Optimizing O((a/R)?) solutions of the
near-axis quasisymmetry equations




* Expansion about magnetic axis gives huge speed-up for solving MHD
equilibrium, reduces dimensionality of parameter space, & can guarantee
approximate quasisymmetry.

a/RK1



* Expansion about magnetic axis gives huge speed-up for solving MHD
equilibrium, reduces dimensionality of parameter space, & guarantees
approximate quasisymmetry.

* But, at O((a/R)?), most solutions are limited to small plasma volume:
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* Also we want other properties: MHD stability, enough rotational transform, etc.

= Need to optimize the near-axis solutions.



Near-axis stellarator solutions need optimization

Most near-axis solutions We want to find the rare
look like this: solutions like this:




Optimizing near-axis stellarator solutions

* Parameter space is 8D - 12D: Fourier modes of axis shape + 2 scalars.
* Objective function is fast to compute (~ 1 ms).

* Multiple competing objectives and constraints.

* Optima are extremely narrow.

* (Gradients not available now. Finite-difference isn’t too bad, since not many
dimensions.

* Don’t know bounds on parameters. Short-wavelength modes in axis shape are
<<1, but not sure how small exactly.

Ro(¢) (m) =1+ 0.1700 cos(4¢) + 0.01804 cos(8¢) + 0.001409 cos(12¢)
+ 0.00005877 cos(16¢),
20(¢) (m) = 0.1583 sin(4¢) + 0.01820 sin(8¢) + 0.001548 sin(12¢)
+ 0.00007772 sin(16¢),



Multiple objectives/constraints

Many could be considered either an objective or inequality constraint.

Large r. (Minor radius at which singularity occurs)

[ota > 0.4 0.05 -
V” < 0 (“magnetic well” for MHD stability) E 0.00 -
R > 0.3 <R> (Space for coils in the donut hole) ~0.05 1
Elongation < 8 ~0.101

Small B, (deviation from quasisymmetry)
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Large Lyg, Lyyp (scale lengths in magnetic field, proxy for coil simplicity & distance)

Small X;, Y5, X3, Y5 (high-order terms in surface shapes)

All butiota & V” are functions of toroidal angle.




Optima are extremely narrow

Ro(¢) (m) =1+ 0.1700 cos(4¢) + 0.01804 cos(8¢) + 0.001409 cos(12¢)
+0.00005877 cos(16¢),
20(¢) (m) = 0.1583 sin(4¢) + 0.01820 sin(8¢) + 0.001548 sin(12¢)
+0.00007772 sin(166),
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Brute-force searching can generate many starting points for optimization

Summary of scan results:
Configurations attempted:

crude RO check:
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iota:
elongation:
L grad B:
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(fractions in parentheses)
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384 cores for 30 minutes. Averaged 0.4 ms / configuration evaluated.



r singularity

Data: /Users/mattland/gsc/gsc_out.nfp4_double.nc

color = B20 variation
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Plot generated by /Users/mattland/gsc/bin/qscPlotScan
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Several implementations available

https://github.com/landreman/gsc
e C++

* Can do brute-force searches with MPI

* Can do optimization via GSL

https://github.com/landreman/pyQSC
* Pure python
* Much slower than C++, but easy to install from PyPI (pip install gsc)
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Questions

What is a good workflow? E.g.
1. Brute-force search.
Another brute-force search with tighter bounds.
Extract the non-dominated points.
For each such point, now scan over the weights for each objective.
Optimize.
From the resulting set, extract the non-dominated points.

o Ul W

Recommendations for algorithms or libraries to use?

11



