
SIMSOPT	Phase	1:	MANGO
Vision	&	Progress

“Multiprocessor	Algorithms	for	Nonlinear	Gradient-free	
Optimization”

https://github.com/landreman/mango

https://github.com/landreman/mango


Structure of STELLOPT, ROSE, SIMSOPT, etc

2

Driver

Physics/Engineering:
objective	function	&	constraints

Optimization	algorithms	

MANGO	addresses	this	
component



MANGO allows us to provide new capabilities to our existing codes like 
STELLOPT before the physics part of SIMSOPT is functional 

3

MANGO

STELLOPT

ROSE

ONSET

SIMSOPT	physics	
component

PETSc-TAO

Stellarator	optimization	codes Optimization	libraries/algorithms

NLOpt

GSL

HOPSPACK

Interface

DAKOTA

…
pySOT



Goals of MANGO
• Make	it	easy	to	try	out	different	optimization	algorithms.
• Provide	a	common	interface	to	established	optimization	libraries	like	PETSc-TAO,	HOPSPACK,	
DAKOTA,	NLOpt,	providing	many	new	optimization	algorithms	to	STELLOPT,	ROSE,	etc.

• MANGO	is	a	library	that	STELLOPT/ROSE/COILOPT++/ONSET/etc can	call.
• Allow	any	gradient-based	algorithm	(e.g.	BFGS)	to	use	parallelized	finite-difference	derivatives.

• Also	allow	parallelization	within	each	evaluation	of	the	objective	function.
• Automatically	convert	least-squares	objective	functions	into	generic	objective	functions	if	an	
algorithm	is	selected	that	does	not	assume	least-squares	form.

• Collection	of	test	problems	that	are	automatically	run	for	various	numbers	of	processors.
• Could	eventually	add	our	own	implementations	of	algorithms	that	are	not	already	available	in	
libraries,	e.g.	IMFIL	(presently	only	in	matlab).

• No	physics	will	be	included	in	MANGO	itself.
• Callable	from	Fortran,	C,	C++,	&	python.
• Set	up	testing/documentation/build	in	a	simpler	setting	than	the	physics	part	of	simsopt. 4



Why make MANGO a separate repository from STELLOPT/SIMSOPT?
Pros:

• Any	algorithms	in	it	can	be	immediately	available	to	all	our	optimizer	codes:	
STELLOPT,	ROSE,	ONSET,	COILOPT++,	FOCUS,	etc.

• We	could	learn	whether	any	differences	between	STELLOPT	vs	ROSE	vs	SIMSOPT	
are	due	to	differences	in	the	objective	function	vs	the	optimization	algorithm.

• Enforce	separation	between	optimization	algorithms	vs	objective	function.

• Optimization	folks	could	add	&	test	algorithms	in	a	simpler	repository	than	
STELLOPT.

• Could	be	used	by	people	in	other	fields.

Cons:

• It	adds	a	few	steps	to	building	STELLOPT.
5



Design choices for MANGO so far
• Main	language	=	C++

– Most	of	the	libraries	we	want	to	connect	are	in	C++	(ROSE,	HOPSPACK,	

DAKOTA)	or	C	(GSL,	PETSc,	NLOpt).	

– Many	tools	available,	e.g.	testing	frameworks.

– Object-oriented is favored for extensible architecture.

• Try	to	minimize	dependencies.	Other	than	MPI,	all	dependencies	

(PETSc,	NLOpt,	HOPSPACK,	Catch2)	are	optional.

• MPI	only.	OpenMP	is	better	used	within	the	objective	function.

• Assume	(at	least	for	now)	no	analytic	gradients	are	available.

6



MANGO has comprehensive testing

7

Unit	tests:
• Uses	Catch2.

• Header-only,	so	no	library	to	build.	Smaller	dependency	than	Boost,	Google	test.
• Python	script	runs	unit	tests	for	various	#s	of	MPI	processes.

Integrated	tests:
• 6	benchmark	problems	so	far:	3D	quadratic,	2D	Rosenbrock,	etc.
• Python	script	runs	each	problem	for	all	algorithms	&	various	#s	of	MPI	processes.
• Checks	performed	for	deterministic	algorithms:

• Results	are	independent	of	#	of	MPI	processes	&	#	of	“worker	groups”.
• Results	from	C++	driver	==	results	from	Fortran	driver.

• Regression	tests	for	all	algorithms:	results	match	reference	values	(within	tolerance)

Continuous	integration:
• All	unit	tests	&	integrated	tests	are	run	on	Travis-CI	for	every	commit.



8



MANGO is now callable from STELLOPT
‘mango’	branch	of	stellopt repository.									Just	set	opt_type=‘petsc_pounders’	or	‘gsl_dogleg’	etc.

stellopt_scenarios/7DOF_varyAxisAndElongation_targetIotaAndQuasisymmetry



Status of MANGO

10

Now	working:
• Interface	with	PETSc-TAO,	NLOpt,	GSL,	
HOPSPACK.	

• 36	algorithms.

• Callable	from	C++,	C,	and	Fortran.

• Unit	tests,	integrated/regression	tests,	&	
continuous	integration

• Interface	with	stellopt.

• Bound	constraints.

To	do	/	discuss	/	consider:
• Refactor	for	cleaner	architecture.

• Interface	with	DAKOTA,	pySOT.

• Ability	to	call	mango	from	python.

• Documentation:	doxygen?	Readthedocs?	
Latex?	Github?

• Interface	with	ROSE,	ONSET.

• Inequality	and	equality	constraints.

• Bring	over	‘classic’	stellopt Levenberg-
Marquardt	&	genetic	algorithms.

• Parallelized	line	search.

• Cmake build	system?

• Which	license?

• Allow	analytic	gradients	if	available?

Opinions	&	contributions	welcome!!


