
Update on near-axis construction for quasisymmetry

B	[T]

1. New	quantities	we	can	now	calculate	from	a	solution	of	
the	Garren-Boozer	equations

2. Suggested	research	questions



Things we can now compute from a solution of the Garren-Boozer equations (1)

• Magnetic	well
• Mercier	stability	criterion
• Aspect	ratio	at	which	surfaces	
become	singular.
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Magnetic	well				arXiv:2006.14881



Things we can now compute from a solution of the Garren-Boozer equations (2)

B	[T]• ∇B and	∇∇B tensors	
(large	norm	=	bad?)

• Symmetry-breaking	
B at	O(r2)	for	O(r1)	
quasisymmetry

• Geometry	in	
gyrokinetic	
equation	(Jorge)



Good problems to look at next
• Garren-Boozer equations for O(r2) quasisymmetry:

– What is a good practical numerical procedure to solve for the axis shape?
– Understand the set of solutions.
– If we allow small departure from symmetry, does that expand the set of solutions?
– To what extent are “real” QS configurations (e.g. HSX) approximately solutions?
– Get quasisymmetry at an off-axis surface by balancing B20 against B0 at some r.
– Understand why stellarators have concave bean shapes.
– Compute the symmetry-breaking B3.

• How to handle sqrt(r) in bootstrap current?
• Bootstrap current ‘geometric factor’ for non-quasisymmetric configurations.
• !eff for non-quasisymmetric configurations.
• O(r2) omnigenity (building on Plunk-Landreman-Helander)
• Other ways to extrapolate outward from the axis?
• Generalizations like “Property X”, pseudosymmetry?
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Extra slides



What other quantities can we compute in < 1ms from the near-axis expansion?
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Color	=	N =	#	of	times	B contours	rotate	around	magnetic	axis

Goal:	Filter	out	points	from	this	database	that	are	unacceptable	for	some	reason.



Magnetic well
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• Related	to	MHD	interchange	stability.

• Dominant	term	in	Mercier’s	criterion	near	the	axis	at	low	β.

• Usually	included	in	stellarator	design	(W7-X,	HSX,	LHD,	etc)

• Various	definitions	out	there:

		
′′V = d

2V
dψ 2 ,		want	<	0.

		
Ŵ = V

B2

d B2

dV
,			want	>	0.

		
W = V

B2
d
dV

2µ0p+B2 ,			want	>	0.

		
V = Volume	inside	flux	surface
2πψ =Toroidal	flux



Magnetic well can be computed directly from the near-axis expansion
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′′V =

16π 2 G0
B03

3
4η

2 − B20
B0

− µ0p2
2B02

⎡

⎣
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⎦
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For	quasisymmetry:

where

		

B r ,θ ,ϕ( ) = B0 + rηB0 cosθ
+r2 B20 +B2s sin2θ +B2c cos2θ⎡⎣ ⎤⎦+O ε 3( )

		B= β∇ψ + I ψ( )∇θ +G ψ( )∇ϕ

		p r( ) = p0 + r2p2 +O ε 4( )



Outline

• Magnetic	well
• Mercier	stability	criterion
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



Mercier criterion
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Ideal	MHD	stability	to	radially	localized	perturbations	(basically	interchanges).

Mercier	(1964):
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Bauer,	Betancourt,	&	Garabedian (1984):
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Φ = poloidal	flux,				Ψ = toroidal	flux,			Ξ= J−BdItor
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All statements of Mercier stability Rogerio & I can find do not respect parity 
transformations
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B= 1

2π ∇Ψ×∇θ +∇ϕ ×∇Φ( ) = β∇ψ + I∇θ +G∇ϕ

		Parity	transformation	1:	Flip	signs	of		Ψ , 	θ , 	β , 	I , 	ι.		Unchanged:	ϕ ,	G , 	Φ.
		Parity	transformation	2:	Flip	signs	of		ϕ ,	G , 	Φ, 	ι.		Unchanged:	Ψ , 	θ , 	β , 	I.
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Mercier	(1964):

Invariant:

			
Φ = poloidal	flux,				Ψ = toroidal	flux,			Ξ= J−BdItor

dΨ
,				sG = sgn G( ) ,				sψ = sgn Ψ( ) ,				sι = sgn ι( )



All statements of Mercier stability Rogerio & I can find do not respect parity 
transformations
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B= 1

2π ∇Ψ×∇θ +∇ϕ ×∇Φ( ) = β∇ψ + I∇θ +G∇ϕ

		Parity	transformation	1:	Flip	signs	of		Ψ , 	θ , 	β , 	I , 	ι.		Unchanged:	ϕ ,	G , 	Φ.
		Parity	transformation	2:	Flip	signs	of		ϕ ,	G , 	Φ, 	ι.		Unchanged:	Ψ , 	θ , 	β , 	I.
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Invariant:

			
Φ = poloidal	flux,				Ψ = toroidal	flux,			Ξ= J−BdItor

dΨ
,				sG = sgn G( ) ,				sψ = sgn Ψ( ) ,				sι = sgn ι( )

Is	there	a	slick	way	to	get	a	parity-transformation-
invariant	form	of	Mercier’s	criterion?



Outline

• Magnetic	well
• Mercier	stability	criterion
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



∇B and ∇∇B tensors
• Andrew	Giuliani	targets	∇B	in	his	direct	coil	optimization	for	QS.

• These	tensors	contain	all	possible	scale	lengths	in	the	1st and	2nd
derivatives	of	the	field.	These	should	probably	be	long	in	order	to	
make	this	Bwith	distant	coils.
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L∇B = B

2
∇B :∇B

			

L∇∇B =
4B

∇∇B( )
i , j ,k

2

i , j ,k=1

3

∑

		At	a	distance		R		from	an	infinite	straight	wire,		L∇B = L∇∇B = R.



Garren-Boozer ∇B
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∇B =
B0

′ℓ
′X1cY1s + ιX1cY1c( )nn+ − ′ℓ τ −ιX1c

2( )bn⎡
⎣

       + ′Y1cY1s − ′Y1sY1c + ′ℓ τ + ιY1s
2 + ιY1c

2( )nb+ X1c ′Y1s −ιX1cY1c( )bb⎤⎦ +κ B0 tn+ nt( )

   
x r,θ ,ϕ( ) = x0 ϕ( ) + rX1c ϕ( )cosθn+ r Y1c ϕ( )cosθ +Y1s ϕ( )sinθ⎡⎣ ⎤⎦b+O r 2( )

  ′ℓ = axis length( ) / 2π( )  Frenet frame: t,n,b( )   ′Y1s = dY1s / dϕ



5 configurations to compare
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Section	5.1 Section	5.2 Section	5.3 Section	5.4 Section	5.5

ι~0.4 ι~0.4
ι~1.0,
ιvac~0.2 ι~1.1 ι~0.8



These tensor norms seem correlated with intuition for how hard 
these configurations are to shape
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Section	5.5
has	very	strong	shaping



These tensor norms seem correlated with intuition for how hard 
these configurations are to shape
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“hard”
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Section	5.5
has	very	strong	shaping

Is	there	anything	else	useful	we	can	do	with	these	tensors?	

Are	there	other	good	measures	of	B-field	complexity?



Outline

• Magnetic	well
• Mercier	stability	criterion
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



If we strive for QS to O(r1), we can compute the symmetry-breaking error at O(r2).
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If we strive for QS to O(r1), we can compute the symmetry-breaking error at O(r2).
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		∝r2

		∝r2cos2θ

		∝r2sin2θ

		∝a2



If we strive for QS to O(r1), we can compute the symmetry-breaking error at O(r2).
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		∝r2

		∝r2cos2θ

		∝r2sin2θ

		∝a2

If	we	strive	for	QS	to	O(r2),	can	we	compute	the	
symmetry-breaking	error	at	O(r3)?



Outline

• Magnetic	well
• Mercier	stability	criterion
• ∇B and	∇∇B tensors
• Departure	from	quasisymmetry
• Aspect	ratio	at	which	surfaces	become	singular.



How can we compute the aspect ratio at which surfaces are 
no longer smooth & nested?
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		Minimize	r 	subject	to	 g =0.

	L= r +λ g

		
∂L
∂λ

=0		⇒ 		 g =0

		
∂L
∂θ

=0		⇒ 		 ∂ g
∂θ

=0

		
∂L
∂ϕ

=0		⇒ 		 ∂ g
∂ϕ

=0

		
Uninteresting	I	think:	 ∂L

∂r
=0		⇒ 		1+λ ∂ g

∂r
=0			

g = ∂x
∂r

⋅ ∂x
∂θ

× ∂x
∂ϕ

=0
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How can we compute the aspect ratio at which surfaces are 
no longer smooth & nested?

		 g =0 		
∂ g
∂θ

=0
		
∂ g
∂ϕ

=0
		
g = ∂x

∂r
⋅ ∂x
∂θ

× ∂x
∂ϕ

			x r ,θ ,ϕ( ) = x0 ϕ( )+ X r ,θ ,ϕ( )n ϕ( )+Y r ,θ ,ϕ( )b ϕ( )+ Z r ,θ ,ϕ( )t ϕ( )

		X = r X1s ϕ( )sinθ + X1c ϕ( )cosθ⎡⎣ ⎤⎦+ r
2 X20 ϕ( )+ X2s ϕ( )sin2θ + X2c ϕ( )cos2θ⎡⎣ ⎤⎦

		 g = r g0 ϕ( )+ rg1 θ ,ϕ( )+ r2g2 θ ,ϕ( )+ r3g3 θ ,ϕ( )+ r4g4 θ ,ϕ( )⎡⎣ ⎤⎦

		g1 θ ,ϕ( ) = g1s ϕ( )sinθ + g1c ϕ( )cosθ

		g2 θ ,ϕ( ) = g20 ϕ( )+ g2s ϕ( )sin2θ + g2c ϕ( )cos2θ

		g3 θ ,ϕ( ) = g3s1 ϕ( )sinθ + g3s3 ϕ( )sin3θ + g3c1 ϕ( )cosθ + g3c3 ϕ( )cos3θ
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How can we compute the aspect ratio at which surfaces are 
no longer smooth & nested?

		 g =0 		
∂ g
∂θ

=0
		
∂ g
∂ϕ

=0

		 g = r g0 ϕ( )+ rg1 θ ,ϕ( )+ r2g2 θ ,ϕ( )+ r3g3 θ ,ϕ( )+ r4g4 θ ,ϕ( )⎡⎣ ⎤⎦

		g1 θ ,ϕ( ) = g1s ϕ( )sinθ + g1c ϕ( )cosθ

		g2 θ ,ϕ( ) = g20 ϕ( )+ g2s ϕ( )sin2θ + g2c ϕ( )cos2θ

		g3 θ ,ϕ( ) = g3s1 ϕ( )sinθ + g3s3 ϕ( )sin3θ + g3c1 ϕ( )cosθ + g3c3 ϕ( )cos3θ

çCan	replace	last	equation	with	min	over	φ.

• Could	solve	with	Newton	method,	but	need	good	initial	guess	or	else	not	robust.
• Worried	most	about	small-r solutions,	so	may	be	reasonable	to	set	g3=g4=0.
• Then	system	has	analytic	solution.	Can	use	as	initial	guess	for	Newton	with	g3 &	g4.



This approach of generating initial guesses for Newton iteration 
works sometimes but not always
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This approach of generating initial guesses for Newton iteration 
works sometimes but not always
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Is	there	a	better	/	more	robust	way	to	
compute	the	minimum	aspect	ratio?



Closing questions

• Is there a slicker way to get a parity-transformation-invariant form of 

Mercier’s criterion?

• Is there anything else useful we can do with these ∇B and ∇∇B tensors?

• Are there other measures of B field complexity / coil difficulty?

• If we strive for QS to O(r2), can we compute the symmetry-breaking error 

at O(r3)? (So much algebra!!)

• Is there a better / more robust way to compute the minimum aspect ratio?

• What else can we compute in < a few ms?
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