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In	a	reactor,	must	fit	~	1.5m	“blanket”	between	plasma	and	coils	to	absorb	neutrons	

3 

25cm	separation	 50cm	separation	 65cm	separation	
Coils	offset	a	uniform	distance	from	W7-X	plasma:	

But	at	fixed	plasma	shape	&	size,	coils	shapes	become	impractical	if	they	are	too	far	away:		



In	a	reactor,	must	fit	~	1.5m	“blanket”	between	plasma	and	coils	to	absorb	neutrons	
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Coils	offset	a	uniform	distance	from	W7-X	plasma:	

So	we	must	scale	everything	up:	

$$$ 

But	at	fixed	plasma	shape	&	size,	coils	shapes	become	impractical	if	they	are	too	far	away:		

25cm	separation	 50cm	separation	 65cm	separation	

$$$ 



So	insights	into	Laplace’s	equation	could	directly	reduce	cost	of	fusion!	
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Between	plasma	and	the	coils,	the	equations	are	just	

B=∇Φ, 					ΔΦ =0.

B r( )= µ0I
4π

d ′r × r− ′r( )
r− ′r

3∫
Or,	Biot-Savart	law:	

µ0 = a	constant =1.26×10−6N /A2 ,													I = coil	current



The	small	plasma-to-coil	separation	has	been	a	headache	for	W7-X	
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“Lesson	1:	A	lack	of	generous	margins,	clearances	and	reasonable	tolerance	levels	implies	an	
unnecessary	increase	of	the	complexity	and	leads	to	late	design	changes.	This	has	a	strong	impact	
on	schedule,	budget,	man-power	and	potentially	sours	the	relationship	to	funding	bodies.”	
												Klinger	et	al,	Fusion	Engineering	&	Design	(2013)	



Coils	farther	from	the	plasma	would	reduce	ripple,	hence	improve	
confinement	&	reduce	#	of	coils	needed	
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B	[Teslas]	

Ripple	in	W7-X:	

Trapped	particles	



It	is	consistently	found	that	it	is	hard	to	get	coils	far	from		
concave	flux	surface	shapes.	Why?		
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Concave	shapes	are	hard	to	make	in	2D	too	
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Yet,	curvature	per	se	is	not	hard	to	achieve	
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Vacuum	B	from	2	straight	wires:	

So	a	field	line’s	radius	of	curvature	is	not	a	good	measure	of	distance	to	coils.	
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Calculating	the	currents	that	produce	a	given	B	is	an	ill-posed	problem	
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∂2Φ
∂z2

= − ∂Φ
2

∂x2
− ∂Φ2

∂ y2

2	very	different	coil	shapes	
can	produce	nearly	the	
same	B	in	the	confinement	
region.	

Extrapolating	B	outward	
from	the	plasma	is	like	
treating	Laplace’s	eq	as	an	
initial	value	problem:	

Nearly	cancel	



Calculating	the	currents	that	produce	a	given	B	is	an	ill-posed	problem	
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Nearly	cancel	

So	we	probably	can’t	
prove	precisely	where	the	
coils	must	be.	But	can	we	
say	something	about	the	
best-case	scenario?,	e.g.	
“There	must	be	a	coil	
within	some	distance	d”?	

2	very	different	coil	shapes	
can	produce	nearly	the	
same	B	in	the	confinement	
region.	
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Local	approach:	extrapolate	from	a	point		
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B=∇Φ, 					ΔΦ =0.
Given	B	and	its	first	few	derivatives	at	a	point	P,	can	we	
compute	some	number	k	such	that	B	(or	𝚽)	must	grow	at	
least	as	fast	as	~	exp(k	d),	where	d	is	the	distance	from	P?	
	
Or,	
	
Given	B	and	its	first	few	derivatives	at	P,	what	is	the	
minimum	distance	to	a	singularity	in	B	(or	𝚽)	?	



Probably	a	gradient	scale	length	of	B	indicates	its	“complexity”,	but	which	scale	
length	is	most	meaningful?	

∇B	for	a	vacuum	field	contains	4	independent	scale	lengths:



Probably	a	gradient	scale	length	of	B	indicates	its	“complexity”,	but	which	scale	
length	is	most	meaningful?	

∇B	for	a	vacuum	field	contains	4	independent	scale	lengths:
B=∇Φ		so		∇B=∇∇Φ	is	a	symmetric	3×3	matrix		⇒ 		6	degrees	of	freedom.

−1	since	0=∇⋅B, 				−1	since	coordinate	system	can	be	rotated	to	make	one	vanish.

∇B=

Φ,xx Φ,xy Φ,xz
Φ,xy Φ,yy Φ,yz
Φ,xz Φ,yz Φ,zz

⎛

⎝

⎜
⎜
⎜
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⎞

⎠

⎟
⎟
⎟
⎟



Probably	a	gradient	scale	length	of	B	indicates	its	“complexity”,	but	which	scale	
length	is	most	meaningful?	

Example	set	of	4	
independent	inverse	
scale	lengths:	

∇B	for	a	vacuum	field	contains	4	independent	scale	lengths:
B=∇Φ		so		∇B=∇∇Φ	is	a	symmetric	3×3	matrix		⇒ 		6	degrees	of	freedom.

−1	since	0=∇⋅B, 				−1	since	coordinate	system	can	be	rotated	to	make	one	vanish.

B⋅∇B
B2 ,						

∇B
B
,						 1

B
∇B( ): ∇B( ) , 					 ∇B( )⋅ ∇B( )⋅ ∇B( )

∇B
2
B

∇B=
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⎟
⎟

where		B = B .



Some	of	these	local	measures	of	B	complexity	have	appealing	properties	
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In	a	world	consisting	of	an	infinite	straight	wire,																																																																														

equal	1/R,	the	inverse	distance	to	the	wire,	and																						points	to	the	wire.	

∇B /B 		and		 ∇B( ): ∇B( )/ 2B2( )
∇B( )/B



Some	of	these	local	measures	of	B	complexity	have	appealing	properties	
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In	a	world	consisting	of	an	infinite	straight	wire,																																																																														

equal	1/R,	the	inverse	distance	to	the	wire,	and																						points	to	the	wire.	

∇B /B 		and		 ∇B( ): ∇B( )/ 2B2( )
∇B( )/B

For		Φ x , y ,z( )= Aexp kz( )sin kx( ) 	with	constants	A	and	k ,
then	 ∇B /B 		and		 ∇B( ): ∇B( )/ 2B2( ) 	give	the	exponentiation	scale	length	k
and	 ∇B( )/B 	points	in	the	direction	of	exponential	growth.



Some	of	these	local	measures	seem	to	identify	the	problematic	regions	

∇B
B

n ⋅∇B
B

∇B( ): ∇B( )
2B2

m-1	m-1	m-1	
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In	2D,	complex	analysis	is	illuminating	
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P	Helander,	“Extension-of-B.pdf”	

Kerner,	Pfirsch,	&	Tasso,	Nuclear	Fusion	12,	433	(1972)	



Write	

Then	
	
	
and	w	can	be	found	by	conformal	mapping.	
	
Example:	consider	a	semicircle	“carved	out“	of	the	plasma.	Conformal	mapping	to	upper	half	
plane	by	
	
	
In	general,	if	f	is	a	real	analytic	function	
	
	
There	is	always	a	singularity	(a	coil)	within	the	upper	unit	semi-circle.			
	
	

Interior	of	semi-circle	DCB	->	lower	half	plane	



Field	lines:	
	
	
	
	
	
	
	
	
	
Note	
•  Location	of	singularities	depends	both	on	boundary	shape	and	on	boundary	data	(B).		
•  Depending	on	boundary	data,	singularties	can	be	arbitrarily	close	to	the	boundary	

Is	there	some	upper	bound	on	the	distance	to	the	nearest	singularity	depending	only	on	the	
boundary	shape?	
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Application:	finding	easy-to-make	near-axis	quasisymmetric	fields	
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Along	the	magnetic	axis	of	a	quasisymmetric	field,	we	have	equations	for	B	and	𝛁B.	

Magnetic	axis	 Magnetic	field	lines	

Flux	surfaces	

Given	B	and	𝛁B	along	this	closed	curve,	how	best	can	we	exclude	infeasible	solutions?		

Garren	&	Boozer	(1991),	
my	talk	Friday	

E.g.		 b⋅∇b < threshold,			or		 ∇B :∇B( )/B2 < threshold?



Questions	
•  Is	there	an	illuminating	&	quick-to-compute	measure	of	why	
some	B	configurations	are	hard	to	make	with	distant	coils?	

•  Is	it	possible	to	prove	rigorously	that	concave	flux	surface	
shapes	require	a	coil	nearby?		

•  Is	principal	curvature	the	relevant	quantity,	or	something	else?	

•  Is	there	a	way	to	generalize	the	complex	variables	approach	
from	2D	to	3D?	

•  Given	B	and	𝛁B	along	the	magnetic	axis,	what	is	the	best	
estimate	for	“complexity”	of	coils	or	B	a	finite	distance	from	
axis?	

27 



Extra	slides	

28/10 



To	increase	plasma-coil	separation	for	given	plasma	shape,	either	coil	complexity	or	
device	size	increases.	
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25cm	separation	 50cm	separation	 75cm	separation	
Coils	offset	a	uniform	distance	from	W7-X	plasma:	

Must	scale	everything	up:	

In	a	reactor,	must	fit	~	1.5m	“blanket”	between	plasma	and	coils	to	absorb	neutrons.	

$$$ $$$ 



It	is	consistently	found	that	it	is	hard	to	get	coils	far	from		
concave	flux	surface	shapes.	Why?		
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Plasma-coil	distance	is	a	crucial	quantity	for	viability	of	a	stellarator	reactor.	

31 

“Being the most influential parameter for the stellarator’s size and 
cost, Δmin [minimum plasma-coil distance] optimization was crucial to 
the overall design.” 
     ARIES-CS study, El-Guebaly et al, Fusion Sci Tech (2008) 



Calculating	the	currents	that	produce	a	given	B	is	an	ill-posed	problem	
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Given	data	for	B	on	the	plane	z	=	0,	assuming	B	is	a	vacuum	field,	what	is	B	off	the	plane?	

So	we	probably	can’t	say	precisely	where	the	coils	must	be.	But	can	we	
say	something	about	the	best-case	scenario?,	e.g.	“There	must	be	a	coil	
within	some	distance	d”?	

Like	initial-value	problem	with	Laplace's	eq:		 ∂
2Φ
∂z2

= − ∂Φ
2

∂x2
− ∂Φ2

∂ y2

Tiny	short-wavelength	changes	to	initial	data	grow	exponentially:	

B x , y ,z( )= dkx
−∞

∞

∫ dky
−∞

∞

∫ exp ikxx + iky y( ) 			....			( )exp z kx2 +ky2( )+ 			....			( )exp −z kx2 +ky2( )⎡
⎣⎢

⎤
⎦⎥



Calculating	the	currents	that	produce	a	given	B	is	an	ill-posed	problem	
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For	any	𝜺	>	0,	there	exist	two	
coil	shapes	that	differ	to	O(1)	
yet	produce	a	difference	<	𝜺	
in	B	in	the	confinement	
region.	

B r( )= µ0I
4π

d ′r × r− ′r( )
r− ′r

3
coil
∫

Biot-Savart	Law:	

Nearly	cancel	



Calculating	the	currents	that	produce	a	given	B	is	an	ill-posed	problem	
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Given	data	for	B	on	the	plane	z	=	0,	assuming	B	is	a	vacuum	field,	what	is	B	off	the	plane?	

So	we	probably	can’t	say	precisely	where	the	coils	must	be.	But	can	we	
say	something	about	the	best-case	scenario?,	e.g.	“There	must	be	a	coil	
within	some	distance	d”?	

Like	initial-value	problem	with	Laplace's	eq:		 ∂
2Φ
∂z2

= − ∂Φ
2

∂x2
− ∂Φ2

∂ y2

At		z =0,	Φ = sin x( )exp z( ) 			is	hard	to	distinguish	from	
																		Φ = sin x( )exp z( )+e−100 sin 100x( )exp 100z( )



•  Call	a	fast	coil	code	(NESCOIL	or	REGCOIL)	for	each	iteration	of	
the	plasma	shape,	and	penalize	coil	complexity	(NCSX,	ROSE).	

•  Penalize	negative	principal	curvature	(A	Bader)	

35 



Some	of	these	local	measures	of	B	complexity	have	appealing	properties	

36 

In	a	world	consisting	of	an	infinite	straight	wire,																																																																														

equal	1/R,	the	inverse	distance	to	the	wire,	and																						points	to	the	wire.	

∇B /B 		and		 ∇B( ): ∇B( )/ 2B2( )
∇B( )/B

Let		B = B .

For		Φ = Aexp kxx +ky y +kzz( )+ c.c.		with	complex	constants	 A, 	kx , 	ky , 	kz{ }
such	that		kx2 +ky2 +kz2 =0,		then	 ∇B /B 		and		 ∇B( ): ∇B( )/ 2B2( ) 	give	
the	exponentiation	scale		12 kx +kx

*( )2 + ky +ky
*( )2 + kz +kz

*( )2
and	 ∇B( )/B 	points	in	the	direction	of	exponential	growth.


