A new & faster method to generate transport-optimized stellarators

Matt Landreman1, Antione Cerfon2, Andrew Giuliani2, Per Helander3, Rogerio Jorge1, Gabe Plunk3, Wrick Sengupta2, Georg Stadler2, 1. University of Maryland 2. NYU 3. IPP

arXiv:1909.08919

arXiv:1908.10253

PPCF 61, 075001 (2019)
github.com/landreman/quasisymmetry
The conventional approach to finding quasisymmetric fields works but has shortcomings.

To confine trapped particles, we want magnetic field strength B to have quasisymmetry:

$$B = B(r, \theta - N\zeta)$$
The conventional approach to finding quasisymmetric fields works but has shortcomings.

To confine trapped particles, we want magnetic field strength B to have quasisymmetry:

$$B = B(r, \theta - N\zeta)$$

$$\min_X f(X)$$

Parameter space: $X = \text{toroidal boundary shapes}$

Objective: $f = \sum_{m,n \neq Nm} B_{m,n}^2 (r_0)$ where $B(r,\theta,\zeta) = \sum_{m,n} B_{m,n} (r) \exp(im\theta - in\zeta)$
The conventional approach to finding quasisymmetric fields works but has shortcomings.

To confine trapped particles, we want magnetic field strength B to have quasisymmetry:

$$B = B(r, \theta - N\zeta)$$

$$\min_X f(X)$$

Parameter space: $X =$ toroidal boundary shapes

Objective: $$f = \sum_{m,n \neq Nm} B_{m,n}^2(r_0)$$

where $$B(r,\theta,\zeta) = \sum_{m,n} B_{m,n}(r) \exp(im\theta - in\zeta)$$

- Computationally expensive.
- What is the size & character of the solution space?
- Result depends on initial condition, so cannot be sure you’ve found all solutions.
Expansion about the magnetic axis can be a powerful practical tool for generating quasisymmetric & omnigenous stellarators

- Accurate at least in the core of any configuration.
- Hasn’t been considered much since numerical optimization began in ~1980s.
Expansion about the magnetic axis can be a powerful practical tool for generating quasisymmetric & omnigenous stellarators

- Accurate at least in the core of *any* configuration.

- Hasn’t been considered much since numerical optimization began in ~1980s.

- Complements the traditional optimization approach:
 - Many orders of magnitude faster.
 - You can parameterize all possible solutions.
 - Can generate new initial conditions that can be refined by optimization.
We have translated analytic work by Garren & Boozer (1991) into practical algorithms.

Fundamental equations:

\[x(r, \theta, \zeta) = x_0(\zeta) + \text{Taylor series in } r = \sqrt{2\psi / B_0}, \]

\[(\nabla \times \mathbf{B}) \times \mathbf{B} = \mu_0 \nabla p, \]

\[\mathbf{B} = \nabla \psi \times \nabla \theta + i \nabla \zeta \times \nabla \psi = \beta \nabla \psi + I(\psi) \nabla \theta + G(\psi) \nabla \zeta, \quad B(r, \theta, \zeta) = B_0 \left[1 + r \bar{\eta} \cos(\theta - N \zeta) + O(r^2) \right] \]

Mercier's inverse expansion of \(\psi(x) \) gives equivalent results.

Rogerio Jorge & Wrick Sengupta.
We have translated analytic work by Garren & Boozer (1991) into practical algorithms.

Fundamental equations:

\[
\mathbf{x}(r, \theta, \zeta) = \mathbf{x}_0(\zeta) + \text{Taylor series in } r = \frac{\sqrt{2\psi}}{B_0}, \quad (\nabla \times \mathbf{B}) \times \mathbf{B} = \mu_0 \nabla p,
\]

\[
\mathbf{B} = \nabla \psi \times \nabla \theta + i \nabla \zeta \times \nabla \psi = \beta \nabla \psi + I(\psi) \nabla \theta + G(\psi) \nabla \zeta, \quad B(r, \theta, \zeta) = B_0 \left[1 + r\bar{\eta} \cos(\theta - N\zeta) + O(r^2) \right].
\]

Algorithm Inputs:

- **Shape of the magnetic axis, with \(\kappa \neq 0 \). (Determines QA vs QH.)**
- **3 numbers:**
 - \(I_2 \): Current density on the axis. (Usually 0).
 - Rotation of the elliptical flux surfaces at \(\zeta=0 \). (Usually 0).
 - \(\bar{\eta} \), which controls elongation and field strength.

Theorem: Given this data, a unique \(O(r) \) quasisymmetric solution exists.

\[\Rightarrow \text{The space of configurations that are quasisymmetric to } O(r) \text{ is precisely understood.}\]
We have translated analytic work by Garren & Boozer (1991) into practical algorithms.

Fundamental equations:

\[
x(r, \theta, \zeta) = x_0(\zeta) + \text{Taylor series in } r = \sqrt{2\psi / B_0}, \quad \left(\nabla \times \mathbf{B}\right) \times \mathbf{B} = \mu_0 \nabla \rho,
\]

\[
\mathbf{B} = \nabla \psi \times \nabla \theta + i \nabla \zeta \times \nabla \psi = \beta \nabla \psi + I(\psi) \nabla \theta + G(\psi) \nabla \zeta, \quad B(r, \theta, \zeta) = B_0 \left[1 + r\overline{\eta} \cos(\theta - N\zeta) + O(r^2) \right]
\]

Algorithm Inputs:

- Shape of the magnetic axis, with \(\kappa \neq 0 \). (Determines QA vs QH.)
- 3 numbers:
 - \(I_2 \): Current density on the axis. (Usually 0).
 - Rotation of the elliptical flux surfaces at \(\zeta = 0 \). (Usually 0).
 - \(\overline{\eta} \), which controls elongation and field strength.

Outputs:

- Shape of the surfaces around the axis. (Elongation & rotation of ellipses.)
- Rotational transform on axis.

Example $O(r)$ construction: quasi-axisymmetry

Inputs:
axis shape $R_0(\phi) = 1 + 0.045 \cos(3\phi)$ \[\text{m} \],
$I_2 = 0$, $\bar{\eta} = -0.9$.

$Z_0(\phi) = -0.045 \sin(3\phi)$ \[\text{m} \], $\sigma(0) = 0$.

Plug in $r = 0.1$ m.

Results:

Inputs:
- 0.8 0.9 1 1.1 $\text{R} \text{[m]}$
- 0 0.1 0.2 $\text{Z} \text{[m]}$

Results:
- $\eta = -0.9$
- $I_2 = 0$
- $\bar{\eta} = -0.9$
- $\sigma(0) = 0$

Plug in $r = 0.1$ m.
Extending the construction to $O(r^2)$, you get triangularity and better quasisymmetry.

$$\lambda = 0.42$$

$$\lambda = 1.14$$
The construction can be verified by running an MHD equilibrium code (VMEC) which does not make the expansion.

Fourier harmonics $B_{m,n}$ in Boozer coordinates [T]

- Requested $B_{1,0}$
- Quasi-axisymmetric ($n = 0$)
- Symmetry-breaking ($n \neq 0$)

Fourier harmonics $B_{m,n}$ in Boozer coordinates [T]

- Requested $B_{1,4}$
- Quasisymmetric ($n = 4m$)
- Symmetry-breaking ($n \neq 4m$)
The near-axis analysis can be generalized to construct omnigenous configurations.

\[G G \text{ Plunk, ML, and } P \text{ Helander, arXiv:1909.08919, Accepted in J Plasma Phys} \]

Omnigenity: \[\oint \left(\mathbf{v}_d \cdot \nabla \psi \right) dt = 0 \]

\(\forall \) magnetic moments & energies.
The fast construction enables brute-force surveys of “all” quasisymmetric fields.

Axis shape: $R_0(\phi) = 1 + \sum_{j=1}^{3} R_j \cos(j n_{fp} \phi)$, $Z_0(\phi) = \sum_{j=1}^{3} Z_j \sin(j n_{fp} \phi)$

2.4×10^8 configurations

Color $= N = \#$ of times B contours rotate around magnetic axis
Brute-force searching is already yielding some new configurations.

Quasi-helical symmetry with

1 field period

2 field periods
Brute-force searching is already yielding some new configurations.

Quasi-helical symmetry with

1 field period

2 field periods
The axis expansion enables a combined (1-stage) coil + quasisymmetry optimization using analytic derivatives.

\[
\min_x f(X)
\]

\[
X = \{ \text{Coil shapes, axis shape, } \bar{\eta} \}
\]

\[
f = \int \left| B_{\text{Biot-Savart}} - B_{\text{Near-axis quasisymmetry}} \right|^2
\]

\[
+ \left(\frac{l_{\text{axis}} - l_{\text{target}}}{l_{\text{target}}} \right)^2
\]

\[
+ \left(\text{other terms} \right)
\]

With Andrew Giuliani, Georg Stadler, Antoine Cerfon (NYU)
Conclusions

• The near-axis expansion enables transport-optimized stellarator configurations to be generated orders of magnitude faster than before.

• We now precisely understand the space of quasisymmetric fields to $O(r)$.

• There is hope of definitively identifying all regions of parameter space with practical quasisymmetric & omnigenous fields (near the axis).

• Much more can be done, e.g. gyrokinetic & MHD analysis near axis.
Conclusions

- The near-axis expansion enables transport-optimized stellarator configurations to be generated orders of magnitude faster than before.
- We now precisely understand the space of quasisymmetric fields to $O(r)$.
- There is hope of definitively identifying all regions of parameter space with practical quasisymmetric & omnigenous fields (near the axis).
- Much more can be done, e.g. gyrokinetic & MHD analysis near axis.
- We might discover qualitatively new magnetic configurations for fusion?
Extra slides
Advantages of stellarators: steady-state, no disruptions, no power recirculated for current drive, no Greenwald limit, don’t rely on plasma for confinement.
• Advantages of stellarators: steady-state, no disruptions, no power recirculated for current drive, no Greenwald limit, don’t rely on plasma for confinement.

• But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

$$\oint (v_d \cdot \nabla r) dt = 0 \text{ in axisymmetry, } \neq 0 \text{ in a general stellarator.}$$
• Advantages of stellarators: steady-state, no disruptions, no power recirculated for current drive, no Greenwald limit, don’t rely on plasma for confinement.

• But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

\[\oint (v_d \cdot \nabla r) dt = 0 \text{ in axisymmetry, } \neq 0 \text{ in a general stellarator.} \]

• A solution: quasisymmetry

\[B = B(r, \theta - N\zeta) \Rightarrow \oint (v_d \cdot \nabla r) dt = 0. \]

Guiding-center Lagrangian in Boozer coordinates depends on \((\theta, \zeta)\) only through \(B=|B|\).
• Advantages of stellarators: steady-state, no disruptions, no power recirculated for current drive, no Greenwald limit, don’t rely on plasma for confinement.

• But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

\[\int (v_d \cdot \nabla r) \, dt = 0 \text{ in axisymmetry, } \neq 0 \text{ in a general stellarator.} \]

• A solution: quasisymmetry

\[B = B(r, \theta - N\zeta) \quad \Rightarrow \quad \int (v_d \cdot \nabla r) \, dt = 0. \]

(Or, weaker conditions like omnigenity)

Boozer angles

Advantages of stellarators:
- Steady-state
- No disruptions
- No power recirculated for current drive
- No Greenwald limit
- Don’t rely on plasma for confinement.

But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

\[\int (v_d \cdot \nabla r) \, dt = 0 \text{ in axisymmetry, } \neq 0 \text{ in a general stellarator.} \]

A solution: quasisymmetry

\[B = B(r, \theta - N\zeta) \quad \Rightarrow \quad \int (v_d \cdot \nabla r) \, dt = 0. \]

(Or, weaker conditions like omnigenity)
• Advantages of stellarators: steady-state, no disruptions, no power recirculated for current drive, no Greenwald limit, don’t rely on plasma for confinement.

• But, alpha losses & neoclassical transport would be too large unless you carefully choose the geometry.

\[\oint (v_d \cdot \nabla r) \, dt = 0 \quad \text{in axisymmetry,} \quad \neq 0 \quad \text{in a general stellarator.} \]

• A solution: quasisymmetry

\[B = B(r, \theta - N\zeta) \quad \Rightarrow \quad \oint (v_d \cdot \nabla r) \, dt = 0. \]

(Or, weaker conditions like omnigenity)

• How do you find MHD equilibria with these properties?
• Theory for $O(r)$ quasisymmetry
• Comparison to optimized configurations
• The landscape of solutions
• $O(r)$ omnigenity
• $O(r^2)$ quasisymmetry
• Higher order: Calculate B_3 so symmetry-breaking can be minimized.

• Examine MHD & gyrokinetic stability using the expansion.

• Can anything be proved about the number or character of $O(r^2)$ solutions?

• Is there an analogous construction to give quasisymmetry at an off-axis surface?

• Check coil feasibility for newly discovered configurations.
Conclusions

• The near-axis expansion enables transport-optimized stellarator configurations to be generated orders of magnitude faster than before.

• We now precisely understand the space of quasisymmetric fields to $O(r)$.

• There is hope of definitively identifying all regions of parameter space with practical quasisymmetric & omnigenous fields (near the axis).

• Much more can be done, e.g. gyrokinetic & MHD analysis near axis.
The near-axis analysis can be generalized to construct omnigenous configurations.

Omnigenity: \[\oint_{\text{bounce}} (\mathbf{v}_d \cdot \nabla \psi) \, dt = 0 \quad \forall \text{ magnetic moments & energies}. \]

Implications for \(B(r,\theta,\zeta) \):
- All \(B \) contours close toroidally, helically, or poloidally.
- Distance along \(B \) between bounce points is the same for every field line on a flux surface.

[Cary & Shasharina (1997)]
The near-axis analysis can be generalized to construct omnigenous configurations

Omnigenous: \[\oint (v_d \cdot \nabla \psi) \, dt = 0 \quad \forall \text{magnetic moments & energies}. \]

Implications for \(B(r, \theta, \zeta)\):
- All \(B\) contours close toroidally, helically, or poloidally.
- Distance along \(B\) between bounce points is the same for every field line on a flux surface.

- Relates \(B(\psi, \theta, \zeta)\) to \(x_0, X, Y, Z\) near axis for any equilibrium, not just quasisymmetry.
The near-axis analysis can be generalized to construct omnigenous configurations

\[
\oint (v_d \cdot \nabla \psi) \, dt = 0 \quad \forall \text{ magnetic moments & energies.}
\]

Implications for \(B(r, \theta, \zeta):\)

- All \(B\) contours close toroidally, helically, or poloidally.
- Distance along \(B\) between bounce points is the same for every field line on a flux surface.

Garren \& Boozer (1991):

Relates \(B(\psi, \theta, \zeta)\) to \(x_0, X, Y, Z\) near axis for \textit{any} equilibrium, not just quasisymmetry.

\[(\text{Cary \& Shasharina } 1997) + (\text{Garren \& Boozer } 1991) = (\text{Plunk et al } 2019) \]
The near-axis analysis can be generalized to construct omnigenous configurations.

$1/\nu$ transport computed by VMEC + BOOZ_XFORM + NEO codes scales as expected
The $O(r^2)$ construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

\[
x(r, \vartheta, \zeta) = x_0(\zeta) + X(r, \vartheta, \zeta) n(\zeta) + Y(r, \vartheta, \zeta) b(\zeta) + Z(r, \vartheta, \zeta) t(\zeta)
\]

\[
X(r, \vartheta, \zeta) = r \left[X_{1c} \cos \vartheta + X_{1s} \sin \vartheta \right] + r^2 \left[X_{20} + X_{2c} \cos 2\vartheta + X_{2s} \sin 2\vartheta \right] + O(r^3)
\]

Same for Y & Z.

The $O(r^2)$ construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

\[\mathbf{x}(r, \vartheta, \zeta) = x_0(\zeta) + X(r, \vartheta, \zeta) n(\zeta) + Y(r, \vartheta, \zeta) b(\zeta) + Z(r, \vartheta, \zeta) t(\zeta) \]

\[X(r, \vartheta, \zeta) = r \left[X_{1c} \cos \vartheta + X_{1s} \sin \vartheta \right] + r^2 \left[X_{20} + X_{2c} \cos 2\vartheta + X_{2s} \sin 2\vartheta \right] + O(r^3) \]

Same for Y & Z.

- 3 new input parameters: p_2, B_{2c}, B_{2s}.

\[p(r) = p_0 + r^2 p_2 + O(r^4) \]

\[B(r, \vartheta, \varphi) = B_0 + rB_0 \bar{\eta} \cos \vartheta + r^2 \left[B_{20} + B_{2c} \cos 2\vartheta + B_{2s} \sin 2\vartheta \right] + O(r^3) \]
The $O(r^2)$ construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

$x(r, \vartheta, \zeta) = x_0(\zeta) + X(r, \vartheta, \zeta)n(\zeta) + Y(r, \vartheta, \zeta)b(\zeta) + Z(r, \vartheta, \zeta)t(\zeta)$

$X(r, \vartheta, \zeta) = r \left[X_{1c} \cos \vartheta + X_{1s} \sin \vartheta \right] + r^2 \left[X_{20} + X_{2c} \cos 2\vartheta + X_{2s} \sin 2\vartheta \right] + O(r^3)$

- 3 new input parameters: p_2, B_{2c}, B_{2s}.
- $p(r) = p_0 + r^2 p_2 + O(r^4)$
- $B(r, \vartheta, \phi) = B_0 + rB_0 \bar{\eta} \cos \vartheta + r^2 \left[B_{20} + B_{2c} \cos 2\vartheta + B_{2s} \sin 2\vartheta \right] + O(r^3)$

- Net loss of 1 degree of freedom. My approach: $B_{20}(\zeta)$ is an output. Need to adjust inputs so $B_{20}(\zeta) \approx$ constant.
The $O(r^2)$ construction allows triangularity, Shafranov shift, and more accurate quasisymmetry.

\[
x(r, \vartheta, \zeta) = x_0(\zeta) + X(r, \vartheta, \zeta)n(\zeta) + Y(r, \vartheta, \zeta)b(\zeta) + Z(r, \vartheta, \zeta)t(\zeta)
\]

\[
X(r, \vartheta, \zeta) = r\left[X_{1c} \cos \vartheta + X_{1s} \sin \vartheta \right] + r^2\left[X_{20} + X_{2c} \cos 2\vartheta + X_{2s} \sin 2\vartheta \right] + O(r^3)
\]

Same for Y & Z.

• 3 new input parameters: p_2, B_{2c}, B_{2s}.

\[
p(r) = p_0 + r^2 p_2 + O(r^4)
\]

\[
B(r, \vartheta, \varphi) = B_0 + rB_0 \bar{\eta} \cos \vartheta + r^2\left[B_{20} + B_{2c} \cos 2\vartheta + B_{2s} \sin 2\vartheta \right] + O(r^3)
\]

• Net loss of 1 degree of freedom. My approach: $B_{20}(\zeta)$ is an output. Need to adjust inputs so $B_{20}(\zeta) \approx$ constant.

• Minimize X_2 & Y_2, to maximize the r at which surfaces begin to self-intersect.
Expansion about the magnetic axis can be a powerful practical tool for generating quasisymmetric & omnigenous stellarators.

Complements the traditional optimization approach:

- Many orders of magnitude faster.
- You can parameterize all possible solutions.
- Can generate initial conditions that can be refined by optimization.
The construction can be fit to quasisymmetric stellarators designed by optimization

- Adopt the same axis shape.
- Fit $\bar{\eta}$ to minimize difference in the shapes of a near-axis surface.
The direct construction gives an accurate match to the on-axis rotational transform in quasisymmetric stellarators designed by optimization.

- Adopt the same axis shape.
- Fit $\bar{\eta}$ to minimize difference in the shapes of a near-axis surface.
The direct construction gives an accurate match to the near-axis surface shapes of quasisymmetric stellarators designed by optimization.

The direct construction gives an accurate match to the near-axis surface shapes of quasisymmetric stellarators designed by optimization.

Dotted: VMEC equilibrium
Solid: Garren-Boozer construction

r/a=0.1
r/a=0.2
We now have a recipe for generating quasisymmetric VMEC input files: Set r to a small finite value a.

Inputs:
- Axis shape $R_0(\phi) = 1 + 0.32 \cos(4\phi)$,
- $Z_0(\phi) = 0.35 \sin(4\phi)$,
- $I_2 = 0$,
- $\bar{\eta} = 1.5$,
- $\sigma(0) = 0$,
- $R/a = 18$.

Results:
We now have a recipe for generating quasisymmetric VMEC input files:

Set \(r \) to a small finite value \(\alpha \).

Inputs:

axis shape \(R_0(\phi) = 1 + 0.32 \cos(4\phi) \),
\(Z_0(\phi) = 0.35 \sin(4\phi) \),

\(\sigma(0) = 0 \), \(I_2 = 0 \), \(\bar{\eta} = 1.5 \), \(R/a = 18 \).

Results:

\(\eta = 1.5 \), \(R/a = 18.0 \).
The construction can be verified by comparing to VMEC + BOOZ_XFORM.

The plots show the aspect ratio 18 and 80 Fourier harmonics $B_{m,n}$ in Boozer coordinates. The graphs display the normalized effective minor radius r/a across different values of ϕ, with red and blue lines indicating quasisymmetric and symmetry breaking modes, respectively.

Inputs:
- $I_2 = 0$
- $\sigma_0(\phi) = 0$

Results:
- $\eta = 1.5$
- $R/a = 18$.

The plots also include annotations for $\phi = 3\pi/8$.
Alternative method to generate a finite-thickness boundary: find coils to make a skinny surface, then see what you get outside.

$$\frac{R}{a} = 5$$

$$\phi = 0$$

$$\phi = \pi / 6$$

$$\phi = \pi / 3$$
Alternative method to generate a finite-thickness boundary: find coils to make a skinny surface, then see what you get outside.

\[\frac{R}{a} = 5 \]

\[\phi = 0 \]

\[\phi = \pi / 6 \]

\[\phi = \pi / 3 \]
J × B = \nabla p \implies \nabla_\perp B = B\kappa n

So B contours rotate about axis with the same topology as n.
Quasi-axisymmetry vs quasi-helical symmetry is determined purely by the axis shape

\[\mathbf{J} \times \mathbf{B} = \nabla \rho \quad \Rightarrow \quad \nabla \perp \mathbf{B} = B \kappa \mathbf{n} \]

So \(B \) contours rotate about axis with the same topology as \(\mathbf{n} \).

\[\mathbf{n} \text{ does not rotate about the axis as you follow the axis around.} \]

\[\Rightarrow \quad \text{Quasi-axisymmetry} \]

\[B = B(r, \theta) \]

\[\mathbf{n} \text{ rotates about the axis 4 times as you follow the axis around.} \]

\[\Rightarrow \quad \text{Quasi-helical symmetry} \]

\[B = B(r, \theta - 4\zeta) \]
The fast construction enables brute-force surveys of "all" quasisymmetric fields.

Axis shape:
\[R_0(\phi) = 1 + \sum_{j=1}^{3} R_j \cos(jn_{fp} \phi), \quad Z_0(\phi) = 1 + \sum_{j=1}^{3} Z_j \sin(jn_{fp} \phi) \]

2.4x10^8 configurations

Color = # of times B contours rotate around magnetic axis
The fast construction enables brute-force surveys of "all" quasisymmetric fields.

Axis shape: \(R_0(\phi) = 1 + \sum_{j=1}^{3} R_j \cos(jn_{fp}\phi), \quad Z_0(\phi) = 1 + \sum_{j=1}^{3} Z_j \sin(jn_{fp}\phi) \n\)

4x10^6 configurations

Quasi-axisymmetric solutions only

Color = \(n_{fp} \) (discrete rotational symmetry)
The construction enables fast scans over parameter space.

E.g. Scan over \((R_{0c}, Z_{0s}, \bar{\eta}) \) where magnetic axis shape is

\[
R_0(\phi) = 1 + R_{0c} \cos(4\phi)
\]
\[
Z_0(\phi) = Z_{0s} \sin(4\phi)
\]

274,560 solutions generated in <30s on a laptop.

Quasi-axisymmetry

Quasi-helical symmetry
All stellarators built to date have ‘stellarator symmetry’, which is unrelated to quasisymmetry.
You can make a quasi-axisymmetric stellarator without stellarator symmetry.

Inputs:
axis shape \(R_0(\phi) = 1 + 0.042\cos(3\phi) \),
\(Z_0(\phi) = -0.042\sin(3\phi) - 0.025\cos(3\phi) \),
\(I_2 = 0 \),
\(\bar{\eta} = -1.1 \),
\(\sigma(0) = -0.6 \),
\(\eta = -1.1 \).

Results:
\(R/a = 10 \)
You can make a quasi-axisymmetric stellarator without stellarator symmetry.

Aspect ratio 10

Fourier harmonics $B_{m,n}$ in Boozer coordinates

- Quasi-axisymmetric (m, n) modes
- Symmetry breaking (m, n) modes

Solid = $\cos(m\theta - n\zeta)$ modes
Dashed = $\sin(m\theta - n\zeta)$ modes

Inputs:

- 0.7 0.8 0.9 1 1.1 1.2

Results:

- $(R/a = 10)$

Aspect ratio 80

Fourier harmonics $B_{m,n}$ in Boozer coordinates

- Quasi-axisymmetric (m, n) modes
- Symmetry breaking (m, n) modes

Solid = $\cos(m\theta - n\zeta)$ modes
Dashed = $\sin(m\theta - n\zeta)$ modes

Inputs:

- 0.7 0.8 0.9 1 1.1 1.2

Results:

- $(R/a = 80)$
We will expand in the skinniness of the inner flux surfaces.

Define effective radius r by $\Psi = \pi r^2 B_{axis}$.

"Aspect ratio" $\frac{R}{r} \gg 1$
Theory: Expand position vector using Frenet frame, equate 2 representations of B.

Frenet frame (t, n, b):
\[\frac{\partial r_0}{\partial \ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n \]

$r_0 =$ magnetic axis, $\kappa =$ curvature, $\tau =$ torsion

$t =$ tangent, $n =$ normal, $b =$ binormal
Theory: Write position vector using Frenet frame

Frenet frame \((t, n, b)\): \[
\frac{d\mathbf{r}_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

\(\mathbf{r}_0\) = magnetic axis, \(\kappa\) = curvature, \(\tau\) = torsion, \(t\) = tangent, \(n\) = normal, \(b\) = binormal

\[
\mathbf{r}(r, \theta, \zeta) = \mathbf{r}_0(\zeta) + X(r, \theta, \zeta)\mathbf{n}(\zeta) + Y(r, \theta, \zeta)\mathbf{b}(\zeta) + Z(r, \theta, \zeta)\mathbf{t}(\zeta)
\]
Theory: Write position vector using Frenet frame, expand in small $r = (\text{flux})^{1/2}$

Frenet frame $(\mathbf{t}, \mathbf{n}, \mathbf{b})$: \[
\frac{d\mathbf{r}_0}{d\ell} = \mathbf{t}, \quad \frac{d\mathbf{t}}{d\ell} = \kappa \mathbf{n}, \quad \frac{d\mathbf{n}}{d\ell} = -\kappa \mathbf{t} + \tau \mathbf{b}, \quad \frac{d\mathbf{b}}{d\ell} = -\tau \mathbf{n}
\]

$r_0 =$ magnetic axis, $\kappa =$ curvature, $\tau =$ torsion, $\mathbf{t} =$ tangent, $\mathbf{n} =$ normal, $\mathbf{b} =$ binormal

\[
\mathbf{r}(r, \theta, \zeta) = \mathbf{r}_0(\zeta) + X(r, \theta, \zeta)\mathbf{n}(\zeta) + Y(r, \theta, \zeta)\mathbf{b}(\zeta) + Z(r, \theta, \zeta)\mathbf{t}(\zeta)
\]

\[
= \mathbf{r}_0(\zeta) + rX_{1c}(\zeta)\cos \theta \mathbf{n}(\zeta) + r\left[Y_{1s}(\zeta)\sin \theta + Y_{1c}(\zeta)\cos \theta \right] \mathbf{b}(\zeta) + O(r^2)
\]

Using magnetohydrodynamic equilibrium $(\mathbf{J} \times \mathbf{B} = \nabla p)$
Theory: Write position vector using Frenet frame, expand in small $r = (\text{flux})^{1/2}$

Frenet frame (t, n, b):
\[
\frac{dr_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

$r_0 =$ magnetic axis, $\kappa =$ curvature, $\tau =$ torsion, $t =$ tangent, $n =$ normal, $b =$ binormal

\[
r(r, \theta, \zeta) = r_0(\zeta) + X(r, \theta, \zeta) n(\zeta) + Y(r, \theta, \zeta) b(\zeta) + Z(r, \theta, \zeta) t(\zeta)
\]

\[
= r_0(\zeta) + rX_{1c}(\zeta) \cos \theta n(\zeta) + r \left[Y_{1s}(\zeta) \sin \theta + Y_{1c}(\zeta) \cos \theta \right] b(\zeta) + O(r^2)
\]

\[
X_{1c}(\zeta) = \frac{\eta}{\kappa(\zeta)}, \quad Y_{1s}(\zeta) = \frac{\kappa(\zeta)}{\eta}, \quad Y_{1c}(\zeta) = \frac{\sigma(\zeta) \kappa(\zeta)}{\eta}
\]

Toroidal angle $\zeta \propto \text{arclength}$, $\eta =$ constant: $B = B_0 \left[1 + r\eta \cos(\theta - N\phi) + O(r^2) \right]$}

\[
\frac{d\sigma}{d\zeta} + \eta \left[\frac{\eta^4}{\kappa^4} + 1 + O^2 \right] - 2 \frac{\eta^2}{\kappa^2} \left[I_2 - \tau \right] = 0
\]

$I_2 =$ current density
Theory: Expand position vector using Frenet frame, equate 2 representations of B.

Frenet frame (t,n,b):

\[\frac{\partial r_0}{\partial \ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n \]

r_0 = magnetic axis, κ = curvature, τ = torsion
\[t = \text{tangent}, \quad n = \text{normal}, \quad b = \text{binormal} \]

\[r(r,\theta,\zeta) = r_0(\zeta) + X(r,\theta,\zeta)n(\zeta) + Y(r,\theta,\zeta)b(\zeta) + Z(r,\theta,\zeta)t(\zeta) \]
Theory: Expand position vector using Frenet frame, equate 2 representations of B.

Frenet frame \((t, n, b) \):
\[
\frac{\partial r_0}{\partial \ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

\(r_0 = \) magnetic axis, \(\kappa = \) curvature, \(\tau = \) torsion
\(t = \) tangent, \(n = \) normal, \(b = \) binormal

\[
\vec{r}(r, \theta, \zeta) = r_0(\zeta) + X(r, \theta, \zeta)n(\zeta) + Y(r, \theta, \zeta)b(\zeta) + Z(r, \theta, \zeta)t(\zeta)
\]

\[
X(r, \theta, \zeta) = r \left[X_{1s}(\zeta)\sin\theta + X_{1c}(\zeta)\cos\theta \right] + O(r^2). \quad \text{Same for} \ Y, Z.
\]
Theory: Expand position vector using Frenet frame, equate 2 representations of B.

Frenet frame \((t, n, b) \):

\[
\frac{dr_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

- \(r_0 \) = magnetic axis, \(\kappa \) = curvature, \(\tau \) = torsion
- \(t \) = tangent, \(n \) = normal, \(b \) = binormal

\[
r(r, \theta, \zeta) = r_0(\zeta) + X(r, \theta, \zeta)n(\zeta) + Y(r, \theta, \zeta)b(\zeta) + Z(r, \theta, \zeta)t(\zeta)
\]

\[
X(r, \theta, \zeta) = r\left[X_{1s}(\zeta)\sin \theta + X_{1c}(\zeta)\cos \theta \right] + O(r^2). \quad \text{Same for } Y, Z.
\]

\[
B = B_r \nabla r + B_\theta \nabla \theta + B_\zeta \nabla \zeta, \quad B = \nabla \psi \times \nabla \theta + i \nabla \zeta \times \nabla \psi
\]
Theory: Expand position vector using Frenet frame, equate 2 representations of B.

Frenet frame $(\mathbf{t}, \mathbf{n}, \mathbf{b})$: \[
\begin{align*}
\frac{\partial \mathbf{r}_0}{\partial \ell} &= \mathbf{t}, & \frac{d \mathbf{t}}{d \ell} &= \kappa \mathbf{n}, & \frac{d \mathbf{n}}{d \ell} &= -\kappa \mathbf{t} + \tau \mathbf{b}, & \frac{d \mathbf{b}}{d \ell} &= -\tau \mathbf{n}
\end{align*}
\]

r_0 = magnetic axis, κ = curvature, τ = torsion
t = tangent, \mathbf{n} = normal, \mathbf{b} = binormal

\[
\mathbf{r}(r, \theta, \zeta) = \mathbf{r}_0(\zeta) + X(r, \theta, \zeta) \mathbf{n}(\zeta) + Y(r, \theta, \zeta) \mathbf{b}(\zeta) + Z(r, \theta, \zeta) \mathbf{t}(\zeta)
\]

$X(r, \theta, \zeta) = r \left[X_{1s}(\zeta) \sin \theta + X_{1c}(\zeta) \cos \theta \right] + O(r^2)$. Same for Y, Z.

$\mathbf{B} = B_r \nabla r + B_\theta \nabla \theta + B_\zeta \nabla \zeta$, \quad $\mathbf{B} = \nabla \psi \times \nabla \theta + i \nabla \zeta \times \nabla \psi$

Dual relations: $\nabla r = \left[\frac{\partial \mathbf{r}}{\partial r} \cdot \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \zeta} \right]^{-1} \frac{\partial \mathbf{r}}{\partial \theta} \times \frac{\partial \mathbf{r}}{\partial \zeta}$, cyclic permutations.
The rotational transform computed by VMEC converges to the value computed by the Garren-Boozer approach.
The ODE is solved with spectral accuracy using pseudospectral discretization + Newton iteration.

Uniform grid in ϕ with N points: $\phi_1 = 0$, $\phi_2 = 2\pi / (Nn_{fp})$, ..., $\phi_N = 2\pi(N - 1) / (Nn_{fp})$.

Vector of N unknowns: \(\left(t, \sigma(\phi_2), \sigma(\phi_3), ..., \sigma(\phi_N) \right)^T \)

N equations: impose ODE at ϕ_1, ..., ϕ_N.

\[\frac{d\sigma}{d\phi} \rightarrow D\sigma \quad \text{where } D \text{ is a pseudospectral differentiation matrix.} \]
Of 10 configurations examined, the fit is less good for 2
The configurations with relatively poor fits can be explained by their larger symmetry-breaking.
The conventional approach to finding quasisymmetric fields works but has shortcomings.

Want magnetic field strength B to have quasisymmetry:

$$B = B(r, \theta - N\zeta)$$
The conventional approach to finding quasisymmetric fields works but has shortcomings

Want magnetic field strength B to have quasisymmetry:

$$B = B(r, \theta - N\zeta)$$

$$\min_x f(X)$$

Parameter space: $X = \text{toroidal boundary shapes}$

Objective:

$$f = \sum_{m,n \neq Nm} B_{m,n}^2(r_0)$$

where

$$B(r,\theta,\zeta) = \sum_{m,n} B_{m,n}(r)\exp(i\theta - in\zeta)$$
The conventional approach to finding quasisymmetric fields works but has shortcomings

Want magnetic field strength B to have quasisymmetry: $B = B(r, \theta - N\zeta)$

$$\min_x f(X)$$

Parameter space: $X = \text{toroidal boundary shapes}$

Objective: $f = \sum_{m,n \neq Nm} B_{m,n}^2 (r_0)$ where $B(r,\theta,\zeta) = \sum_{m,n} B_{m,n}(r) \exp(i m\theta - i n\zeta)$

- Computationally expensive.
- What is the size & character of the solution space?
- Result depends on initial condition, so cannot be sure you’ve found all solutions.
Alternative: expand equations near the magnetic axis

A key ingredient of the theory is the Frenet frame of the magnetic axis

\[
\text{Frenet frame } (t, n, b) : \quad \frac{dx_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

\(x_0=\text{magnetic axis}, \quad \kappa=\text{curvature}, \quad \tau=\text{torsion}, \quad t=\text{tangent}, \quad n=\text{normal}, \quad b=\text{binormal}

A key ingredient of the theory is the Frenet frame of the magnetic axis

\[
\text{Frenet frame } (t, n, b): \quad \frac{dx_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

\(x_0\) = magnetic axis, \(\kappa\) = curvature, \(\tau\) = torsion, \(t\) = tangent, \(n\) = normal, \(b\) = binormal

Garren & Boozer (1991): Write position vector x using axis’s Frenet frame, expand in small r

Frenet frame (t, n, b):

$$\frac{dx_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n$$

x_0 = magnetic axis, κ = curvature, τ = torsion, t = tangent, n = normal, b = binormal

$$x(r, \theta, \zeta) = x_0(\zeta) + X(r, \theta, \zeta)n(\zeta) + Y(r, \theta, \zeta)b(\zeta) + Z(r, \theta, \zeta)t(\zeta), \quad r \propto \sqrt{\psi}$$
The size of the space of fields that are quasisymmetric to $O(r)$ can be precisely understood.

Given $P(\zeta) > 0$, $Q(\zeta)$, and $\sigma(0)$, with $P(\zeta)$ and $Q(\zeta)$

2π-periodic, bounded, and integrable, a solution to

$$\frac{d\sigma}{d\zeta} + i(P + \sigma^2) + Q = 0$$

(1)

is a pair $\{i, \sigma(\zeta)\}$ solving (1) where $\sigma(\zeta)$ is 2π-periodic.
The size of the space of fields that are quasisymmetric to $O(r)$ can be precisely understood.

Given $P(\zeta)>0$, $Q(\zeta)$, and $\sigma(0)$, with $P(\zeta)$ and $Q(\zeta)$

2π-periodic, bounded, and integrable, a solution to

$$\frac{d\sigma}{d\zeta}+i(P+\sigma^2)+Q=0 \quad (1)$$

is a pair $\{i, \sigma(\zeta)\}$ solving (1) where $\sigma(\zeta)$ is 2π-periodic.

Theorem: A solution exists and it is unique.

ML, Sengupta, and Plunk (2019). Probably an earlier reference?
The size of the space of fields that are quasisymmetric to $O(r)$ can be precisely understood.

Given $P(\zeta)>0$, $Q(\zeta)$, and $\sigma(0)$, with $P(\zeta)$ and $Q(\zeta)$ 2π-periodic, bounded, and integrable, a solution to

$$\frac{d\sigma}{d\zeta} + i(P + \sigma^2) + Q = 0 \quad (1)$$

is a pair $\{i, \sigma(\zeta)\}$ solving (1) where $\sigma(\zeta)$ is 2π-periodic.

Theorem: A solution exists and it is unique.

\Rightarrow Numerical solution is very robust.
The symmetry-breaking Fourier amplitudes scale as predicted.

\[S = \frac{1}{B_{0,0}} \sqrt{\sum_{m/n \neq M/N} B_{m,n}^2} \]

Predicted scaling: \(1/A^2 \)

- Quasi-axisymmetric example
- Quasi-helically symmetric example
Quasi-helically symmetric configurations

Dotted: VMEC equilibrium
Solid: Garren-Boozer construction

HSX

L-P Ku (2011)

Dotted: VMEC equilibrium
Solid: Garren-Boozer construction
Quasi-axisymmetric configurations

Dotted: VMEC equilibrium
Solid: Garren-Boozer construction

NCSX

ESTELL
Omnigenity is a weaker confinement condition than quasisymmetry.

Definition of omnigenity: The radial drift has a time average of 0 for all particles.

$$\oint (v_d \cdot \nabla r) dt = 0 \quad \forall \text{ magnetic moments & energies.}$$

Omnigenity is a weaker confinement condition than quasisymmetry.

Definition of omnigenity: The radial drift has a time average of 0 for all particles.

\[\oint (v_d \cdot \nabla r) dt = 0 \quad \forall \text{ magnetic moments & energies.} \]
The near-axis analysis can be generalized to construct omnigenous configurations

$G G$ Plunk, ML, and P Helander, *In preparation*

Quasi-poloidal symmetry is not possible near the axis, but omnigenity is.

$\nabla B = B k n$
• Construction for $O(r)$ quasisymmetry
 – Theory, & the number of solutions
 – Numerical results
 – Comparison to “real experiments”
 – The landscape of solutions

• Extensions
 – Omnigenity
 – $O(r^2)$ quasisymmetry
We can only “half-specify” the axis shape:

- A curve like the axis is given by 2 functions, e.g. \{curvature, torsion\} or \{R(\phi), Z(\phi)\}.

- At $O(r)$, (# unknowns)-(# equations)=2 so we can specify (almost) any axis. But at $O(r^2)$, (# unknowns)-(# equations)=1 so we cannot.
Extending the construction to higher order is tricky

- We can only “half-specify” the axis shape:
 - A curve like the axis is given by 2 functions, e.g. \(\{ \text{curvature, torsion} \} \) or \(\{ R(\phi), Z(\phi) \} \).
 - At \(O(r) \), \((\# \text{ unknowns})-(\# \text{ equations})=2\) so we can specify (almost) any axis. But at \(O(r^2) \), \((\# \text{ unknowns})-(\# \text{ equations})=1\) so we cannot.

- No existence & uniqueness theorem for solutions (yet).

- Magnetic shear (variation of rotational transform) does not appear until \(O(r^3) \).
We are working to extend the construction to $O(r^2)$, enabling greater shaping.

Axisymmetric example:

- $\cos \theta$ mode amplitude in B
- $\cos 2\theta$ mode amplitude in B

Graphs showing:
- Achieved
- Requested

Normalized minor radius r/r_{max}

- Garren-Boozer construction
- Calculation without an r expansion (VMEC)

Contour lines

θ_{Boozer} curves
We now have a recipe for generating quasisymmetric VMEC input files:
Set r to a small finite value a.

Inputs:
axis shape $R_0(\phi) = 1 + 0.265\cos(4\phi)$,
$Z_0(\phi) = -0.21\sin(4\phi),
I_z = 0,
\bar{\eta} = -2.25,
\sigma(0) = 0,
R / a = 40.$

Results:

![Image of magnetic field lines and phase portraits]
The construction can be verified by comparing to VMEC + BOOZ_XFORM.

\[
\begin{align*}
R_0 = & 1 + 0.265 \cos 4 \phi, \\
Z_0 = & -0.21 \sin 4 \phi,
\end{align*}
\]

Inputs:
\[
\begin{align*}
0.6 & \quad 0.8 & \quad 1 & \quad 1.2 \\
-0.3 & -0.2 & -0.1 & 0 & 0.1 & 0.2 & 0.3
\end{align*}
\]

Results:
\[
R/a = 40
\]
The fast construction enables brute-force surveys of “all” quasisymmetric fields.

Axis shape:
\[
R_0(\phi) = 1 + \sum_{j=1}^{3} R_j \cos(j n_{fp} \phi), \quad Z_0(\phi) = 1 + \sum_{j=1}^{3} Z_j \sin(j n_{fp} \phi)
\]

2.4x10^8 configurations

Maximum axis curvature

Rotational transform

Color = # of times B contours rotate around magnetic axis
The fast construction enables brute-force surveys of “all” quasisymmetric fields

Axis shape: \(R_0(\phi) = 1 + \sum_{j=1}^{3} R_j \cos(j n_{fp} \phi), \quad Z_0(\phi) = 1 + \sum_{j=1}^{3} Z_j \sin(j n_{fp} \phi) \)

2.4x10^8 configurations

Color = # of times B contours rotate around magnetic axis
Quasisymmetric experiments to date actually have significant departures from symmetry.
Example of the $O(r^2)$ construction

Inputs:

axis shape $R_0(\phi) = 1 + 0.173 \cos(2\phi) + 0.0168 \cos(4\phi) + 0.00101 \cos(6\phi)$,

$Z_0(\phi) = 0.158 \sin(2\phi) + 0.0165 \sin(4\phi) + 0.000985 \sin(6\phi)$,

$I_2 = 0$, $\sigma(0) = 0$, $\bar{\eta} = 0.632$, $p_2 = 0$, $B_{2c} = -0.158$, $B_{2s} = 0$, $R/a = 10$
Example of the \(O(r^2)\) construction

Inputs:

\[
R_0(\phi) = 1 + 0.173\cos(2\phi) + 0.0168\cos(4\phi) + 0.00101\cos(6\phi),
\]
\[
Z_0(\phi) = 0.158\sin(2\phi) + 0.0165\sin(4\phi) + 0.000985\sin(6\phi),
\]
\[I_2 = 0, \quad \sigma(0) = 0, \quad \bar{\eta} = 0.632, \quad p_2 = 0, \quad B_{2c} = -0.158, \quad B_{2s} = 0, \quad R/a = 10
\]

Results: \(\iota = 0.424\)
The $O(r^2)$ construction allows triangularity and more accurate quasisymmetry.

\[
\mathbf{x}(r, \vartheta, \zeta) = \mathbf{x}_0(\zeta) + X(r, \vartheta, \zeta)\mathbf{n}(\zeta) + Y(r, \vartheta, \zeta)\mathbf{b}(\zeta) + Z(r, \vartheta, \zeta)\mathbf{t}(\zeta)
\]

\[
X(r, \vartheta, \zeta) = r\left[X_{1c} \cos \vartheta + X_{1s} \sin \vartheta \right] + r^2\left[X_{20} + X_{2c} \cos 2\vartheta + X_{2s} \sin 2\vartheta \right] + O(r^3)
\]

- 3 new input parameters: p_2, B_{2c}, B_{2s}.

\[
p(r) = p_0 + r^2 p_2 + O(r^4)
\]

\[
B(r, \vartheta, \phi) = B_0 + rB_0 \bar{\eta} \cos \vartheta + r^2\left[B_{20} + B_{2c} \cos 2\vartheta + B_{2s} \sin 2\vartheta \right] + O(r^3)
\]

- Net loss of 1 degree of freedom. My approach: $B_{20}(\zeta)$ is an output. Need to adjust inputs so $B_{20}(\zeta) \approx$ constant.

- Shafranov shift appears at this order. Matches textbook tokamak result (e.g. Wesson, Hazeltine & Meiss):

\[
\left(R - R_0 - \Delta \right)^2 + Z^2 = r^2, \quad \Delta = r^2\left(\frac{1}{8R_0} - \frac{\mu_0 p_2 R_0}{2l^2 B_0^2} \right)
\]

Frenet frame (t,n,b):
\[
\frac{dx_0}{d\ell} = t, \quad \frac{dt}{d\ell} = \kappa n, \quad \frac{dn}{d\ell} = -\kappa t + \tau b, \quad \frac{db}{d\ell} = -\tau n
\]

$x_0 =$ magnetic axis, \hspace{0.5cm} $\kappa =$ curvature, \hspace{0.5cm} $\tau =$ torsion, \hspace{0.5cm} $t =$ tangent, \hspace{0.5cm} $n =$ normal, \hspace{0.5cm} $b =$ binormal

Results for quasisymmetry through $O(r)$:

\[
x(r,\theta,\zeta) = x_0(\zeta) + r \left[\frac{\kappa(\zeta)}{\kappa'(\zeta)} \cos \vartheta n(\zeta) + r \left[\frac{\kappa(\zeta)}{\kappa'(\zeta)} \sin \vartheta + r \frac{\kappa(\zeta)}{\kappa'(\zeta)} \cos \vartheta \right] b(\zeta) + O(r^2) \right]
\]

Toroidal angle $\zeta \propto$ axis arclength ℓ, \hspace{0.5cm} $\bar{\eta} =$ constant:

\[
B = B_0 \left[1 + r\bar{\eta} \cos \vartheta + O(r^2) \right]
\]

\[
\frac{d\vartheta}{d\zeta} + \iota \left[\frac{\bar{\eta}^4}{\kappa^4} + 1 + O^2 \right] - 2 \frac{\bar{\eta}^2}{\kappa^2} \left[I_2 - \tau \right] = 0
\]

$\vartheta = \theta - N \zeta$, \hspace{0.5cm} $\iota =$ rotational transform on axis, \hspace{0.5cm} $I_2 =$ current density on axis
The size of the space of fields that are quasisymmetric to $O(r)$ can be precisely understood.

Inputs:
- Shape of the magnetic axis. (Determines QA vs QH.)
- 3 real numbers:
 - I_2: Current density on the axis. (Usually 0).
 - $\sigma(0)$: Rotation of the elliptical flux surfaces at toroidal angle=0.
 - $\bar{\eta}$, which controls elongation and field strength: $B = B_0 \left[1 + r \bar{\eta} \cos \vartheta + O(r^2) \right]$
- (Pressure doesn’t matter to this order.)

Theorem: Given this data, a quasisymmetric solution exists, & it is unique.

\[
\frac{d\sigma}{d\zeta} + t \left[\frac{\bar{\eta}^4}{\kappa^4} + 1 + O^2 \right] - 2 \frac{\bar{\eta}^2}{\kappa^2} \left[I_2 - \tau \right] = 0
\]
Conclusions

• The equations for quasisymmetric magnetic fields can be solved directly and rapidly if you expand about the magnetic axis.

• The resulting construction can be useful for generating new initial conditions for optimization.

• We precisely understand the size of the space of magnetic fields that are quasisymmetric near the axis (to $O(r)$).

• There is hope of definitively identifying all regions of parameter space with practical quasisymmetric fields (near the axis).

• We can discover qualitatively new magnetic configurations for fusion.
Parameter space (independent variables)

- Coil shapes: arbitrary 3D curves
- Coil currents
- Input parameters of the Garren-Boozer near-axis quasisymmetry equations:
 - Shape of magnetic axis (independent from the axis actually produced by coils!)
 - \(\bar{\eta} \)

 \[
 B = B_0 \left[1 + r\bar{\eta}\cos(\theta - N\zeta) + O\left(r^2\right) \right]
 \]
Objective function

\[
f = \left(\frac{L_c - L_{c0}}{L_{c0}} \right)^2 + \left(\frac{L_a - L_{a0}}{L_{a0}} \right)^2 + \left(\frac{\iota - \iota_0}{\iota_0} \right)^2
\]

\[
+ \oint_{\text{Garren-Boozer axis}} d\ell \left| \mathbf{B}_{\text{coils}} - \mathbf{B}_{\text{Garren-Boozer}} \right|^2 + \oint_{\text{Garren-Boozer axis}} d\ell \left| \nabla \mathbf{B}_{\text{coils}} - \nabla \mathbf{B}_{\text{Garren-Boozer}} \right|^2
\]

\begin{align*}
L_c & = \text{Total length of coils} \\
L_{c0} & = \text{Target length of coils} \\
L_a & = \text{Length of Garren-Boozer magnetic axis} \\
L_{a0} & = \text{Target length of magnetic axis} \\
\iota & = \text{Rotational transform from Garren-Boozer} \\
\iota_0 & = \text{Target rotational transport}
\end{align*}

Differentiate Biot-Savart law
We can now numerically demonstrate Garren & Boozer’s scaling: $B_{\text{nonsymm}} \sim 1/A^3$

$$S = \frac{1}{B_0} \sqrt{\sum_{m,n \neq Nm} B_{m,n}^2}$$

= Symmetry-breaking

$\sum_{m,n \neq Nm} S_{m,n}$

S for constructed configs

$\propto 1/A^3$

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

10^{-6}

Aspect ratio A

10^1

10^2

QA

QH

10^{-1}

10^{-2}

10^{-3}

10^{-4}

10^{-5}

Aspect ratio A

10^1

10^2
We can now numerically demonstrate Garren & Boozer’s scaling: $B_{\text{nonsymm}} \sim 1/A^3$

$$S = \frac{1}{B_0} \sqrt{\sum_{m,n \neq Nm} B_{m,n}^2} = \text{Symmetry-breaking}$$

$S = \frac{1}{B_0} \sqrt{\sum_{m,n \neq Nm} B_{m,n}^2} = \text{Symmetry-breaking}$

Q_A

Q_H

Aspect ratio A

Aspect ratio A
Quasisymmetry can be achieved to any desired precision, e.g. $B_{\text{nonsymm}} \leq B_{\text{Earth}}$
Garren & Boozer (1991): Write position vector x using axis's Frenet frame, expand in small r

Frenet frame (t, n, b):
\[
\begin{align*}
\frac{dx_0}{d\ell} &= t, \\
\frac{dt}{d\ell} &= \kappa n, \\
\frac{dn}{d\ell} &= -\kappa t + \tau b, \\
\frac{db}{d\ell} &= -\tau n
\end{align*}
\]

$x_0 = $ magnetic axis, \quad $\kappa = $ curvature, \quad $\tau = $ torsion, \quad $t = $ tangent, \quad $n = $ normal, \quad $b = $ binormal

\[
\begin{align*}
x(r, \theta, \zeta) &= x_0(\zeta) + X(r, \theta, \zeta)n(\zeta) + Y(r, \theta, \zeta)b(\zeta) + Z(r, \theta, \zeta)t(\zeta), \\
r &= \sqrt{2\psi / B_0}
\end{align*}
\]
Garren & Boozer (1991): Write position vector \(\mathbf{x} \) using axis's Frenet frame, expand in small \(r \)

Frenet frame \((\mathbf{t}, \mathbf{n}, \mathbf{b}) \):

\[
\frac{d\mathbf{x}_0}{d\ell} = \mathbf{t}, \quad \frac{d\mathbf{t}}{d\ell} = \kappa \mathbf{n}, \quad \frac{d\mathbf{n}}{d\ell} = -\kappa \mathbf{t} + \tau \mathbf{b}, \quad \frac{d\mathbf{b}}{d\ell} = -\tau \mathbf{n}
\]

\(\mathbf{x}_0 = \) magnetic axis, \(\kappa = \) curvature, \(\tau = \) torsion, \(\mathbf{t} = \) tangent, \(\mathbf{n} = \) normal, \(\mathbf{b} = \) binormal

\[
\mathbf{x}(r, \theta, \zeta) = \mathbf{x}_0(\zeta) + X(r, \theta, \zeta)\mathbf{n}(\zeta) + Y(r, \theta, \zeta)\mathbf{b}(\zeta) + Z(r, \theta, \zeta)\mathbf{t}(\zeta), \quad r = \sqrt{2\psi / B_0}
\]

\[
X(r, \theta, \zeta) = rX_1(\theta, \zeta) + r^2X_2(\theta, \zeta) + \ldots
\]

Same for \(Y \& Z \).
Garren & Boozer (1991): Write position vector \mathbf{x} using axis’s Frenet frame, expand in small r

Frenet frame $(\mathbf{t}, \mathbf{n}, \mathbf{b})$:
\[
\frac{d\mathbf{x}_0}{d\ell} = \mathbf{t}, \quad \frac{d\mathbf{t}}{d\ell} = \kappa \mathbf{n}, \quad \frac{d\mathbf{n}}{d\ell} = -\kappa \mathbf{t} + \tau \mathbf{b}, \quad \frac{d\mathbf{b}}{d\ell} = -\tau \mathbf{n}
\]

x_0 = magnetic axis, κ = curvature, τ = torsion, \mathbf{t} = tangent, \mathbf{n} = normal, \mathbf{b} = binormal

\[
\mathbf{x}(r, \theta, \zeta) = x_0(\zeta) + X(r, \theta, \zeta)\mathbf{n}(\zeta) + Y(r, \theta, \zeta)\mathbf{b}(\zeta) + Z(r, \theta, \zeta)\mathbf{t}(\zeta), \quad r = \sqrt{2\psi / B_0}
\]

$X(r, \theta, \zeta) = rX_1(\theta, \zeta) + r^2 X_2(\theta, \zeta) + \ldots$ \quad Same for Y & Z.

\[
\nabla r = \frac{\partial \mathbf{x} \times \partial \mathbf{x}}{\partial r \frac{\partial \mathbf{x}}{\partial \theta} \times \frac{\partial \mathbf{x}}{\partial \zeta}}, \quad \text{& cyclic permutations}
\]
Frenet frame \((\mathbf{t}, \mathbf{n}, \mathbf{b})\): \[
\frac{d\mathbf{x}_0}{d\ell} = \mathbf{t}, \quad \frac{d\mathbf{t}}{d\ell} = \kappa \mathbf{n}, \quad \frac{d\mathbf{n}}{d\ell} = -\kappa \mathbf{t} + \tau \mathbf{b}, \quad \frac{d\mathbf{b}}{d\ell} = -\tau \mathbf{n}
\]

\(x_0\) = magnetic axis, \(\kappa\) = curvature, \(\tau\) = torsion, \(\mathbf{t}\) = tangent, \(\mathbf{n}\) = normal, \(\mathbf{b}\) = binormal

\[
\mathbf{x}(r, \theta, \zeta) = x_0(\zeta) + X(r, \theta, \zeta)\mathbf{n}(\zeta) + Y(r, \theta, \zeta)\mathbf{b}(\zeta) + Z(r, \theta, \zeta)\mathbf{t}(\zeta), \quad r = \sqrt{2\psi / B_0}
\]

\[
X(r, \theta, \zeta) = rX_1(\theta, \zeta) + r^2X_2(\theta, \zeta) + \ldots \quad \text{Same for } Y \& Z.
\]

\[
\nabla r = \frac{\partial \mathbf{x} \times \partial \mathbf{x}}{\partial \theta \partial \zeta} \quad \text{& cyclic permutations}
\]

B:
\[
B = \frac{d\psi}{dr} \left[\nabla r \times \nabla \theta + I(r) \nabla \zeta \times \nabla r \right]
\]

\[
= \beta(r, \theta, \zeta) \frac{d\psi}{dr} \nabla r + I(r) \nabla \theta + G(r) \nabla \zeta
\]
Frenet frame \((\mathbf{t}, \mathbf{n}, \mathbf{b})\): \[
\frac{d\mathbf{x}_0}{d\ell} = \mathbf{t}, \quad \frac{d\mathbf{t}}{d\ell} = \kappa \mathbf{n}, \quad \frac{dn}{d\ell} = -\kappa \mathbf{t} + \tau \mathbf{b}, \quad \frac{db}{d\ell} = -\tau \mathbf{n}
\]
\(x_0\) = magnetic axis, \(\kappa\) = curvature, \(\tau\) = torsion, \(\mathbf{t}\) = tangent, \(\mathbf{n}\) = normal, \(\mathbf{b}\) = binormal

\[
x(r, \theta, \zeta) = x_0(\zeta) + X(r, \theta, \zeta)\mathbf{n}(\zeta) + Y(r, \theta, \zeta)\mathbf{b}(\zeta) + Z(r, \theta, \zeta)\mathbf{t}(\zeta), \quad r = \sqrt{2\psi / B_0}
\]

\(X(r, \theta, \zeta) = rX_1(\theta, \zeta) + r^2X_2(\theta, \zeta) + \ldots\) \quad \text{Same for } Y \& Z.

\[
\nabla r = \frac{\partial \mathbf{x} \times \partial \mathbf{x}}{\partial \theta \times \partial \zeta}, \quad \text{& cyclic permutations}
\]
\[
\nabla \times \mathbf{B} = \mu_0 \frac{dp}{dr} \nabla r, \quad \mathbf{B}(r, \theta, \zeta) = B_0 + rB_{1c} \cos(\theta - N\zeta) + O(r^2). \quad \text{Expand in } r \ll \kappa^{-1}.
\]
Garren & Boozer’s equations yield a practical algorithm

Inputs:

• Shape of the magnetic axis, with $\kappa \neq 0$. (Determines QA vs QH.)

• 3 real numbers:
 – I_2: Current density on the axis. (Usually 0).
 – $\sigma(0)$: Rotation of the elliptical flux surfaces at toroidal angle=0.
 – η, which controls elongation and field strength: $B = B_0 \left[1 + r\eta \cos(\theta - N\zeta) + O(r^2) \right]$

• (Pressure doesn’t matter to this order.)

$\Rightarrow \quad N = 0$: Quasi-axisymmetry

$\Rightarrow \quad N \neq 0$: Quasi-helical symmetry
The construction can be verified by running an MHD equilibrium code (VMEC) which does not make the expansion.

\[\phi(0) = 1 + 0.045 \cos 3\phi \]

\[Z(\phi) = -0.045 \sin 3\phi \]

\[\eta = -0.9 \]

\[\sigma(\phi) = 0 \]

The inputs are:

- \(R/a = 10 \)

The results are:

- \(B_{1,0} \)
- Quasi-axisymmetric \(n = 0 \)
- Symmetry breaking \(n \neq 0 \)
The axis expansion enables a combined (1-stage) coil + quasisymmetry optimization using analytic derivatives.

Good vacuum surfaces out to $A=1.96$

Good quasisymmetry in core

With Andrew Giuliani, Georg Stadler, Antoine Cerfon (NYU)