 3 3.5 4

Objective value 102

Wechsung, Giuliani, Stadler, et al
23

e \ision
e Examples
e Design

e Next steps

24

Design aspects

e Driver and infrastructure is in python.
e New compiled code is in C++, via pybind11.

e Fortran codes (e.g. VMEC, SPEC) interfaced via f90wrap.

25

A variety of geometric objects and B field types have been implemented

Curve subclasses:
CurveXYZFourier, CurveRZFourier, CurveHelical,
JaxCurveXYZFourier, RotatedCurve

Surface subclasses:
SurfaceRZFourier, SurfaceGarabedian,
SurfaceXYZFourier, SurfaceXYZTensorFourier

MagneticField subclasses:
BiotSavart, ToroidalField, CircularCoil, Dommaschk,
ScalarPotentialRZMagneticField, MagneticFieldSum

e Allinclude 1 or 2 derivatives.
e All caninclude code in C++ (for speed) & python (for plotting etc).
* All have caching to avoid repeated calculations.

* Example with automatic differentiation is included.

As an example of a new standalone physics module,
booz_xform has been re-written

A booz_xform

L1

wuutll

Search docs

Getting started

Theory and numerical implementation
Typical usage

Plotting

API Reference

Developer notes

Source code on GitHub

booz_xform documentation

booz_xform is a package for computing Boozer coordinates in toroidal magnetohydrodynamic
equilibria, including both stellarators and tokamaks. The package described here follows the same
algorithm as the fortran 77 code of the same name in Stellopt. However the package here is written
in C++, with python bindings. The package here is also written so as to allow input from equilibrium
codes other than VMEC, it is parallelized using OpenMP, and it includes functions for plotting
output. It is also equipped with unit and regression tests and continuous integration.

Contents

o Getting started

o Requirements
o Installation

= 1. Installation from PyPI

= 2. Installation from a local copy of the repository

= 3. Installation without pip from a local copy of the repository
= 4, Building outside of the python package system

e Theory and numerical implementation
o Theory

= 1. Determining the toroidal angle difference
= 2. Transforming other quantities

27

o Imnlementation detaile

Simsopt is being designed to handle both derivative-free and

derivative-based problems

e Curves, surfaces, and magnetic fields all
have 1-2 derivatives implemented.

e Curve types with automatic differentiation
are implemented.

e Stage-2 coil optimization with derivatives
(FOCUS) with simsopt classes works.

e Presently, simsopt handles naive
multiplication of Jacobians for the chain
rule.

-0.0291 -0.0208 -0.0124 -0.00407 0.00427 0.0126 0.0210 0.0293

e In process of updating the system for
defining problems with derivatives, to allow
user-controlled forward vs reverse-mode
chain rule.

28

Comprehensive tests are automatically run after every push to GitHub

& hiddenSymmetries / simsopt ®uUnwatch ~ 3 1 Star 12 % Fork 7
<> Code (*) Issues 12 1 Pull requests 6 ® Actions [] Projects 1 71 wiki (1) Security [~ Insights 51 Settings

@ top level import with bare simsopt installation fixed Cl #981 < Re-run jobs ~

@ ST Triggered via push 2 days ago Status Total duration Artifacts

ob @ mbkumar pushed -o- f8fb66d imports Success 28m 56s 2

obs

> 200 unit test cases

@ test (3.7.10, unit) <=

. ci.yml
@ test (3.7.10, integrated) B —
@ test (3.8.10, unit)
Matrix: test
@ test (3.8.10, integrated
@ 6 jobs completed @ coverage 1m 35s

@ test (3.9.5, unit) Show all jobs

@ test (3.9.5, integrated)

@ coverage

16 integrated tests 56

Several benchmark problems have been characterized.

Simsopt+spec, simsopt+vmec, and stellopt give the same answer.

github.com/landreman/stellopt scenarios

Boundary: Independent variables: {Rn, Zn}
R(6h(p)=1+0.1cost9+R11 cos(0—5(p),

Z(@,Q)): O_lsin9+zn Sln(H—S(p) Ob]eCtIVe function:

f= (lo — 0.41)2 +(Volume— 0.15)2

0.06 - 0.00909
0.04 - 0.00808
0.00707
0.02 - f(-0.0313, 0.0312)
~ 0.00606
= =7.91e-4
= 0.00 0.00505
N 0.00404
—-0.02 1
0.00303
—0.04 1 0.00202
_0.06 4 0.00101
0.00000

—0.050-0.025 0.000 0.025 0.050
ROc(1,1)

30

e \ision
e Examples
e Design

e Next steps

31

There are many ways you could contribute

e Parallel global optimization algorithms

e Multi objective algorithms

e Make sure the infrastructure can handle likely use cases
e Adjoint problems by E Paul & A Geraldini

e Set up container for HPC

e Write mgrid files, free boundary VMEC & SPEC

e Implement more measures of integrability

e Interface more physics objectives & codes

e Connect more equilibrium codes: GVEC, DESC, BIEST
e Guiding center trajectory integration

e Add more graphing tools

32

Closing questions

Any suggested modifications to the structure?

What to prioritize next?

Global optimization, multi-objective optimization, ...

What other use cases would you like to be able to handle?

Join the project!

e Development meetings: Mondays @ 9am NY, 3pm Europe
e simsopt slack workspace, #developers channel
e mattland@umd.edu

33

