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Goal: Using rapid calculations high-aspect-ratio approximate equilibria

instead of full 3D equilibria, survey all of stellarator shape-space

Previously we demonstrated that you can generate new quasisymmetric & omnigenous

Conflguratlons & survey parameter space. [Landreman & Sengupta, JPP (2019)]
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Takes only ~ 1-2 ms to compute & diagnose an equilibrium.

Here: what other properties can we diagnose at this speed?


https://doi.org/10.1017/S0022377819000783

Figures of merit we can now compute near the magnetic axis

e Magnetic well
e Mercier & Glasser-Greene-Johnson stability criteria

e VB and VVB tensors

e Departure from quasisymmetry

Aspect ratio at which surfaces become singular.

Geometry quantities for gyrokinetic stability /turbulence.
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Talk CO08.00003 by Rogerio Jorge et al, Monday 2:24pm & arXiv:2008.09057



http://arxiv.org/pdf/2008.09057.pdf

Here we demonstrate these figures of merit using 5 configurations

[Landreman & Sengupta, JPP (2019)]
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Magnetic well

Related to MHD interchange stability.
Dominant term in Mercier’s criterion near the axis at low f3.
Usually included in stellarator design (W7-X, HSX, LHD, etc)

Various definitions out there:
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Magnetic well can be computed directly from the near-axis expansion

Expansion agrees with VMEC

» Section 5.1 (QA)

Section 5.2 (QA)

Section 5.3 (QA)

Section 5.4 (QH) » Near-axis expansion
Section 5.5 (QH) / 1000 =—e— VMEC

For quasisymmetry:
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e Magnetic well

e Mercier & Glasser-Greene-Johnson stability criteria
e VB and VVB tensors

e Departure from quasisymmetry

e Aspectratio at which surfaces become singular.



Mercier criterion

Ideal MHD stability to radially localized perturbations (basically interchanges).

Mercier (1964): {s(;d(l/l)ﬂ-B-Eds}z {ss dp d*V _[| |d5}JB ds
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Mercier stability can now be computed directly from the near-axis expansion
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Our expression for Mercier stability near the axis has been extensively

benchmarked with VMEC
Section 5.5 1e6 R e
configuration: e
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The criterion for resistive stability by Glasser, Greene, & Johnson [1975] turns out to be
identical to Mercier’s to the accuracy of our expansion.

[Landreman & Jorge, JPP (2020)]
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e Magnetic well

e Mercier & Glasser-Greene-Johnson stability criteria
e VB and VVB tensors

e Departure from quasisymmetry

e Aspectratio at which surfaces become singular.



VB and VVB tensors

e Targeting VB enables direct coil optimization for quasisymmetry.
|Giuliani et al, arXiv:2010.02033 (2020)]

e These tensors contain all possible scale lengths in the 15t and 2™
derivatives of the field. These lengths should probably be large in
order to make this B with distant coils.
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At a distance R from an infinite straight wire, Ly = Lyyz; = R.

12


http://arxiv.org/pdf/2010.02033.pdf

Result for VB near the magnetic axis
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Scale lengths in the magnetic field, normalized to Rg

2 “easy" —— Purely toroidal field
L. —B 1.0 —— Section 5.1
VB VB:VB . Sect?on 5.2
0.8 - o . —— Section 5.3
< —— Section 5.4
E —— Section 5.5
4B ~ 0.6 1
Lyyp = ; ©
2 o
Y (VVB) < 04
i,j k=1 Lk =
0.2
= = . - LVB
031 =4=0 > — Lyvs
0.2 —::~/5 @ 0.0
Section 5.5 _-w-wof o 1 2 3 5 6
) P
hasvery E & Q
strong 01 _ _
shaping 02| A\ 0 Is there anything else useful we can do with these tensors?
-0.3 1 . .
Y éj - Are there other good measures of B-field complexity?

R [m] 14



e Magnetic well

e Mercier & Glasser-Greene-Johnson stability criteria
e VB and VVB tensors

e Departure from quasisymmetry

e Aspectratio at which surfaces become singular.



If we strive for QS to O(r!), we can compute the symmetry-breaking error at O(r?).
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If we strive for QS to O(r!), we can compute the symmetry-breaking error at O(r?).
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e Magnetic well

e Mercier & Glasser-Greene-Johnson stability criteria
e VB and VVB tensors

e Departure from quasisymmetry

e Aspectratio at which surfaces become singular.



Limiting factor for the aspect ratio: above some r, surfaces are no

longer smooth & nested

— r=0.11
0.10 - 2 kinds of singularity —— =% Minimize r subject to \/E =0.
— r=0.08
0.05 - — :8:8; L=r+ ;L\/;
r=0.05
— r=0.04
N 0.00 + r=0.03
- 1r=0.02
— r=0.01 a—Lzo — g:()
~0.05 - oA
~0.10 1 a_L:() — &:0
06 00
080 085 090 095 100 1.05 110 115
¢ ¢
_0X OX y ox 0
I=9r 90" 90 oL g _ 0

Uninteresting: — =0 = 1+A4
or or
19



How can we compute the aspect ratio at which surfaces are no longer

smooth & nested?

System of equations to solve: \/E -0 NG _ 0 8\/5 ~0

Form of Jacobian for
O(r?) construction:

\/§=r|:90(¢)+r91 (9,(p)+rzgz(G,(p)+r3g3(9,(p)+r4g4 (9;(P):|
where 9 (9,¢)= J1s (QD)Sin9+g1C ((p)C059
9:(6.9)= 920(@)+ 2. (@ )sin26 + g..(¢)cos 26

93(9,(p) = g351(¢)sin9+g353((p)sin 39+g3C1((p)c059+ggc3((p)c0539

* Could solve with Newton method, but need good initial guess or else not robust.
* Worried most about small-r solutions, so may be reasonable to set g3=g4,=07?

* Then system has analytic solution. Can use as initial guess for Newton with g3 & g,.
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IS approach ot generating initial guesses ror Newton iteration
works sometimes but not always

Section 5.5: Section 5.2: e
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Questions for future work

e |sthere anything else useful we can do with these VB and VVB tensors?

e Are there other measures of B field complexity / coil difficulty we can
rapidly compute from a near-axis solution?

e |f we strive for QS to O(r?), can we compute the symmetry-breaking error
at O(r3)? (So much algebra!l!)

e |sthere a more robust way to compute the minimum aspect ratio?
e Does this singularity measure reflect the equilibrium S limit?

e What else can we compute in < a few ms?
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