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Goal: Using rapid calculations high-aspect-ratio approximate equilibria 
instead of full 3D equilibria, survey all of stellarator shape-space
Previously	we	demonstrated	that	you	can	generate	new	quasisymmetric &	omnigenous

configurations	&	survey	parameter	space.	[Landreman &	Sengupta,	JPP	(2019)]
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Rotational	transform

Color	=	N =	#	of	times	B contours	rotate	around	magnetic	axis
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Takes	only	~	1-2	ms to	compute	&	diagnose	an	equilibrium.

Here:	what	other	properties	can	we	diagnose	at	this	speed?

https://doi.org/10.1017/S0022377819000783


Figures of merit we can now compute near the magnetic axis

• Magnetic	well

• Mercier	&	Glasser-Greene-Johnson	stability	criteria

• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry

• Aspect	ratio	at	which	surfaces	become	singular.

• Geometry	quantities	for	gyrokinetic	stability/turbulence.

Talk	CO08.00003	by	Rogerio Jorge	et	al,	Monday	2:24pm	&	arXiv:2008.09057

http://arxiv.org/pdf/2008.09057.pdf


Here we demonstrate these figures of merit using 5 configurations
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Section	5.1 Section	5.2 Section	5.3 Section	5.4 Section	5.5

ι~0.4 ι~0.4
ι~1.0,
ιvac~0.2 ι~1.1 ι~0.8

[Landreman &	Sengupta,	JPP	(2019)]
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https://doi.org/10.1017/S0022377819000783


Magnetic well
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• Related	to	MHD	interchange	stability.

• Dominant	term	in	Mercier’s	criterion	near	the	axis	at	low	β.

• Usually	included	in	stellarator	design	(W7-X,	HSX,	LHD,	etc)

• Various	definitions	out	there:

		
′′V = d

2V
dψ 2 ,		want	<	0.

		
Ŵ = V

B2

d B2
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W = V

B2
d
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2µ0p+B2 ,			want	>	0.

		
V = Volume	inside	flux	surface
2πψ =Toroidal	flux



Magnetic well can be computed directly from the near-axis expansion

6

		
′′V =

16π 2 G0
B03

3
4η

2 − B20
B0

− µ0p2
2B02

⎡

⎣
⎢

⎤

⎦
⎥+O ε 2( )

For	quasisymmetry:

where

		

B r ,θ ,ϕ( ) = B0 + rηB0 cosθ
+r2 B20 +B2s sin2θ +B2c cos2θ⎡⎣ ⎤⎦+O ε 3( )

		B= β∇ψ + I ψ( )∇θ +G ψ( )∇ϕ
		p r( ) = p0 + r2p2 +O ε 4( )

[Landreman &	Jorge,	JPP	(2020)]

Expansion	agrees	with	VMEC

https://doi.org/10.1017/S002237782000121X


Outline

• Magnetic	well
• Mercier	&	Glasser-Greene-Johnson	stability	criteria
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



Mercier criterion
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Ideal	MHD	stability	to	radially	localized	perturbations	(basically	interchanges).

Mercier	(1964):
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Equivalent	expression	in	Bauer,	Betancourt,	&	Garabedian (1984):
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Φ = poloidal	flux,				Ψ = toroidal	flux,			Ξ= J−BdItor
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Mercier stability can now be computed directly from the near-axis expansion

9[Landreman &	Jorge,	JPP	(2020)]

Section	5.4	
configuration

Need	to	go	higher	than	
O(r2)	in	expansion	to	get	
small	Dshear and	Dcurr terms.

https://doi.org/10.1017/S002237782000121X


Our expression for Mercier stability near the axis has been extensively 
benchmarked with VMEC

10[Landreman &	Jorge,	JPP	(2020)]

Section	5.5	
configuration:

The	criterion	for	resistive stability	by	Glasser,	Greene,	&	Johnson	[1975]	turns	out	to	be	
identical	to	Mercier’s	to	the	accuracy	of	our	expansion.

Plasma	pressure

https://doi.org/10.1017/S002237782000121X


Outline

• Magnetic	well
• Mercier	&	Glasser-Greene-Johnson	stability	criteria
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



∇B and ∇∇B tensors
• Targeting	∇B	enables	direct	coil	optimization	for	quasisymmetry.																												
[Giuliani	et	al,	arXiv:2010.02033	(2020)]

• These	tensors	contain	all	possible	scale	lengths	in	the	1st and	2nd

derivatives	of	the	field.	These	lengths	should	probably	be	large	in	
order	to	make	this	Bwith	distant	coils.
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L∇B = B

2
∇B :∇B

			

L∇∇B =
4B

∇∇B( )
i , j ,k

2

i , j ,k=1

3

∑

		At	a	distance		R		from	an	infinite	straight	wire,		L∇B = L∇∇B = R.

http://arxiv.org/pdf/2010.02033.pdf


Result for ∇B near the magnetic axis
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∇B =
B0

′ℓ
′X1cY1s + ιX1cY1c( )nn+ − ′ℓ τ −ιX1c

2( )bn⎡
⎣

       + ′Y1cY1s − ′Y1sY1c + ′ℓ τ + ιY1s
2 + ιY1c

2( )nb+ X1c ′Y1s −ιX1cY1c( )bb⎤⎦ +κ B0 tn+ nt( )

   
x r,θ ,ϕ( ) = x0 ϕ( ) + rX1c ϕ( )cosθn+ r Y1c ϕ( )cosθ +Y1s ϕ( )sinθ⎡⎣ ⎤⎦b+O r 2( )

  ′ℓ = axis length( ) / 2π( )  Frenet frame: t,n,b( )   ′Y1s = dY1s / dϕ

where	the	position	vector	is



These tensor norms seem correlated with intuition for how hard 
these configurations are to shape
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“hard”

“easy”

Section	5.5
has	very	
strong	
shaping Is	there	anything	else	useful	we	can	do	with	these	tensors?	

Are	there	other	good	measures	of	B-field	complexity?



Outline

• Magnetic	well
• Mercier	&	Glasser-Greene-Johnson	stability	criteria
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



If we strive for QS to O(r1), we can compute the symmetry-breaking error at O(r2).

16

B	[T]



If we strive for QS to O(r1), we can compute the symmetry-breaking error at O(r2).

17

		∝r2

		∝r2cos2θ

		∝r2sin2θ

		∝a2

Next	step:	If	we	strive	
for	QS	to	O(r2),	can	
we	compute	the	
symmetry-breaking	
error	at	O(r3)?



Outline

• Magnetic	well
• Mercier	&	Glasser-Greene-Johnson	stability	criteria
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



Limiting factor for the aspect ratio: above some r, surfaces are no 
longer smooth & nested
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		Minimize	r 	subject	to	 g =0.

	L= r +λ g

		
∂L
∂λ

=0		⇒ 		 g =0

		
∂L
∂θ

=0		⇒ 		 ∂ g
∂θ

=0

		
∂L
∂ϕ

=0		⇒ 		 ∂ g
∂ϕ

=0

Uninteresting:	 ∂L
∂r

=0		⇒ 		1+λ ∂ g
∂r

=0			
g = ∂x

∂r
⋅ ∂x
∂θ

× ∂x
∂ϕ

=0

2	kinds	of	singularity
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How can we compute the aspect ratio at which surfaces are no longer 
smooth & nested?

		 g =0 		
∂ g
∂θ

=0
		
∂ g
∂ϕ

=0

		 g = r g0 ϕ( )+ rg1 θ ,ϕ( )+ r2g2 θ ,ϕ( )+ r3g3 θ ,ϕ( )+ r4g4 θ ,ϕ( )⎡⎣ ⎤⎦

		g1 θ ,ϕ( ) = g1s ϕ( )sinθ + g1c ϕ( )cosθ

		g2 θ ,ϕ( ) = g20 ϕ( )+ g2s ϕ( )sin2θ + g2c ϕ( )cos2θ

		g3 θ ,ϕ( ) = g3s1 ϕ( )sinθ + g3s3 ϕ( )sin3θ + g3c1 ϕ( )cosθ + g3c3 ϕ( )cos3θ

• Could	solve	with	Newton	method,	but	need	good	initial	guess	or	else	not	robust.

• Worried	most	about	small-r solutions,	so	may	be	reasonable	to	set	g3=g4=0?
• Then	system	has	analytic	solution.	Can	use	as	initial	guess	for	Newton	with	g3 &	g4.

Form	of	Jacobian	for	
O(r2)	construction:

…

where

System	of	equations	to	solve:



This approach of generating initial guesses for Newton iteration 
works sometimes but not always
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Section	5.5:
Works	well

Section	5.2:
Not	so	well

Newton	
converges		to	
machine	
precision

Newton	fails	
to	converge



Questions for future work
• Is there anything else useful we can do with these ∇B and ∇∇B tensors?

• Are there other measures of B field complexity / coil difficulty we can 
rapidly compute from a near-axis solution?

• If we strive for QS to O(r2), can we compute the symmetry-breaking error 
at O(r3)? (So much algebra!!)

• Is there a more robust way to compute the minimum aspect ratio?

• Does this singularity measure reflect the equilibrium " limit?

• What else can we compute in < a few ms?
22


