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The conventional approach to finding quasisymmetric fields works but has shortcomings

To confine trapped particles, we
want magnetic field strength B
to have quasisymmetry:

B=B(r, 6-N{)
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The conventional approach to finding quasisymmetric fields works but has shortcomings

To confine trapped particles, we
want magnetic field strength B
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Parameter space: X =toroidal boundary shapes
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e Computationally expensive.
e What is the size & character of the solution space?
e Result depends on initial condition, so cannot be sure you’ve found all solutions.



Expansion about the magnetic axis can be a powerful practical tool

for generating quasisymmetric & omnigenous stellarators

e Accurate at least in the core of any
configuration.

e Hasn't been considered much since

numerical optimization began in
~1980s.




Expansion about the magnetic axis can be a powerful practical tool

for generating quasisymmetric & omnigenous stellarators

e Accurate at least in the core of any
configuration.

e Hasn't been considered much since

numerical optimization began in
~1980s.

e Complements the traditional optimization approach:
- Many orders of magnitude faster.
- You can parameterize all possible solutions.

- Can generate new initial conditions that can be refined by optimization.



We have translated analytic work by Garren & Boozer (1991) into

practical algorithms

zuz;j‘;gﬂnesl:ltal x(r,@,{) =X, (§)+Taylor series in r = /2y /B,, (V X B)x B=uVp,

B=VyxV0+V{xVy=pVy+I(y)Vo+G(y)VS, B(’UQ»C):Bo[“’"ﬁcos(e_NC)“LO(rz)]

Mercier's inverse expansion of w(x) gives equivalent results.

Rogerio Jorge & Wrick Sengupta.



We have translated analytic work by Garren & Boozer (1991) into

practical algorithms

zuz;i’?i:)nnesr:ltal x(r,@,éj) =X, (§)+Taylor series in r = /2y /B,, (V X B)x B=uVp,

B=VyxV0+V{xVy=pVy+I(y)Vo+G(y)VS, B(’":9»§)=Bo[“’"ﬁcos(e_NC)“LO(rz)]

Algorithm Inputs: ML, Sengupta, & Plunk, / Plasma Phys (2019)
e Shape of the magnetic axis, with k # 0. (Determines QA vs QH.)

e 3 numbers: — I: Current density on the axis. (Usually 0).
— Rotation of the elliptical flux surfaces at {=0. (Usually 0).
— 1, which controls elongation and field strength.

Theorem: Given this data, a unique O(r) quasisymmetric solution exists.

— The space of configurations that are quasisymmetric to O(r) is precisely understood.



We have translated analytic work by Garren & Boozer (1991) into

practical algorithms

zuz;i’?i:)nnesr:ltal x(r,@,éj) =X, (§)+Taylor series in r = /2y /B,, (V X B)x B=uVp,

B=VyxV0+V{xVy=pVy+I(y)Vo+G(y)VS, B(’":9»§)=Bo[“’"ﬁcos(e_NC)“LO(rz)]

Algorithm Inputs: ML, Sengupta, & Plunk, / Plasma Phys (2019)
e Shape of the magnetic axis, with k # 0. (Determines QA vs QH.)

e 3 numbers: — I: Current density on the axis. (Usually 0).
— Rotation of the elliptical flux surfaces at {=0. (Usually 0).
— 1, which controls elongation and field strength.

Outputs:

e Shape of the surfaces around the axis. (Elongation & rotation of ellipses.)
e Rotational transform on axis.



Example O(r) construction: quasi-axisymmetry

Inputs:  axis shape Ro(q)) = 1+0.045cos(3¢) [m], ,=0, n=-0.9.
Z,(¢)=-0.045sin(3¢) [m], a(0)=0,
Plug in r = 0.1 m.
Results:
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Extending the construction to O(r?), you get triangularity and better
quasisymmetr
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The construction can be verified by running an MHD equilibrium code (VMEC)

which does not make the expansion.

Fourier harmonics By, , in Boozer coordinates [T]

0.06 -

0.05

0.04

0.03

0.02

0.01

0.00

--- Requested B; ¢
—— Quasi-axisymmetric (n =0)
1 —— Symmetry-breaking (n=0)
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The near-axis analysis can be generalized to construct omnigenous configurations

G G Plunk, ML, and P Helander, arXiv:1909.08919,
Accepted in | Plasma Phys

Omnigenity: Cj)(vd -Vl//)dt =0

V magnetic moments & energies.
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The fast construction enables brute-force surveys of "all” quasisymmetric fields

Axis shape: R0 (q)) =1+ iRj cos(jnfp(p), ZO ((p) — izj Sin(jnfp(b) 2.4x108
J=1 j=1

configurations
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Brute-force searching is already yielding some new configurations

Quasi-helical symmetry with
1 field period 2 field periods




Brute-force searching is already yielding some new configurations

Quasi-helical symmetry with
1 field period 2 field periods




The axis expansion enables a combined (1-stage) coil + quasisymmetry

optimization using analytic derivatives

mian(X)

16 X= {Coil shapes, axis shape, n }
2

f=¢drs

axis

2
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Conclusions

e The near-axis expansion enables transport-optimized stellarator configurations to be
generated orders of magnitude faster than before.

e We now precisely understand the space of quasisymmetric fields to O(r).

e There is hope of definitively identifying all regions of parameter space with practical
quasisymmetric & omnigenous fields (near the axis).

¢ Much more can be done, e.g. gyrokinetic & MHD analysis near axis.

] Plasma Phys 84, 905840616 (2018) ] Plasma Phys 85, 905850103 (2019) PPCF 61, 075001 (2019)

arXiv:1909.08919 arXiv:1908.10253 github.com/landreman/quasisymmetry 18



Conclusions

e The near-axis expansion enables transport-optimized stellarator configurations to be
generated orders of magnitude faster than before.

e We now precisely understand the space of quasisymmetric fields to O(r).

e There is hope of definitively identifying all regions of parameter space with practical
quasisymmetric & omnigenous fields (near the axis).

¢ Much more can be done, e.g. gyrokinetic & MHD analysis near axis.

e We might discover qualitatively new magnetic configurations for fusion?

R

] Plasma Phys 84, 905840616 (2018) ] Plasma Phys 85, 905850103 (2019) PPCF 61, 075001 (2019)
arXiv:1909.08919 arXiv:1908.10253 github.com/landreman/quasisymmetry
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Extra slides



e Advantages of stellarators: steady-state, no disruptions, no power recirculated
for current drive, no Greenwald limit, don’t rely on plasma for confinement.
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e Advantages of stellarators: steady-state, no disruptions, no power recirculated
for current drive, no Greenwald limit, don’t rely on plasma for confinement.

e But, alpha losses & neoclassical transport would be too large unless you
carefully choose the geometry.

qS(Vd -Vr)dt =0 in axisymmetry, #0 in a general stellarator.

e A solution: quasisymmetry BzB(r, 9—NC) N (Vd -Vr)dt:O.

Guiding-center Lagrangian in Boozer coordinates

depends on (0,{) only through B=|B|. 2



e Advantages of stellarators: steady-state, no disruptions, no power recirculated
for current drive, no Greenwald limit, don’t rely on plasma for confinement.

e But, alpha losses & neoclassical transport would be too large unless you
carefully choose the geometry.

qS(Vd -Vr)dt =0 in axisymmetry, #0 in a general stellarator.

e A solution: quasisymmetry B:B(r, 9—NC) N (Vd -Vr)dt:O.

(Or, weaker conditions
like omnigenity)
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Advantages of stellarators: steady-state, no disruptions, no power recirculated

for current drive, no Greenwald limit, don’t rely on plasma for confinement.

But, alpha losses & neoclassical transport would be too large unless you
carefully choose the geometry.

qS(Vd -Vr)dt =0 in axisymmetry, #0 in a general stellarator.

A solution: quasisymmetry B= B(r, H—NC) N (Vd -Vr)dt —0.

(Or, weaker conditions
like omnigenity)

How do you find MHD equilibria with these properties?
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e Theory for O(r) quasisymmetry

e Comparison to optimized configurations
e The landscape of solutions

e O(r) omnigenity

e 0(r?) quasisymmetry

26



Higher order: Calculate B; so symmetry-breaking can be
minimized.

Examine MHD & gyrokinetic stability using the expansion.

Can anything be proved about the number or character of 0(r?)
solutions?

[s there an analogous construction to give quasisymmetry at an
off-axis surface?

Check coil feasibility for newly discovered configurations.

27



Conclusions

e The near-axis expansion enables transport-optimized stellarator configurations to be
generated orders of magnitude faster than before.

e We now precisely understand the space of quasisymmetric fields to O(r).

e There is hope of definitively identifying all regions of parameter space with practical
quasisymmetric & omnigenous fields (near the axis).

e Much more can be done, e.g. gyrokinetic & MHD analysis near axis.
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The near-axis analysis can be generalized to construct omnigenous configurations

G G Plunk, ML, and P Helander, arXiv:1909.08919, Accepted in | Plasma Phys

Omnigenity: Cj}(vd -Vt//)dt =0 V magnetic moments & energies.

bounce

Implications for B(r,0,{): « All B contours close toroidally, helically, or poloidally.

[Cary & Shasharina (1997)] . pjstance along B between bounce points is the same
for every field line on a flux surface.

T AIIIIL/ LL'/ ' @ i [T]

B[T]
1.05

\\_\\\\\ \

0.95

2
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The near-axis analysis can be generalized to construct omnigenous configurations

G G Plunk, ML, and P Helander, arXiv:1909.08919, Accepted in | Plasma Phys

Omnigenity: 43(% -Vt//)dt =0 V magnetic moments & energies.

bounce

Implications for B(r,0,{): « All B contours close toroidally, helically, or poloidally.

[Cary & Shasharina (1997)] . pjstance along B between bounce points is the same
for every field line on a flux surface.

Garren & Boozer (1991): Relates B(l//,@,é’) tox,, X, Y, Z near axis
for any equilibrium, not just quasisymmetry.
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The near-axis analysis can be generalized to construct omnigenous configurations

G G Plunk, ML, and P Helander, arXiv:1909.08919, Accepted in | Plasma Phys

Omnigenity: 43(% -Vt//)dt =0 V magnetic moments & energies.

bounce

Implications for B(r,0,{): « All B contours close toroidally, helically, or poloidally.

[Cary & Shasharina (1997)] . pjstance along B between bounce points is the same
for every field line on a flux surface.

Garren & Boozer (1991): Relates B(l//,@,é’) tox,, X, Y, Z near axis
for any equilibrium, not just quasisymmetry.

(Cary & Shasharina 1997) + (Garren & Boozer 1991) = (Plunk et al 2019)
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The near-axis analysis can be generalized to construct omnigenous configurations

1 /v transport
computed by
VMEC

+ BOOZ_XFORM
+ NEO codes

scales as expected

10°° 107> 107
w = (toroidal flux)/(2m)



The O(r?) construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

x(r,0.8)=x,($)+X(r.0.5)n(£)+Y(r,0.0)b(8)+2(r,0.8)t(¢)
X(r,z?,C) = r[XlC cos+ X, sin 19]+ r’ [XZO +X, cos20+X, sin21ﬂ+0(r3)
Same for Y & Z.
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The O(r?) construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

x(r,0.8)=x,($)+X(r.0.5)n(£)+Y(r,0.0)b(8)+2(r,0.8)t(¢)
X(r,z?,cf): r[XlC cos+X, sinﬁ]+r2[X20 +X, cos20+X, sin21ﬂ+0(r3)

Same for Y & Z.
e 3 new input parameters: p,, B, B,..

p(r) =p,+r'p,+ 0(r4)
B(r,z?,go) =B +rB fjcos¥+r’ [BZO +B, cos20+B, sin20]+0(r3)
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The O(r?) construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

x(r,0.8)=x,($)+X(r.0.5)n(£)+Y(r,0.0)b(8)+2(r,0.8)t(¢)
X(r,z?,cf): r[XlC cos+X, sinﬁ]+r2[X20 +X, cos20+X, sin21ﬂ+0(r3)

Same for Y & Z.
e 3 new input parameters: p,, B, B,..

p(r) =p,+r'p,+ 0(r4)
B(r,z?,go) =B +rB fjcos¥+r’ [BZO +B, cos20+B, sin20]+0(r3)

 Netloss of 1 degree of freedom. My approach: B,,({) is an output. Need
to adjust inputs so B,,({) = constant.
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The O(r?) construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

x(r,0.8)=x,($)+X(r.0.5)n(£)+Y(r,0.0)b(8)+2(r,0.8)t(¢)
X(r,z?,C):r[ch cos+X, sinﬁ]+r2[X20+X2C cos20+ X, sin21ﬂ+0(r3)
Same for Y & Z.
e 3 new input parameters: p,, B, B,..
p(r)zpO +r'p, +0(r4)
B(r,z?,(o):BO+rBO77C0519+r2[BZO +B, cos20+B, sin20]+0(r3)

 Netloss of 1 degree of freedom. My approach: B,,({) is an output. Need
to adjust inputs so B,,({) = constant.

e Minimize X, & Y,, to maximize the r at

which surfaces begin to self-intersect.
36



Expansion about the magnetic axis can be a powerful practical tool
for generating quasisymmetric & omnigenous stellarators

Complements the traditional optimization approach:

e Many orders of magnitude faster.

. . . 0.95
* You can parameterize all possible solutions.

e (Can generate initial conditions that can be refined by optimization. 37



The construction can be fit to quasisymmetric stellarators designed by optimization

* Adopt the same axis shape.

» Fit 1 to minimize difference in the
shapes of a near-axis surface.

38



The direct construction gives an accurate match to the on-axis rotational transform

in quasisymmetric stellarators designed by optimization

1.6

1.4
Adopt the same axis shape.

1.2 1
Fit 7 to minimize difference in the

shapes of a near-axis surface. 1.0 -

0.8 -

0.6 A

t from construction

0.4 A

0.2 A

@ESTELL

DreviakQHs"
Nuhrenberg-Zille®

KuQHS488

HSXe""

CFQS@pARIES-CS
oNCSX

’8E§£nebergQA

0.0 +=

0.0

0.2 04 06 08 10 1.2 14 1.6
t from VMEC



The direct construction gives an accurate match to the near-axis surface shapes of

quasisymmetric stellarators designed by optimization

005+ Dotted: VMEC equilibrium .
HSX Solid: Garren-Boozer construction
0.2+ _— U
.t .'\
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We now have a recipe for generating quasisymmetric VMEC input files:

Set r to a small finite value a.

Inputs: axis shape R (¢)=1+0.32cos(4¢), I1,=0
Z0(¢)=0.355in(4¢), 0'(0)=0, R/a=18.

Results: | Bl 0.4 . . % %

1.05

02t—¢=0
— = /8
—¢ = /4
—$ =37/8 67
0.95 04 =02%T8

0.6 0.8 1 1.2
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We now have a recipe for generating quasisymmetric VMEC input files:

Set r to a small finite value a.

Inputs: axis shape R (¢)=1+0.32cos(4¢), I,=0, f=15,
ZO(¢)=O.355in(4q)), 0'(0)=0, R/a=18.
Results: 1B] 04

=

1.05

02 =—¢=0
—¢ = /8
—i e =
—_ 37/8
0.95 04 022

0.6 0.8 1 1.2

T



The construction can be verified by comparing to VMEC + BOOZ_XFORM.

Aspect ratio 18

Fourier harmonics B, , in Boozer coordinates

Aspect ratio 80

Fourier harmonics By, , in Boozer coordinates

¢

0064 — Quasisymmetric (m, n) modes 0.014 1 —— Quasisymmetric (m, n) modes 18
—— Symmetry breaking (m, n) modes 0012] — Symmetry breaking (m, n) modes
0.05 1 '
0.010 A
0.04 -
0.008 A
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0.006 A >
0.021 0.004 1
0.011 0.002 - @
0.00 % 0.000
T T T T —0002 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 )
r/a (Normalized effective minor radius) r/a (Normalized effective minor radius)
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R
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Alternative method to generate a finite-thickness boundary: find coils to make a skinny
surface, then see what you get outside.

Poincare plot using vacuum field from coils
|
1.2 07 08 09 10 11 12
R




Alternative method to generate a finite-thickness boundary: find coils to make a skinny

surface, then see what you get outside.

Fourier harmonics By, , in Boozer coordinates

0201 ___ Quasi-axisymmetric (m, n) modes
—— Symmetry breaking (m, n) modes
0.151
0.101
0.05 1
0.00
0.0 0.2 0.4 0.6 0.8 1.0

r/a (Normalized effective minor radius)

0.1+

—0.1+

-0.2 A

Poincare plot using vacuum field from coils
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Quasi-axisymmetry vs quasi-helical symmetry is determined purely by the axis shape

]xB:V& = V B=Bxn

So B contours rotate about axis with the same topology as n.
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Quasi-axisymmetry vs quasi-helical symmetry is determined purely by the axis shape

]xB:V& = V B=Bxn

So B contours rotate about axis with the same topology as n.

— Magnetic axis

— Normal n
n does not rotate about the axis as n rotates about the axis 4 times as
you follow the axis around. you follow the axis around.
= Quasi-axisymmetry = Quasi-helical symmetry

B=B(r0) B=B(r,0—4¢)

47



The fast construction enables brute-force surveys of "all” quasisymmetric fields

configurations

Axis shape: R0 (q)) =1+ iRj cos(jnqu)), Z0 ((p) -1+ izj Sin(jnfpgb) 2.4x108
J=1 j=1

w
u

w
o
|

N
u

Maximum axis curvature
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w
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ik e ' 5 “", ;e b i bi J
Color = # of times B contours rotate around magnetic axis
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Rotational transform

1.0
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The fast construction enables brute-force surveys of "all” quasisymmetric fields

3 3

Axis shape: Ro(q)) = 1+ZR. cos(jn q)), Z ((p): 1+Zz_ sin(jn ¢) 4x106
J fo 0 J fo : :

=1 =1 configurations
o - : Quasi-axisymmetric solutions only 10
=
o 201 i) 9
2 = .
S
A 1.8 .
=
c 6
E 1.6
- -5
£
"X 14 4
)
= 3

1.2 1 2
Color = ng, (discrete rotational symmetry)
1
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The construction enables fast scans over parameter space.

E.g.Scan over (R ,Z ,7 | where magnetic axis shape is

Il clongation=3
Il clongation=4

R :1+R0Ccos 4
Z =Z, sin|4¢

Quasi-helical symmetry

274,560 solutions
generated in <30son a

laptop.
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stellarators built to arator symmetry’, whic
unrelated to quasis

Sugama et al (2011)
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You can make a quasi-axisymmetric stellarator without stellarator symmetry

Inputs:  axis shape R (¢)=1+0.042cos(3p), I,=0,
Z,(9)=-0042sin(39)-0.025cos(3¢),  ©(0)=-05.

Results: (R/a=10)




You can make a quasi-axisymmetric stellarator without stellarator symmetry

Aspect ratio 10 Aspect ratio 80
OFi)zurier harmonics By, , in Boozer coordinates Fourier harmonics By, , in Boozer coordinates
—— Quasi-axisymmetric (m, n) modes 0.014 1 —— Quasi-axisymmetric (m, n) modes
0.104 —— Symmetry breaking (m, n) modes —— Symmetry breaking (m, n) modes

0.012 A
Solid = cos(m6 — nl) modes

0.08 1 Dashed = sin(m6 — n{) modes
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We will expand in the skinniness of the inner flux surfaces

Flux surface @ = - _____

radius R

-
-
-
N e e e e - _—-——

: R .
"Aspectratio"=—1is >1

' . . 2
Define effective radius r by Y=7r'B_. . -
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Theory: Expand position vector using Frenet frame, equate 2 representations of B.

a,  dt dn

db
Frenet frame (t,n,b): —=t, —=xn, —=-kxt+7tbh, —=-1n
d/ d/ d/
r = magnetic axis, kK =curvature, Tt =torsion

t =tangent, n=normal, b =binormal

— Magnetic axis
l
\ — Tangent
V — Normal
Binormal
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Theory: Write position vector using Frenet frame

dr
Frenetframe(t,n,b): d—gzt, Z—;ZK‘, Z—I;:—Kt+1'b, Z—Bz—’m

r,= magnetic axis, Kk =curvature, 7=torsion, t=tangent, n=normal, b =binormal

r(r,0,§) =T, (§)+ X(r,@,{)n(§)+ Y(r,@,(;)b(é’)+ Z(r,H,C)t(C)

— Magnetic axis

— Tangent

— Normal
Binormal
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Theory: Write position vector using Frenet frame, expand in small r = (flux)1/2

dr
Frenet frame (t,n,b): d—l? =t, Z—; =Kn, Z—I; =—xt+71b, Z—IZ =—7n

r,= magnetic axis, Kk =curvature, 7=torsion, t=tangent, n=normal, b =binormal

r(r,0,§) =T, (§)+ X(r,@,{)n(§)+Y(r,@,(;)b(é’)+Z(r,H,C)t(C)
= rO(C)+erc(é’)cos@n({)+r[Yn (@)sin9+ch({)cos@}b(§)+0(r2)

Using magnetohydrodynamic equilibrium (] XB= Vp)
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Theory: Write position vector using Frenet frame, expand in small r = (flux)1/2

dr
Frenet frame (t,n,b): d—l? =t, Z—; =Kn, Z—I; =—xt+71b, Z—l; =—7n

r,= magnetic axis, Kk =curvature, 7=torsion, t=tangent, n=normal, b =binormal

r(r,0,§) =T, (§)+ X(r,@,{)n(§)+Y(r,@,(;)b(é’)+Z(r,H,C)t(C)
= r0(§)+erc(é’)cos@n({)+r[Yn (@)sin9+ch({)cos@}b(§)+0(r2)

- w0y -

n
Toroidal angle { o< arclength, n=constant: B=B_ [1 +rn cos(@— N(p) + 0( r? )}

— 277_[1 — 1:] =0 [, = current density
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Theory: Expand position vector using Frenet frame, equate 2 representations of B.

a,  dt dn

db
Frenet frame (t,n,b): —=t, —=xn, —=-kxt+7tbh, —=-1n
d/ d/ d/ d/
r = magnetic axis, kK =curvature, Tt =torsion

t =tangent, n=normal, b =binormal

r(r.0.0)=r,(£)+X(r.6.5)n(¢)+Y(r,0.0)b(Z)+2(r,0.8)t(S)
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Theory: Expand position vector using Frenet frame, equate 2 representations of B.

a,  dt dn

Frenet frame (t,n,b): y =t, E =Kn, E =—xt+71b, % =—7n

r = magnetic axis, kK =curvature, Tt =torsion

t =tangent, n=normal, b =binormal

r(r.0.0)=r,(£)+X(r.6.5)n(¢)+Y(r,0.0)b(Z)+2(r,0.8)t(S)

X(r,O,C) = r[Xls (gf)sin9+ X (C)c050}+0(r2). Same for Y, Z.
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Theory: Expand position vector using Frenet frame, equate 2 representations of B.

or
Frenet frame (t,n,b): a—g =t, % =xn, Z? —

r = magnetic axis, kK =curvature, Tt =torsion

t =tangent, n=normal, b =binormal

r(r.0.0)=r,(£)+X(r.6.5)n(¢)+Y(r,0.0)b(Z)+2(r,0.8)t(S)
X(r,O,C) = r[Xls (gf)sin9+ X (C)c050}+0(r2). Same for Y, Z.

B:BrVr+BOV9+BCV§, B=Vy xVO0+1V{xVy
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Theory: Expand position vector using Frenet frame, equate 2 representations of B.

a,  dt dn

db
Frenet frame (t,n,b): —=t, —=xn, —=-kxt+7tbh, —=-1n
d/ d/ d/ d/
r = magnetic axis, kK =curvature, Tt =torsion

t =tangent, n=normal, b =binormal
r(r.0.0)=r,(£)+X(r.6.5)n(¢)+Y(r,0.0)b(Z)+2(r,0.8)t(S)
X(r,O,C) = r[Xls (gf)sin9+ X (C)c050}+0(r2). Same for Y, Z.

B:BrVr+BOV9+BCV§, B=Vy xVO0+1V{xVy

cyclic permutations.

Jr or or _lar or
—X X —,
or d0 Jd{ | 00 dC

Dual relations: Vr= [
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The rotational transform computed by VMEC converges to the value

computed by the Garren-Boozer approach.

Difference in rotational transform ¢ between VMEC vs ODE

|
101 E ]
1 o -
10724 %
% [ |
[
1073 - u
]
104 3
1 ® Section 4.1: QA %
B Section 4.2: QH %
10-5 - X  Section 4.3: QA w/o stellarator symmetry ®

10l 102
10 Aspect ratio A 10 63



The ODE is solved with spectral accuracy using pseudospectral discretization + Newton iteration

Uniform grid in ¢ with N points: ¢ =0, ¢,= Zn/(anp), w @ = 27r(N—1)/(anp).
Vector of N unknowns: (l, G(¢2), G(¢3), - 6(¢N))T
N equations: impose ODE at ¢1, .y (/)N.

do . : . :
— — Do where D is a pseudospectral differentiation matrix.
0 Error in iota
10 '
1071
10—10 L
-15 | J
10 | ‘ﬁ}ﬂil
10° 10’ 10°



Of 10 configurations examined, the fit is less good for 2

| ARIES cé Dotted: VMEC equilibrium )25
0.8} i Solid: Garren-Boozer construction ool
0.6 B 0.15 +
0.4+ _ |
0.2 . 0.05 -
<0 | 1 & ot

) N
il ] -0.05 |
il T 0.1 |
0.6 B 0.15 -
-0.8 - _ Wl
_1 1 1 1 _025 1 ) , I |
7 7.5 8 8.5 9 0.8 09 ] » -



The configurations with relatively poor fits can be explained by their larger

symmetry-breaking

0.030
2 0.025 - OCFQS
£
= o
8. ARIES-CS
©0.020
(@)
o
]
o 0.015 A
~ @DrevlakQH
© ONCSX
o KuQHS48 @HSX
¢ 0.010 { ASD ® ®Nuhrenberg-Zille
o Q. q—|ennebergQA
= ®ESTELL Z B2
= 0.005 - m;éo n#mN

0.000 - .
0.00 0.05 0.10 0.15

S (Symmetry breaking in Boozer spectrum) 66



The conventional approach to finding quasisymmetric fields works but has shortcomings

Want magnetic field strength B
to have quasisymmetry: B= B(r, 0—N_C )
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The conventional approach to finding quasisymmetric fields works but has shortcomings

Want magnetic field strength B
to have quasisymmetry: B= B(r, 0—N_C )

mian(X)

Parameter space: X =toroidal boundary shapes

Objective: f = 2 Bim(ro) where B(r,@,{)zZBm,n(r)exp(imH—inZ;)

mn#Nm
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The conventional approach to finding quasisymmetric fields works but has shortcomings

Want magnetic field strength B
to have quasisymmetry: B= B(r, 0—N_C )

mian(X)

Parameter space: X =toroidal boundary shapes

Objective: f = 2 Bim(ro) where B(r,@,{)zZBm,n(r)exp(imH—inZ;)

mn#Nm

e Computationally expensive.
e What is the size & character of the solution space?
e Result depends on initial condition, so cannot be sure you’ve found all solutions.
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Alternative: expand equations near the magnetic axis

Magnetic axis Magnetic field lines

Mercier (1964), Lortz & Niuhrenberg (1976), Garren & Boozer (1991) 70



A key ingredient of the theory is the Frenet frame of the magnetic axis

d
Frenet frame (t,n,b): di; =t, Z—; =Kn dn _ + db =

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

Mercier (1964), Solovev & Shafranov (1970), Lortz & Niihrenberg (1976), Garren & Boozer (1991)

— Magnetic axis

— Tangent

— Normal
Binormal
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A key ingredient of the theory is the Frenet frame of the magnetic axis

d
Frenet frame (t,n,b): di; =t, Z—; =Kn dn _ + db =

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

Mercier (1964), Solovev & Shafranov (1970), Lortz & Niihrenberg (1976), Garren & Boozer (1991)

— Magnetic axis

— Tangent

— Normal
Binormal
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Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

Frenet frame (t,n,b): %:t' Z—;:Kn, Z—?:—Kt+1'b, @:—Tn
X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal
x(r,@,{)zXO(§)+X(r,H,C)n(§)+Y(r,@,{)b({)+Z(r,9,§)t(§), roc\/;

— Magnetic axis

— Tangent

— Normal
Binormal
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The size of the space of fields that are quasisymmetric to O(r) can be precisely understood.

Given P(C) >0, Q(C), and 0'(0), with P(C) and Q(C)

2r-periodic, bounded, and integrable, a solution to

Z—g+z(P+GZ)+Q=O (1)

is a pair {l, c (C )} solving (1) where O'(Z_: ) is 27-periodic.
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The size of the space of fields that are quasisymmetric to O(r) can be precisely understood.

Given P(C) >0, Q(Zj), and 0'(0), with P(C) and Q(C)

2r-periodic, bounded, and integrable, a solution to

Z—Cg+z(P+GZ)+Q=O (1)

is a pair {l, c (C )} solving (1) where O'(Z_: ) is 27-periodic.

Theorem: A solution exists and it is unique.

ML, Sengupta, and Plunk (2019). Probably an earlier reference?
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The size of the space of fields that are quasisymmetric to O(r) can be precisely understood.

Given P(C) >0, Q(Zj), and 0'(0), with P(C) and Q(C)

2r-periodic, bounded, and integrable, a solution to

Z—Cg+z(P+GZ)+Q=O (1)

is a pair {l, c (C )} solving (1) where O'(Z_: ) is 27-periodic.

Theorem: A solution exists and it is unique.

— Numerical solution is very robust.
76



The symmetry-breaking Fourier amplitudes scale as predicted.

|
-1 u 1
107+ S=—0 B’
B m,n
00 \m/nzM/N

N
2 10724
V4
©
o
O
E’ 10—3 i
(O]
&
&
(j>)\ B

1044 —— Predicted scaling: 1/A?

1 ® Quasi-axisymmetric example
®  Quasi-helically symmetric example
10—>
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10 Aspect ratio A 10 77



Quasi-helically symmetric configurations

Dotted: VMEC equilibrium
Solid: Garren-Boozer construction
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Dotted: VMEC equilibrium
Solid: Garren-Boozer construction

Quasi-axisymmetric configurations
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Omnigenity is a weaker confinement condition than quasisymmetry.

Definition of omnigenity: The radial drift has a time average of 0 for all particles.
gS(V J -Vr)dt =0 V magnetic moments & energies.

. J Cary & S Shasharina, Physics of Plasmas 4, 3323 (1997).

. J Cary & S Shasharina, Physical Review Letters 78, 674 (1997).

. P Helander & ] Niihrenberg, Plasma Physics and Controlled Fusion 51,055004 (2009).
. M Landreman & P ] Catto, Physics of Plasmas 19, 056103 (2012).



Omnigenity is a weaker confinement condition than quasisymmetry.

Definition of omnigenity: The radial drift has a time average of 0 for all particles.
qS(V J -Vr)dt =0 V magnetic moments & energies.

G.ene}"alized Generalized quasi-poloidal =~ Generalized quasi-helical
quasi-axisymmetry symmetry symmetry |B|
| 11
1
0 ( = o 0.9




The near-axis analysis can be generalized to construct omnigenous configurations

G G Plunk, ML, and P Helander,
In preparation B

1.4

~11.3

1.2

1.1

0.9

VLB:BKn

0.8

0.7
Quasi-poloidal symmetry is not possible
near the axis, but omnigenity is.
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e Construction for O(r) quasisymmetry
- Theory, & the number of solutions
— Numerical results
— Comparison to “real experiments”
— The landscape of solutions

e Extensions
- Omnigenity

- 0(r?) quasisymmetry
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Extending the construction to higher order is tricky

e We can only “half-specify” the axis shape:

— A curve like the axis is given by 2 functions, e.g. {curvature, torsion} or

R(P), Z(P)}-

- At O(r), (# unknowns)-(# equations)=2 so we can specify (almost) any
axis. But at O(r?), (# unknowns)-(# equations)=1 so we cannot.
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Extending the construction to higher order is tricky

e We can only “half-specify” the axis shape:

— A curve like the axis is given by 2 functions, e.g. {curvature, torsion} or

R(P), Z(P)}-

- At O(r), (# unknowns)-(# equations)=2 so we can specify (almost) any
axis. But at O(r?), (# unknowns)-(# equations)=1 so we cannot.

e No existence & uniqueness theorem for solutions (yet).

e Magnetic shear (variation of rotational transform) does not appear until
o(r3).
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We are working to extend the construction to O(r?), enabling greater shaping

Axisymmetric 0.2 e N ‘ —
example: cog ¢ modeamplitudeinB | L Garren-Boozer construction
0.15 —Calculation without an r expansion (VMEC)
-0.02
0.1
-0.04
0.05+

-0.06
0 0.5 1

Normalized minor radius r /r_ N 0

cos260 mode amplitude in B -0.05 7 A
0 / /
.01 Achieved -0.1¢ f
' Const
-0.02 Requested -0.15 ¢ 7~ OBoozer
curves
'0.03 _0.2 L 1 1 ! | i
. 05 1 085 09 095 1 105 1.1 86

(r/r ) R



We now have a recipe for generating quasisymmetric VMEC input files:

Set r to a small finite value a.

Inputs: axis shape R ((I)) =1+ 0.265cos(4¢), ,=0
Z,(9)=—-0.21sin(4¢), o(0)=0, R/a=40.

Results: Bl 0.3

Q) |

1.1 <> ®
0.1} -
105 N 0 @ ®
01} -

1 —p=0 I @
0.2 —¢ =7/8 @ 1

—¢ = /4

0.95 03} —_— = 37!‘/8' . . _

' 0.6 0.8 1 1.2

R




The construction can be verified by comparing to VMEC + BOOZ_XFORM.

Aspect ratio 40

Fourier harmonics By, , in Boozer coordinates

Fourier harmonics By, , in Boozer coordinates

Aspect ratio 160

0.06 { —— Quasisymmetric (m, n) modes 001501 — Quasisymmetric (m, n) modes
—— Symmetry breaking (m, n) modes ' —— Symmetry breaking (m, n) modes
0.051 0.0125 -
0.04 - 0.0100
0.03 0.0075 -
0.02 1 0.0050 -
0.01 0.0025 A
0.00 0.0000
—0_01 T T T T _0-0025 h T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r/ia (Normalized effective minor radius) r/la (Normalized effective minor radius)
N 095  08L=2=*® - -
' 0.6 0.8 1 1.2




l”

The fast construction enables brute-force surveys of "all” quasisymmetric fields

Axis shape: R0 (q)) =1+ iRj cos(jnqu)), Z0 ((p) -1+ izj Sin(jnfpgb) 2.4x108
J=1 j=1

configurations

10
9
3.5

8

3.0

2.5

2.0+

Maximum axis curvature

1.5

: i i R
Color = # of times B contours rotate around magnetic axis
0 1 2 3 4 5 6 7 8

W v d ; Ry

1.0

Rotational transform 89



The fast construction enables brute-force surveys of “all” quasisymmetric fields

3 3
Axis shape: R, (¢) =1+ ;R}, cos(j nfp¢)’ Zy ((D).: 1+ ]Z;Zf sin(j nfp¢) (Z:c.)i);ilg(frations

3.5

3.0

2.5

2.0

Maximum axis curvature

1.5

Color = # of times B contours rotate around magnetic axis
0 1 2 3 4 5 6 7 8

v v A ; p
3 Py ' s

1.0

Rotational transform 90



|B| [Tesla] on outer surface of NCSX

|B| [Tesla] on outer surface of HSX

———

——

LN < m o — o
g 9|bue |epiojod Jazoog

Q

s

=
9 &
5 S S
L py O =
mtV 0.
S T L g =
g L= s o L5
~E >822 %
— T =S S
23 TE 5 E
X 0 = D 5
Qv ' m T 0

Boozer toroidal angle C

Boozer toroidal angle C




Example of the O(r?) construction
Inputs: ~ axis shape R (¢)=1+0.173cos(2¢)+0.0168cos(4¢)+0.00101cos(6¢),

0

Z,(¢)=  0.158sin(2¢)+0.0165sin(4¢)+0.000985sin(6¢),
1,=0, 6(0)=0, 7=0.632, p,=0, B, =—0.158, B, =0, R/a=10
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Example of the O(r?) construction

Inputs: ~ axis shape R (¢)=1+0.173cos(2¢)+0.0168cos(4¢)+0.00101cos(6¢),
0.158sin(2¢)+0.0165sin(4¢)+0.000985sin(6¢),

1,=0, 6(0)=0, 7=0.632, p,=0, B, =—0.158, B, =0, R/a=10

Results: 1=0.424

03¢

0.2r

0.1r

-0.1

-0.2 ¢

-0.3

93



The O(r?) construction allows triangularity and more accurate quasisymmetry.

x(r,0.8)=x,($)+X(r.0.5)n(£)+Y(r,0.0)b(8)+2(r,0.8)t(¢)
X(r,ﬁ,C):r[ch cos+X, sinﬁ]+r2[X20+XZC cos20+ X, sin21ﬂ+0(r3)
e 3 new input parameters: p,, B, B.. Same for Y & Z.
p(r)zpO +r'p, +0(r4)
B(r,ﬂ,(p):BO+rBOﬁcosz9+r2[Bzo +B, cos20+B, sin219]+0(r3)

 Netloss of 1 degree of freedom. My approach: B,,({) is an output. Need
to adjust inputs so B,,({) = constant.

e Shafranov shift appears at this order. Matches textbook tokamak result
(e.g. Wesson, Hazeltine & Meiss):

2 2 2 2 1 _Iuoszo
(R_RO_A) Tz o=r, A=r (8R0 2U'B;
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— A =10, Circular, Bo(¢) =1+ 0.1cosp  ==--- A =80, Circular, Bo(p) =1+ 0.1cosg
- A =10, Circular, Bo(@p)=1  =xe- A =80, Circular, Bo(p) =1

— A =10, Omnigenous

10°1 3

102

----- A =80, Omnigenous

—

s = normalized toroidal flux

95



Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

d
Frenet frame (t,n,b): di;:t' ZII_;:K“ dn _ + db:

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

Results for quasisymmetry through O(r):

x(r,@,{) =X, (§)+r K(ﬁé’) cosﬁn(§)+r K(_

Toroidal angle ¢ o< axis arclength /, i =constant: B=B_ | 1+rijcos®+0(r?
0

sin ¥+ O-(C)_K(C) cos?) b(C)+0(r2)

=S
S

P . _ ¥=60-N(,
O . .
—+1 77—+ 1+0° _277_[12 —1:] =0 1 =rotational transform on axis,
dc | k* K* . .

[, = current density on axis
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The size of the space of fields that are quasisymmetric to O(r)

can be precisely understood.
Inputs:
e Shape of the magnetic axis. (Determines QA vs QH.)

e 3 real numbers:

— I,: Current density on the axis. (Usually 0).
— 0(0): Rotation of the elliptical flux surfaces at toroidal angle=0.
— 77, which controls elongation and field strength: B= B, [1+rﬁcosz§+0(r2)}

e (Pressure doesn’t matter to this order.)
Theorem: Given this data, a quasisymmetric solution exists, & it is unique.
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Conclusions

e The equations for quasisymmetric magnetic fields can be solved directly and
rapidly if you expand about the magnetic axis.

e The resulting construction can be useful for generating new initial conditions
for optimization.

o We precisely understand the size of the space of magnetic fields that are
quasisymmetric near the axis (to O(r)).

e There is hope of definitively identifying all regions of parameter space with
practical quasisymmetric fields (near the axis).
e We can discover qualitatively new magnetic configurations for fusion.

] Plasma Phys 84, 905840616 (2018) ] Plasma Phys 85, 905850103 (2019) PPCF 61, 075001 (2019)
arXiv:1909.08919 arXiv:1908.10253 github.com/landreman/quasisymmetry 98



Parameter space (independent variables)

e Coil shapes: arbitrary 3D curves
e Coil currents

e Input parameters of the Garren-Boozer near-axis
quasisymmetry equations:

— Shape of magnetic axis (independent from the axis actually produced
by coils!)

-7 B:B0[1+rﬁcos(9—N§)+0(r2)}



Objective function

2 2
f: LC_LCO + La_LaO + l_lO
LCO LaO lO
2 2
+ qS d(B,, B gS d(VB_, —VB
coils Garren—Boozer coils Garren—Boozer
Garren-Boozer Garren-Boozer
axis axis

L ,=Target length of coils
L_=Length of Garren-Boozer magnetic axis
L  =Target length of magnetic axis

1 =Rotational transform from Garren-Boozer

1, = Target rotational transport
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We can now numerically demonstrate Garren & Boozer’s scaling: Byonsymm ~ 1/A°

1
S=— 1> B’ =Symmetry-breaking

BO m,nZNm

10_1 -§ hOS

—e— S for constructed configs —e— S for constructed configs

o
Aspect ratio A Aspect ratio A



We can now numerically demonstrate Garren & Boozer’s scaling: Byonsymm ~ 1/A°

1
S=— 1> B’ =Symmetry-breaking

BO m,nZNm

10_1 -§ hOS

—e— S for constructed configs —e— S for constructed configs

-------------

o
Aspect ratio A Aspect ratio A



Quasisymmetry can be achieved to any desired precision, €.8. B,onsymm < Bearth

|B| [Tesla] on outer surface of A=80 QA |B| [Tesla] on outer surface of A=80 QH
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Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

d
Frenet frame (t,n,b): di; =t, Z—; =Kn dn _ + db =

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

x(r,@,{) = xo(§)+X(r,@,()n(§)+Y(r,@,{)b(§)+Z(r,@,{)t({), r= m

104



Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

d
Frenet frame (t,n,b): di; =t, Z—; =Kn dn _ + db =

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

x(r,@,{) = xo(§)+X(r,@,()n(§)+Y(r,@,{)b(§)+Z(r,@,{)t({), r= m

X(r,@,(:)zer(H,C)+r2X2(9,§)+... Same for Y & Z.
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Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

d
Frenet frame (t,n,b): di; =t, Z—; =Kn dn _ + db =

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

x(r,@,{) = xo(§)+X(r,@,()n(§)+Y(r,@,{)b(§)+Z(r,@,{)t({), r= m

X(r,@,(:)zrX1(9,5)+r2X2(9,§)+... Same for Y & Z.

Vre 00 Jd¢
Bx_axxax
or 96 d¢

, & cyclic permutations
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Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

d
Frenet frame (t,n,b): di;:t' ZII_;:K“ dn _ + db:

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

x(r,@,{) = xo(§)+X(r,@,()n(§)+Y(r,@,{)b(§)+Z(r,@,{)t({), r= m

X(r,@,(j)z rX1(9,5)+r2X2(9,§)+... Same for Y & Z.
o ox )
e axaeax ag“ax’ & cyclic permutations B= d—l/:[erV9+l(r)V§XVr}

ar'aexag - ﬁ(r,e,g)‘;—”’fVH1(r)V0+G(r)V§
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Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

dx
Frenet frame (t,n,b): d_;:t' Z—;:Kn, CCII—I;:—Kt+Tb, Z—E:—Tn

X, =magnetic axis, k=curvature, 7=torsion, t=tangent, n=normal, b =binormal

x(r,@,{) = xo(§)+X(r,@,()n(§)+Y(r,@,{)b(§)+Z(r,@,{)t({), r= m

X(r,@,(,“)zrX1(9,§)+r2X2(9,C)+... Same for Y & Z.
ox o d
Vr= Bxa_eax igax , & cyclic permutations B:d—l/:[Vr ><V0+l(r )VCer }
or 90~ o - ﬁ(r,e,g)‘;—"’fVH1(r)V0+G(r)V§

(VXB)XBZ‘LLO%VF, B(l‘,H,C)zBO+rBlc cos(@—N§)+0(r2)_ Expand in r<<;(—1.108



Garren & Boozer’s equations yield a practical algorithm

Inputs:
e Shape of the magnetic axis, with k # 0. (Determines QA vs QH.)
e 3 real numbers:

— I,: Current density on the axis. (Usually 0).
— 0d(0): Rotation of the elliptical flux surfaces at toroidal angle=0.
- 7, which controls elongation and field strength: B=B_ [1+rﬁcos(9—N§)+0(r2)J

e (Pressure doesn’t matter to this order.)

— Magnetic axis
— Normal

= N =0: Quasi-axisymmetry = N #0: Quasi-helical symmetry



The construction can be verified by running an MHD equilibrium code (VMEC)

which does not make the expansion.

Aspect ratio 10

Fourier harmonics By, , in Boozer coordinates

Aspect ratio 80

Fourier harmonics By, , in Boozer coordinates

T]

.05

).95

0.012
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0.08 1 —— Quasi-axisymmetric (n = 0) 0.010{ —— Quasi-axisymmetric (n =0)
—— Symmetry breaking (n#0) —— Symmetry breaking (n#0)
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0.006 A
0.04 ~
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0.002 -
Z [n
0.00 A 0.000 e |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
V's (Normalized effective minor radius) V's (Normalized effective minor radius)
W
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The axis expansion enables a combined (1-stage) coil + quasisymmetry
optimization using analytic derivatives

Good vacuum
| surfaces out to

§ 1.1 - Good quasisymmetry
i in core
@
2 1.0
(@]
©
With Andrew Giuliani, Georg Stadler, Antoine Cerfon (NYU) = 0.9 . . |
_ 0 10 50 60

20 30 40
(Toroidal angle ¢) / (2m)



