
Optimizing	O((a/R)2)	solutions	of	the	
near-axis	quasisymmetry equations

• Expansion	about	magnetic	axis	gives	huge	speed-up	for solving MHD
equilibrium,	reduces	dimensionality	of	parameter	space,		&	can	guarantee	
approximate	quasisymmetry.

R

a

a /	R≪	1

• Expansion	about	magnetic	axis	gives	huge	speed-up	for solving MHD
equilibrium,	reduces	dimensionality	of	parameter	space,		&	guarantees	
approximate	quasisymmetry.

• But, at	O((a/R)2),	most	solutions	are	limited	to	small	plasma	volume:

• Also	we	want	other	properties:	MHD	stability,	enough	rotational	transform,	etc.

⇒			Need to	optimize	the	near-axis	solutions.

Near-axis stellarator solutions need optimization

Most	near-axis	solutions	
look	like	this:

We	want	to	find	the	rare	
solutions	like	this:

• Parameter	space	is	8D	– 12D:	Fourier	modes	of	axis	shape	+	2	scalars.

• Objective	function	is	fast	to	compute	(~	1	ms).

• Multiple	competing	objectives	and	constraints.

• Optima are extremely narrow.

• Gradients not available	now.	Finite-difference isn’t too bad,	since	not	many	
dimensions.

• Don’t know bounds on parameters. Short-wavelength	modes	in	axis	shape	are	
<<1,	but	not	sure	how	small	exactly.

Optimizing near-axis stellarator solutions

Multiple objectives/constraints

6

Many	could	be	considered	either	an	objective	or	inequality	constraint.

Large	rc (Minor	radius	at	which	singularity	occurs)

Iota	> 0.4

V’’	<	0	(“magnetic	well”	for	MHD	stability)

R	>	0.3	<R>	(Space	for	coils	in	the	donut	hole)

Elongation	<	8

Small	B20 (deviation from quasisymmetry)

Large L∇B, L∇∇B (scale lengths in magnetic	field,	proxy	for	coil	simplicity	&	distance)

Small	X2,	Y2,	X3,	Y3 (high-order	terms	in	surface	shapes)

All	but	iota	&	V’’	are	functions	of	toroidal	angle.

Optima are extremely narrow

7

Round	to	3	digits Drop	last	mode

Original

rc =	0.29

rc =	0.18 rc =	0.067

Brute-force searching can generate many starting points for optimization

Summary of scan results: (fractions in parentheses)
Configurations attempted: 1587481591
Rejected due to crude R0 check: 0 (0)
Rejected due to min_R0: 0 (0)
Rejected due to max curvature: 21579484 (0.01359)
Rejected due to min iota: 0 (0)
Rejected due to max elongation: 1352349439 (0.8519)
Rejected due to min L_grad_B: 31390372 (0.01977)
Rejected due to B20 variation: 181991926 (0.1146)
Rejected due to min L_grad_grad_B: 142016 (8.946e-05)
Rejected due to d2_volume_d_psi2: 0 (0)
Rejected due to DMerc: 0 (0)
Rejected due to r_singularity: 16018 (1.009e-05)
Total rejected: 1587469255 (1)
Kept: 12336 (7.771e-06)

384	cores	for	30	minutes.		Averaged	0.4	ms /	configuration	evaluated.

9

Several implementations available

10

https://github.com/landreman/qsc
• C++
• Can	do	brute-force	searches	with	MPI
• Can do optimization via GSL

https://github.com/landreman/pyQSC
• Pure python
• Much	slower	than	C++,	but	easy	to	install	from	PyPI (pip	install qsc)

Questions

11

• What	is	a	good	workflow?	E.g.
1. Brute-force	search.
2. Another brute-force	search	with	tighter	bounds.
3. Extract	the	non-dominated	points.
4. For	each	such	point,	now	scan	over	the	weights	for	each	objective.
5. Optimize.
6. From	the	resulting	set,	extract	the	non-dominated	points.

• Recommendations for algorithms or libraries to use?

