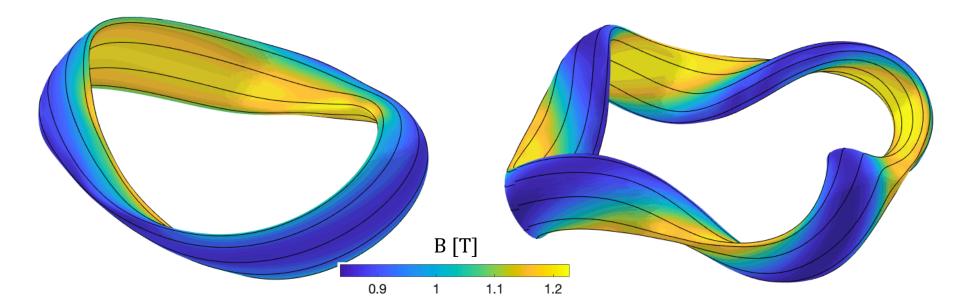
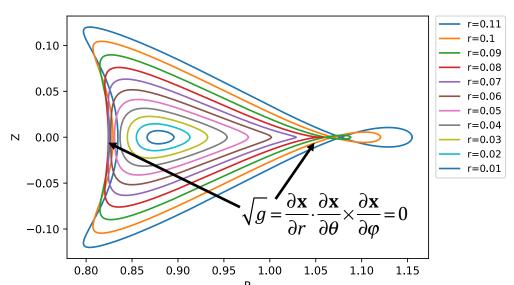
Update on near-axis construction for quasisymmetry

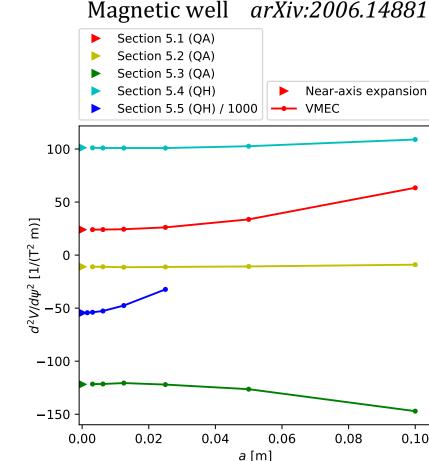
- 1. New quantities we can now calculate from a solution of the Garren-Boozer equations
- 2. Suggested research questions



Things we can now compute from a solution of the Garren-Boozer equations (1)

- Magnetic well
- Mercier stability criterion
- Aspect ratio at which surfaces become singular.





Things we can now compute from a solution of the Garren-Boozer equations (2)

• $\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors (large norm = bad?)

• Symmetry-breaking B at $O(r^2)$ for $O(r^1)$

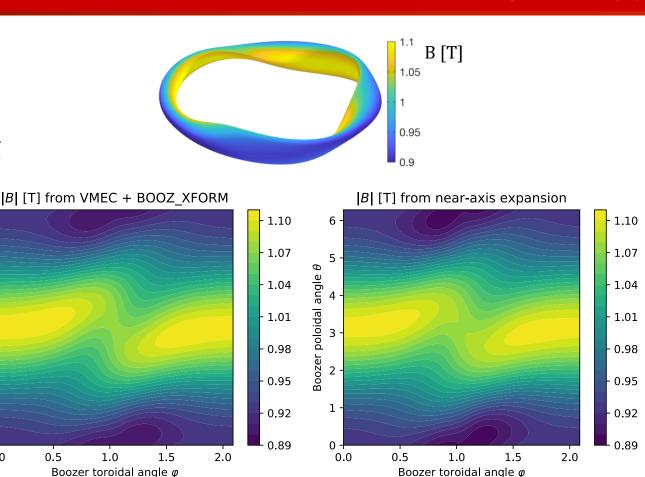
Boozer poloidal angle θ

0.0

0.5

quasisymmetry

 Geometry in gyrokinetic equation (Jorge)



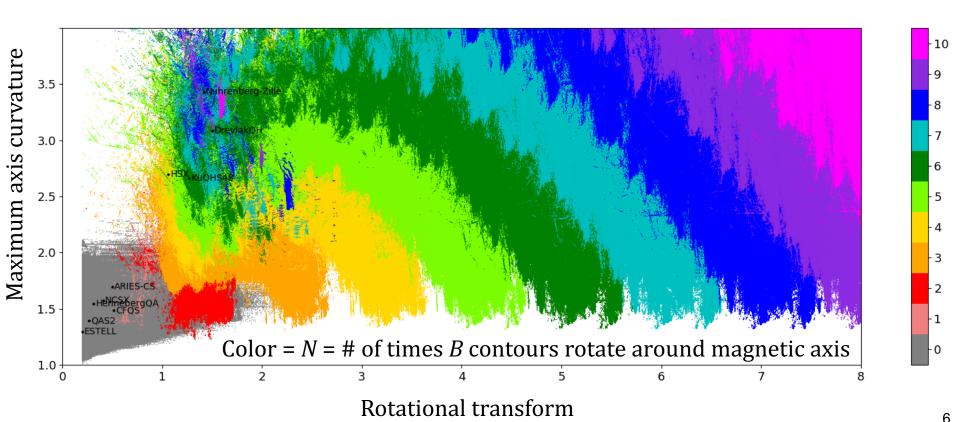
Good problems to look at next

- Garren-Boozer equations for O(r²) quasisymmetry:
 - What is a good practical numerical procedure to solve for the axis shape?
 - Understand the set of solutions.
 - If we allow small departure from symmetry, does that expand the set of solutions?
 - To what extent are "real" QS configurations (e.g. HSX) approximately solutions?
 - Get quasisymmetry at an off-axis surface by balancing B_{20} against B_0 at some r.
 - Understand why stellarators have concave bean shapes.
 - Compute the symmetry-breaking B_3 .
- How to handle sqrt(r) in bootstrap current?
- Bootstrap current 'geometric factor' for non-quasisymmetric configurations.
- $\varepsilon_{\rm eff}$ for non-quasisymmetric configurations.
- O(r²) omnigenity (building on Plunk-Landreman-Helander)
- Other ways to extrapolate outward from the axis?
- Generalizations like "Property X", pseudosymmetry?

Extra slides

What other quantities can we compute in < 1ms from the near-axis expansion?

Goal: Filter out points from this database that are unacceptable for some reason.



Magnetic well

- Related to MHD interchange stability.
- Dominant term in Mercier's criterion near the axis at low β.
- Usually included in stellarator design (W7-X, HSX, LHD, etc)
- Various definitions out there:

$$V'' = \frac{d^2V}{dw^2}, \text{ want < 0.}$$

$$\hat{W} = \frac{V}{\langle B^2 \rangle} \frac{d\langle B^2 \rangle}{dV}$$
, want > 0.

 $2\pi\psi$ = Toroidal flux

V =Volume inside flux surface

$$W = \frac{V}{\langle B^2 \rangle} \frac{d}{dV} \langle 2\mu_0 p + B^2 \rangle, \text{ want > 0.}$$

Magnetic well can be computed directly from the near-axis expansion

iviagnetic well carried computed directly from the flear-axis expansion

For quasisymmetry:

Section 5.1 (QA)

$$V'' = \frac{16\pi^2 |G_0|}{B_0^3} \left[\frac{3}{4} \overline{\eta}^2 - \frac{B_{20}}{B_0} - \frac{\mu_0 p_2}{2B_0^2} \right] + O(\varepsilon^2)$$

$$\text{where}$$

$$B(r,\theta,\varphi) = B_0 + r \overline{\eta} B_0 \cos \theta$$

$$+ r^2 \left[B_{20} + B_{2s} \sin 2\theta + B_{2c} \cos 2\theta \right] + O(\varepsilon^3)$$

$$B = \beta \nabla \psi + I(\psi) \nabla \theta + G(\psi) \nabla \varphi$$

$$p(r) = p_0 + r^2 p_2 + O(\varepsilon^4)$$

$$\text{Near-axis expansion}$$

$$\text{$$

Outline

- Magnetic well
- Mercier stability criterion
- $\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors
- Departure from quasisymmetry
- Aspect ratio at which surfaces become singular.

Mercier criterion

Ideal MHD stability to radially localized perturbations (basically interchanges).

Mercier (1964):
$$M_{G} = \left[\frac{s_{G}}{2} \frac{d(1/|l|)}{d\Phi} + \int \frac{\mathbf{B} \cdot \mathbf{\Xi} \ dS}{|\nabla \Phi|^{3}} \right]^{2} + \left[\frac{s_{l}s_{\psi}}{l^{2}} \frac{dp}{d\Phi} \frac{d^{2}V}{d\Psi^{2}} - \int \frac{|\mathbf{\Xi}|^{2}dS}{|\nabla \Phi|^{3}} \right] \int \frac{B^{2}dS}{|\nabla \Phi|^{3}} > 0$$

$$\Phi = \text{poloidal flux}, \quad \Psi = \text{toroidal flux}, \quad \Xi = \mathbf{J} - \mathbf{B} \frac{dI_{tor}}{d\Psi}, \quad s_G = \text{sgn}(G), \quad s_{\psi} = \text{sgn}(\Psi), \quad s_{\iota} = \text{sgn}(\iota)$$

Bauer, Betancourt, & Garabedian (1984):

$$M_{B} = \frac{1}{4} \left(\frac{d\iota}{d\Psi} \right)^{2} - s_{G} \frac{d\iota}{d\Psi} \iint \frac{d\theta d\varphi \left| \sqrt{g} \right| \mathbf{B} \cdot \Xi}{\left| \nabla \Psi \right|^{2}} + \frac{dp}{d\Psi} \left[s_{\psi} \frac{d^{2}V}{d\Psi^{2}} - \frac{dp}{d\Psi} \iint \frac{d\theta d\varphi \left| \sqrt{g} \right|}{B^{2}} \right] \iint \frac{d\theta d\varphi \left| \sqrt{g} \right| B^{2}}{\left| \nabla \Psi \right|^{2}} + \left[\iint \frac{d\theta d\varphi \left| \sqrt{g} \right| \mathbf{B} \cdot \mathbf{J}}{\left| \nabla \Psi \right|^{2}} \right]^{2} - \left[\iint \frac{d\theta d\varphi \left| \sqrt{g} \right| B^{2}}{\left| \nabla \Psi \right|^{2}} \right] \left[\iint \frac{d\theta d\varphi \left| \sqrt{g} \right| \left(\mathbf{B} \cdot \mathbf{J} \right)^{2}}{\left| \nabla \Psi \right|^{2}} \right] > 0$$

All statements of Mercier stability Rogerio & I can find do not respect parity transformations

$$\mathbf{B} = \frac{1}{2\pi} \left(\nabla \Psi \times \nabla \theta + \nabla \varphi \times \nabla \Phi \right) = \beta \nabla \psi + I \nabla \theta + G \nabla \varphi$$

Parity transformation 1: Flip signs of Ψ , θ , β , I, ι . Unchanged: φ , G, Φ .

Parity transformation 2: Flip signs of φ , G, Φ , ι . Unchanged: Ψ , θ , β , I.

Mercier (1964):
$$M_{G} = \left[\frac{1}{2} \frac{d(1/\iota)}{d\Phi} + \int \frac{\mathbf{B} \cdot \mathbf{\Xi} \, dS}{\left|\nabla \Phi\right|^{3}}\right]^{2} + \left[\frac{1}{\iota^{2}} \frac{dp}{d\Phi} \frac{d^{2}V}{d\Psi^{2}} - \int \frac{\left|\mathbf{\Xi}\right|^{2} dS}{\left|\nabla \Phi\right|^{3}}\right] \int \frac{B^{2}dS}{\left|\nabla \Phi\right|^{3}} > 0$$

$$\Phi = \text{poloidal flux}, \quad \Psi = \text{toroidal flux}, \quad \Xi = \mathbf{J} - \mathbf{B} \frac{dI_{tor}}{d\Psi}, \quad s_G = \text{sgn}(G), \quad s_{\psi} = \text{sgn}(\Psi), \quad s_{\iota} = \text{sgn}(\iota)$$

Invariant:
$$M_{G} = \left[\frac{s_{G}}{2} \frac{d(1/|\iota|)}{d\Phi} + \int \frac{\mathbf{B} \cdot \Xi \, dS}{\left| \nabla \Phi \right|^{3}} \right]^{2} + \left[\frac{s_{\iota} s_{\psi}}{\iota^{2}} \frac{dp}{d\Phi} \frac{d^{2}V}{d\Psi^{2}} - \int \frac{\left| \Xi \right|^{2} dS}{\left| \nabla \Phi \right|^{3}} \right] \int \frac{B^{2} dS}{\left| \nabla \Phi \right|^{3}} > 0$$

All statements of Mercier stability Rogerio & I can find do not respect parity transformations

$$\mathbf{B} = \frac{1}{2\pi} \left(\nabla \Psi \times \nabla \theta + \nabla \varphi \times \nabla \Phi \right) = \beta \nabla \psi + I \nabla \theta + G \nabla \varphi$$

Parity transformation 1: Flip signs of Ψ , θ , β , I, ι . Unchanged: φ , G, Φ .

Parity transformation 2: Flip signs of φ , G, Φ , ι . Unchanged: Ψ , θ , β , I.

Is there a slick way to get a parity-transformation-invariant form of Mercier's criterion?

$$\frac{2 a \Psi}{|\nabla \Phi|} |\nabla \Phi| |\nabla \Phi| |\nabla \Phi|$$

$$\Phi = \text{poloidal flux, } \Psi = \text{toroidal flux, } \Xi = \mathbf{J} - \mathbf{B} \frac{dI_{tor}}{d\Psi}, \quad s_G = \text{sgn}(G), \quad s_{\psi} = \text{sgn}(\Psi), \quad s_{\iota} = \text{sgn}(\iota)$$

Invariant:
$$M_{G} = \left[\frac{s_{G}}{2} \frac{d\left(1/\left|\iota\right|\right)}{d\Phi} + \int \frac{\mathbf{B} \cdot \Xi \ dS}{\left|\nabla\Phi\right|^{3}}\right]^{2} + \left[\frac{s_{\iota}s_{\psi}}{\iota^{2}} \frac{dp}{d\Phi} \frac{d^{2}V}{d\Psi^{2}} - \int \frac{\left|\Xi\right|^{2}dS}{\left|\nabla\Phi\right|^{3}}\right] \int \frac{B^{2}dS}{\left|\nabla\Phi\right|^{3}} > 0$$

Outline

- Magnetic well
- Mercier stability criterion
- $\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors
- Departure from quasisymmetry
- Aspect ratio at which surfaces become singular.

$\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors

• Andrew Giuliani targets $\nabla \mathbf{B}$ in his direct coil optimization for QS.

• These tensors contain all possible scale lengths in the 1st and 2nd derivatives of the field. These should probably be long in order to make this **B** with distant coils.

$$L_{\nabla B} = B \sqrt{\frac{2}{\nabla \mathbf{B} : \nabla \mathbf{B}}} \qquad L_{\nabla \nabla B} = \sqrt{\frac{4B}{\sqrt{\sum_{i,j,k=1}^{3} (\nabla \nabla \mathbf{B})_{i,j,k}^{2}}}}$$

At a distance R from an infinite straight wire, $L_{\nabla B} = L_{\nabla \nabla B} = R$.

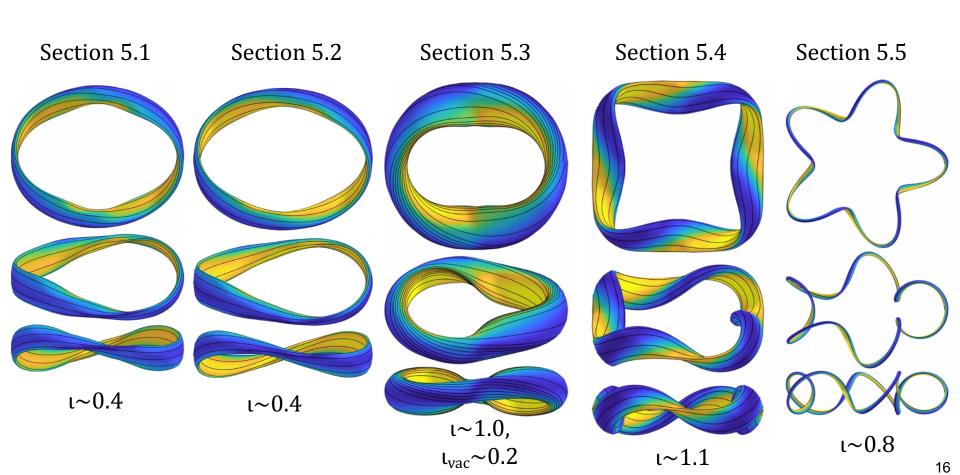
Garren-Boozer **∇B**

$$\nabla \mathbf{B} = \frac{B_{0}}{\ell'} \Big[\Big(X'_{1c} Y_{1s} + \iota X_{1c} Y_{1c} \Big) \mathbf{n} \mathbf{n} + \Big(-\ell' \tau - \iota X_{1c}^{2} \Big) \mathbf{b} \mathbf{n} + \Big(Y'_{1c} Y_{1s} - Y'_{1s} Y_{1c} + \ell' \tau + \iota Y_{1s}^{2} + \iota Y_{1c}^{2} \Big) \mathbf{n} \mathbf{b} + \Big(X_{1c} Y'_{1s} - \iota X_{1c} Y_{1c} \Big) \mathbf{b} \mathbf{b} \Big] + \kappa B_{0} \Big(\mathbf{t} \mathbf{n} + \mathbf{n} \mathbf{t} \Big) \Big]$$

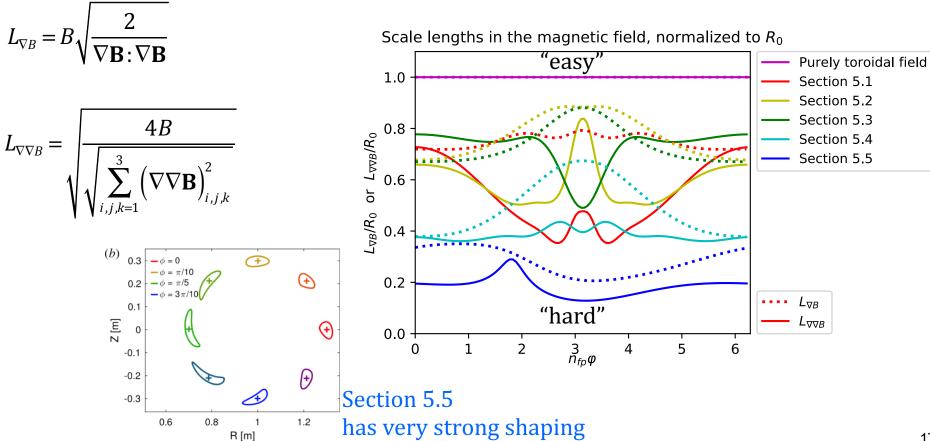
Frenet frame:
$$(\mathbf{t}, \mathbf{n}, \mathbf{b})$$
 $\ell' = (\text{axis length}) / (2\pi)$ $Y'_{1s} = dY_{1s} / d\varphi$

$$\mathbf{x}(r,\theta,\varphi) = \mathbf{x}_{0}(\varphi) + rX_{1c}(\varphi)\cos\theta\mathbf{n} + r\left[Y_{1c}(\varphi)\cos\theta + Y_{1s}(\varphi)\sin\theta\right]\mathbf{b} + O(r^{2})$$

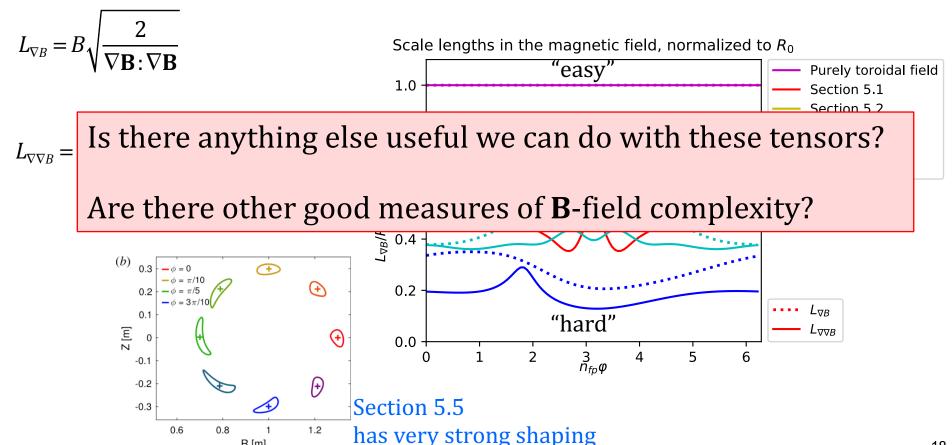
5 configurations to compare



These tensor norms seem correlated with intuition for how hard these configurations are to shape



These tensor norms seem correlated with intuition for how hard these configurations are to shape

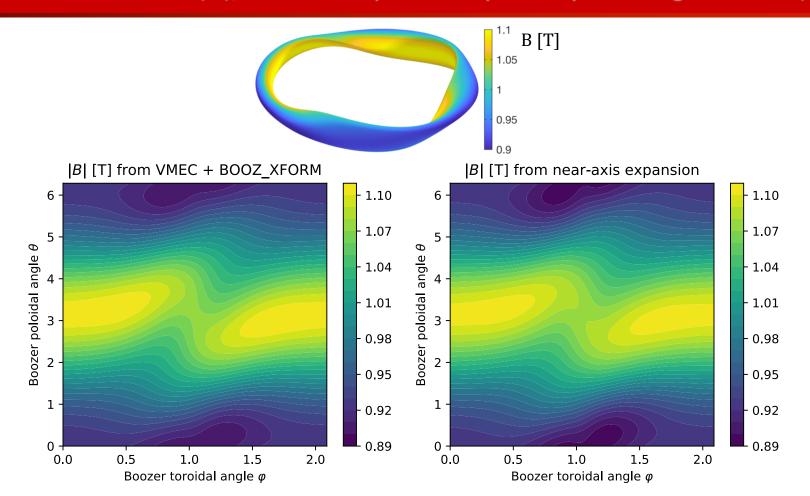


R [m]

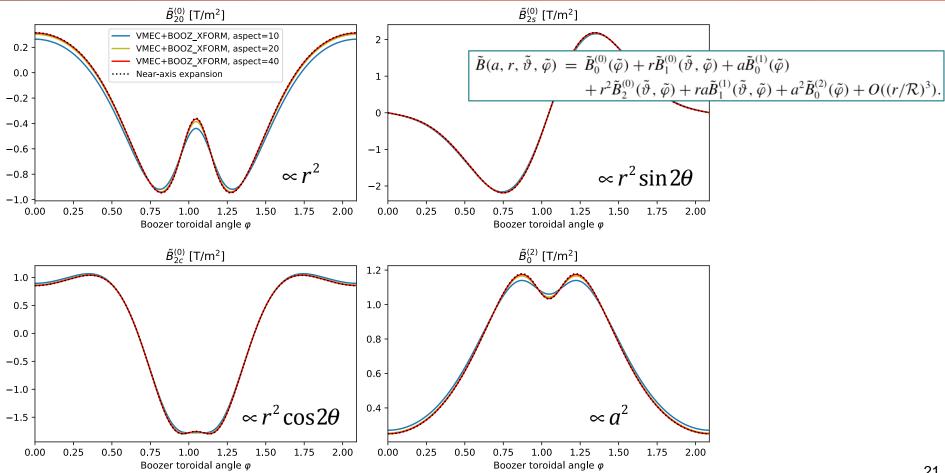
Outline

- Magnetic well
- Mercier stability criterion
- $\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors
- Departure from quasisymmetry
- Aspect ratio at which surfaces become singular.

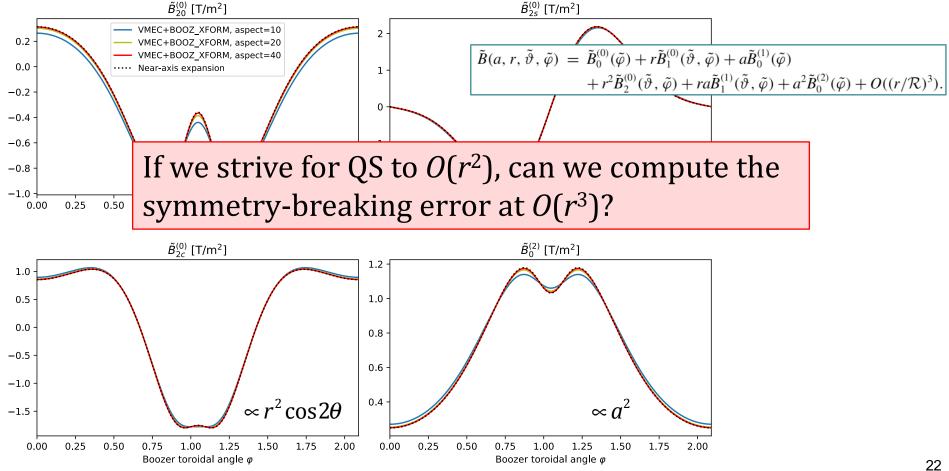
If we strive for QS to $O(r^1)$, we can compute the symmetry-breaking error at $O(r^2)$.



If we strive for QS to $O(r^1)$, we can compute the symmetry-breaking error at $O(r^2)$.



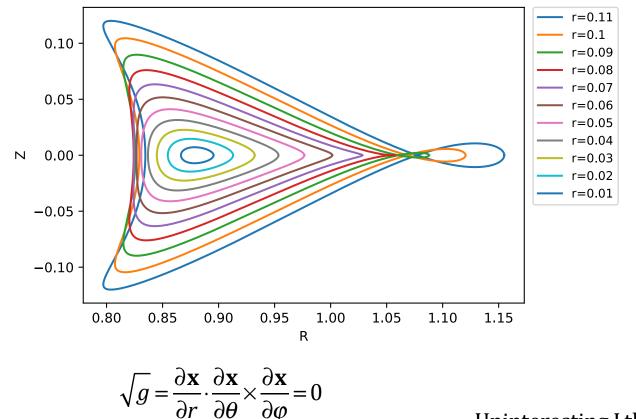
If we strive for QS to $O(r^1)$, we can compute the symmetry-breaking error at $O(r^2)$.



Outline

- Magnetic well
- Mercier stability criterion
- $\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors
- Departure from quasisymmetry
- Aspect ratio at which surfaces become singular.

How can we compute the aspect ratio at which surfaces are no longer smooth & nested?



Minimize *r* subject to $\sqrt{g} = 0$.

$$L = r + \lambda \sqrt{g}$$

$$\frac{\partial L}{\partial \lambda} = 0 \implies \sqrt{g} = 0$$
$$\frac{\partial L}{\partial \theta} = 0 \implies \frac{\partial \sqrt{g}}{\partial \theta} = 0$$

$$\frac{\partial L}{\partial \varphi} = 0 \implies \frac{\partial \sqrt{g}}{\partial \varphi} = 0$$

$$\Rightarrow 1 + \lambda \frac{\partial \sqrt{g}}{\partial r} = 0$$

Uninteresting I think: $\frac{\partial L}{\partial r} = 0 \implies 1 + \lambda \frac{\partial \sqrt{g}}{\partial r} = 0$

How can we compute the aspect ratio at which surfaces are no longer smooth & nested?

$$\sqrt{g} = 0 \qquad \frac{\partial \sqrt{g}}{\partial \theta} = 0 \qquad \frac{\partial \sqrt{g}}{\partial \varphi} = 0 \qquad \sqrt{g} = \frac{\partial \mathbf{x}}{\partial r} \cdot \frac{\partial \mathbf{x}}{\partial \theta} \times \frac{\partial \mathbf{x}}{\partial \varphi} \times \frac{\partial \mathbf{x}}{\partial$$

$$X = r \left[X_{1s} (\varphi) \sin \theta + X_{1c} (\varphi) \cos \theta \right] + r^2 \left[X_{20} (\varphi) + X_{2s} (\varphi) \sin 2\theta + X_{2c} (\varphi) \cos 2\theta \right]$$

$$\sqrt{g} = r \left[g_0(\varphi) + r g_1(\theta, \varphi) + r^2 g_2(\theta, \varphi) + r^3 g_3(\theta, \varphi) + r^4 g_4(\theta, \varphi) \right]$$

$$g_1(\theta, \varphi) = g_{1s}(\varphi)\sin\theta + g_{1c}(\varphi)\cos\theta$$

$$g_2(\theta, \varphi) = g_{20}(\varphi) + g_{2s}(\varphi)\sin 2\theta + g_{2c}(\varphi)\cos 2\theta$$

$$g_3(\theta,\varphi) = g_{3s1}(\varphi)\sin\theta + g_{3s3}(\varphi)\sin3\theta + g_{3c1}(\varphi)\cos\theta + g_{3c3}(\varphi)\cos3\theta$$

How can we compute the aspect ratio at which surfaces are no longer smooth & nested?

$$\sqrt{g} = 0$$
 $\frac{\partial \sqrt{g}}{\partial \theta} = 0$ $\frac{\partial \sqrt{g}}{\partial \varphi} = 0$ Can replace last equation with min over φ .

- Could solve with Newton method, but need good initial guess or else not robust.
- Worried most about small-r solutions, so may be reasonable to set $g_3=g_4=0$.
- Then system has analytic solution. Can use as initial guess for Newton with $g_3 \& g_4$.

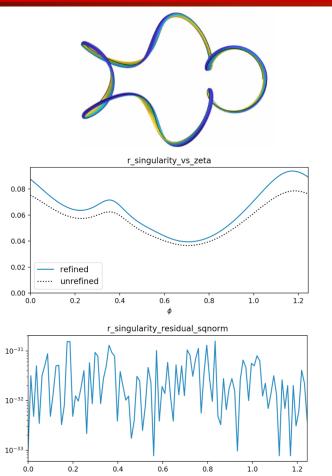
$$\sqrt{g} = r \left[g_0(\varphi) + r g_1(\theta, \varphi) + r^2 g_2(\theta, \varphi) + r^3 g_3(\theta, \varphi) + r^4 g_4(\theta, \varphi) \right]$$

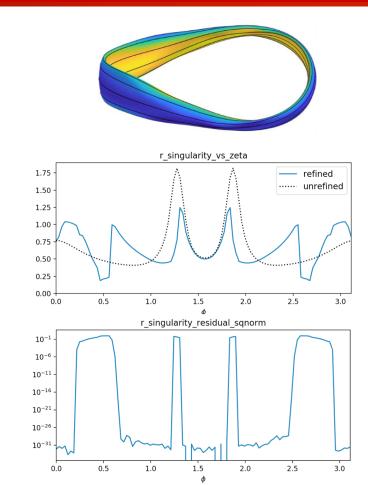
$$g_1(\theta, \varphi) = g_{1s}(\varphi)\sin\theta + g_{1c}(\varphi)\cos\theta$$

$$g_2(\theta, \varphi) = g_{20}(\varphi) + g_{2s}(\varphi)\sin 2\theta + g_{2c}(\varphi)\cos 2\theta$$

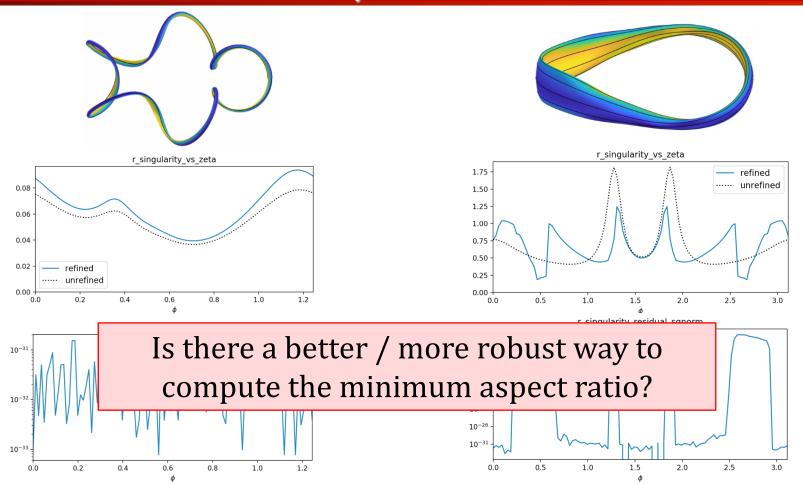
$$g_3(\theta,\varphi) = g_{3s1}(\varphi)\sin\theta + g_{3s3}(\varphi)\sin3\theta + g_{3c1}(\varphi)\cos\theta + g_{3c3}(\varphi)\cos3\theta$$

This approach of generating initial guesses for Newton iteration works sometimes but not always





This approach of generating initial guesses for Newton iteration works sometimes but not always



Closing questions

- Is there a slicker way to get a parity-transformation-invariant form of Mercier's criterion?
- Is there anything else useful we can do with these $\nabla \mathbf{B}$ and $\nabla \nabla \mathbf{B}$ tensors?
- Are there other measures of B field complexity / coil difficulty?
- If we strive for QS to $O(r^2)$, can we compute the symmetry-breaking error at $O(r^3)$? (So much algebra!!)
- Is there a better / more robust way to compute the minimum aspect ratio?
- What else can we compute in < a few ms?