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The conventional approach to finding quasisymmetric fields works but has shortcomings

3

Want	magnetic	field	strength	B
to	have	quasisymmetry: B = B r , 	θ −Nζ( )



The conventional approach to finding quasisymmetric fields works but has shortcomings
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minX f X( )

Want	magnetic	field	strength	B
to	have	quasisymmetry:

where		B r ,θ ,ζ( )= Bm,n r( )
m,n
∑ exp imθ − inζ( )

B = B r , 	θ −Nζ( )

Parameter	space:		X = toroidal	boundary	shapes

Objective:		f = Bm,n
2

m,n≠Nm
∑ r0( )



The conventional approach to finding quasisymmetric fields works but has shortcomings
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minX f X( )

Want	magnetic	field	strength	B
to	have	quasisymmetry:

where		B r ,θ ,ζ( )= Bm,n r( )
m,n
∑ exp imθ − inζ( )

B = B r , 	θ −Nζ( )

Parameter	space:		X = toroidal	boundary	shapes

Objective:		f = Bm,n
2

m,n≠Nm
∑ r0( )

• Computationally	expensive.
• What	is	the	size	&	character	of	the	solution	space?
• Result	depends	on	initial	condition,	so	cannot	be	sure	you’ve	found	all	solutions.



Alternative: expand equations near the magnetic axis
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Magnetic	axis

Mercier	(1964),		Lortz &	Nührenberg (1976),		Garren &	Boozer	(1991)	

Magnetic	field	lines

Flux	surfaces



Using the near-axis expansion, we can directly construct quasisymmetric B fields 

• Speed.
• Understand	the	solution	space.
• Generate	good	initial	conditions	for	optimization.
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Goals:



Outline

• Construction	for	O(r)	quasisymmetry
– Theory,	&	the	number	of	solutions
– Numerical	results
– Comparison	to	“real	experiments”
– The	landscape	of	solutions

• Extensions
– Omnigenity
– O(r2)	quasisymmetry
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We will expand in the skinniness of the inner flux surfaces
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High	aspect	ratio
tori

Low	aspect	ratio
tori

Major	
radius	R

2x	Minor	radius	r

Aspect	ratio= R
r

r
radius	of	curvature	of	axis≪1



Even for a low aspect ratio stellarator, this expansion describes the core
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High	aspect	ratio
tori

Major	
radius	R

2x	Minor	radius	r

Aspect	ratio= R
r

r
radius	of	curvature	of	axis≪1

r = constant	on	surfaces



A key ingredient of the theory is the Frenet frame of the magnetic axis
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Frenet	frame	 t ,n,b( ):		 dx0dℓ = t , 					 dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

x0 =magnetic	axis,						κ = curvature,							τ = torsion,							t = tangent,								n= normal,								b= binormal

Magnetic axis
Tangent
Normal
Binormal
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Theory: Write position vector x using axis’s Frenet frame, expand in small r
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Frenet	frame	 t ,n,b( ):		 dx0dℓ = t , 					 dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

x0 =magnetic	axis,						κ = curvature,							τ = torsion,							t = tangent,								n= normal,								b= binormal

Magnetic axis
Tangent
Normal
Binormal

J×B=∇p,										B = B r , 	θ −Nζ( ) ,									x = x0 +O r( )



Theory: Write position vector x using axis’s Frenet frame, expand in small r
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dσ
dζ

+ι
η 4

κ 4 +1+σ
2⎡

⎣
⎢

⎤

⎦
⎥−2η

2

κ 2 I2−τ
⎡
⎣

⎤
⎦=0

ϑ =θ −Nζ ,
ι = rotational	transform	on	axis,
I2 = current	density	on	axis

x r ,θ ,ζ( )= x0 ζ( )+ r η
κ ζ( )cosϑn ζ( )+ r κ ζ( )

η
sinϑ +

σ ζ( )κ ζ( )
η

cosϑ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
b ζ( )+O r2( )

Toroidal	angle	ζ ∝axis	arclength	ℓ,										η = constant:		B = B0 1+ rη cosϑ +O r2( )⎡
⎣

⎤
⎦

Frenet	frame	 t ,n,b( ):		 dx0dℓ = t , 					 dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

x0 =magnetic	axis,						κ = curvature,							τ = torsion,							t = tangent,								n= normal,								b= binormal
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	2π-periodic,	bounded,	and	integrable,	a	solution	to	

		
dσ
dζ

+ι P +σ 2( )+Q =0															 1( )

		Given	P ζ( ) >0,	Q ζ( ) , 	and	σ 0( ) ,	with	P ζ( ) 	and	Q ζ( ) 	

	is	a	pair	 ι , 	σ ζ( ){ } 	solving	 1( ) 	where	σ ζ( ) 	is	2π-periodic.

The size of the space of fields that are quasisymmetric to O(r) can be precisely understood.
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Theorem: A	solution	exists	and	it	is	unique.

	2π-periodic,	bounded,	and	integrable,	a	solution	to	

		
dσ
dζ

+ι P +σ 2( )+Q =0															 1( )

		Given	P ζ( ) >0,	Q ζ( ) , 	and	σ 0( ) ,	with	P ζ( ) 	and	Q ζ( ) 	

	is	a	pair	 ι , 	σ ζ( ){ } 	solving	 1( ) 	where	σ ζ( ) 	is	2π-periodic.

ML,	Sengupta,	and	Plunk	(2019).				Probably	an	earlier	reference?

The size of the space of fields that are quasisymmetric to O(r) can be precisely understood.



The size of the space of fields that are quasisymmetric to O(r) can be precisely understood.
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Theorem: A	solution	exists	and	it	is	unique.

	2π-periodic,	bounded,	and	integrable,	a	solution	to	

		
dσ
dζ

+ι P +σ 2( )+Q =0															 1( )

		Given	P ζ( ) >0,	Q ζ( ) , 	and	σ 0( ) ,	with	P ζ( ) 	and	Q ζ( ) 	

	is	a	pair	 ι , 	σ ζ( ){ } 	solving	 1( ) 	where	σ ζ( ) 	is	2π-periodic.

	⇒ 	Numerical	solution	is	very	robust.



The theorem informs an algorithm for constructing quasisymmetric fields

Inputs:
• Shape	of	the	magnetic	axis.
• 3	real	numbers:

– I2:	Current	density	on	the	axis.	(Usually	0).
– !(0):	Rotation	of	the	elliptical	flux	surfaces	at	toroidal	angle=0.
– ,	which	controls	elongation	and	field	strength:

• (Pressure	doesn’t	matter	to	this	order.)

Outputs:
• Shape	of	the	surfaces	around	the	axis.	(Elongation	&	rotation	of	ellipses.)
• Rotational	transform	on	axis.	
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B = B0 1+ rη cosϑ +O r2( )⎡
⎣

⎤
⎦η



Quasi-axisymmetry vs quasi-helical symmetry is determined purely by the axis normal vector

20

J×B=∇p								⇒ 										∇⊥B = Bκn
So	B contours	rotate	about	axis	with	the	same	topology	as		n.



Quasi-axisymmetry vs quasi-helical symmetry is determined purely by the axis normal vector
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Magnetic axis
Normal

Magnetic axis
Normal

n does	not	rotate	about	the	axis	as	
you	follow	the	axis	around.

n rotates	about	the	axis	4	times	as	
you	follow	the	axis	around.

⇒ 								Quasi-axisymmetry ⇒ 								Quasi-helical		symmetry
B = B r ,θ( ) B = B r ,θ −4ζ( )

n

J×B=∇p								⇒ 										∇⊥B = Bκn
So	B contours	rotate	about	axis	with	the	same	topology	as		n.
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Example construction: quasi-axisymmetry
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axis	shape	R0 φ( )=1+0.045cos 3φ( ) , 		
					Z0 φ( )= −0.045sin 3φ( ) ,

Inputs:

0.8 0.9 1 1.1

R

-0.2

-0.1

0

0.1

0.2

Z

 = 0

 = /6
 = /3

 = /2

(b)
Results: (R/a =	10)

η = −0.9.I2 =0,
σ 0( )=0,



The construction can be verified by comparing to an MHD equilibrium calculation 
that does not make the r expansion.
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axis	shape	R0 φ( )=1+0.045cos 3φ( ) , 		
					Z0 φ( )= −0.045sin 3φ( ) ,

Inputs:

0.8 0.9 1 1.1

R

-0.2

-0.1

0

0.1

0.2

Z

 = 0

 = /6
 = /3

 = /2

(b)
Results: (R/a =	10)

η = −0.9,
σ 0( )=0



Alternative method to generate a finite-thickness boundary: find coils to make a skinny 
surface, then see what you get outside.
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	φ =0 	φ =π /6 	φ =π /3

		
R
a
=5



Example construction: Quasi-helical symmetry
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axis	shape	R0 φ( )=1+0.265cos 4φ( ) , 		
					Z0 φ( )= −0.21sin 4φ( ) ,

Inputs:

0.6 0.8 1 1.2

R

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Z

 = 0
 = /8

 = /4
 = 3 /8

(b)

I2 =0,
σ 0( )=0,

Results: (R/a =	40)

η = −2.25.



The construction can be verified by comparing to an MHD equilibrium calculation 
that does not make the r expansion.

27

axis	shape	R0 φ( )=1+0.265cos 4φ( ) , 		
					Z0 φ( )= −0.21sin 4φ( ) ,

Inputs:

0.6 0.8 1 1.2

R

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Z

 = 0
 = /8

 = /4
 = 3 /8

(b)

η = −2.25,
σ 0( )=0

Results: (R/a =	40)



All stellarators built to date have ‘stellarator symmetry’, which is 
unrelated to quasisymmetry

28

Sugama et	al	(2011)



You can make a quasi-axisymmetric stellarator without stellarator symmetry
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axis	shape	R0 φ( )=1+0.042cos 3φ( ) , 		
					Z0 φ( )= −0.042sin 3φ( )−0.025cos 3φ( ) ,

Inputs:

0.7 0.8 0.9 1 1.1 1.2

R

-0.2

-0.1

0

0.1

0.2

Z

 = 0
 = /6

 = /3
 = /2

(b)

I2 =0,
σ 0( )= −0.6,

Results: (R/a =	10)

η = −1.1.



You can make a quasi-axisymmetric stellarator without stellarator symmetry
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axis	shape	R0 φ( )=1+0.042cos 3φ( ) , 		
					Z0 φ( )= −0.042sin 3φ( )−0.025cos 3φ( ) ,

Inputs:

0.7 0.8 0.9 1 1.1 1.2

R

-0.2

-0.1

0

0.1

0.2

Z

 = 0
 = /6

 = /3
 = /2

(b)

η = −1.1,
σ 0( )= −0.6

Results: (R/a =	10)



The symmetry-breaking Fourier amplitudes scale as predicted.
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S = 1
B0,0

Bm,n
2

m/n≠M/N
∑
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The construction can be fit to quasisymmetric stellarators designed by optimization
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• Adopt	the	same	axis	shape.

• Fit						to	minimize	difference	in	the	
shapes	of	a	near-axis	surface.

η



The direct construction gives an accurate match to the on-axis rotational transform 
in quasisymmetric stellarators designed by optimization

34

NCSX

• Adopt	the	same	axis	shape.

• Fit						to	minimize	difference	in	the	
shapes	of	a	near-axis	surface.

η
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The construction enables fast scans over parameter space.

38

		E.g.	Scan	over	 R0c ,Z0s ,η( ) 	where	magnetic	axis	shape	is

R0 φ( )=1+R0c cos 4φ( )
Z0 φ( )= Z0s sin 4φ( )

274,560	solutions	
generated	in	<30s	on	a	
laptop.

η

Quasi-axisymmetry

Quasi-helical	symmetry



The fast construction enables brute-force surveys of ”all” quasisymmetric fields

39Rotational	transform

Ma
xim

um
	ax
is	
cu
rv
atu

re

Axis	shape:		R0 φ( )=1+ Rj cos jnfpφ( )
j=1

3

∑ ,						Z0 φ( )=1+ Z j sin jnfpφ( )
j=1

3

∑

Color	=	#	of	times	B contours	rotate	around	magnetic	axis

2.4x108
configurations



The fast construction enables brute-force surveys of ”all” quasisymmetric fields

40Rotational	transform

Ma
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is	
cu
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Axis	shape:		R0 φ( )=1+ Rj cos jnfpφ( )
j=1

3

∑ ,						Z0 φ( )=1+ Z j sin jnfpφ( )
j=1

3

∑

Color	=	nfp (discrete	rotational	symmetry)

4x106
configurations

Quasi-axisymmetric	solutions	only



Brute-force searching is already yielding some new configurations

Quasi-helical	symmetry	with

41

2	field	periods1	field	period



Brute-force searching is already yielding some new configurations

Quasi-helical	symmetry	with

42

1	field	period 2	field	periods
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Omnigenity is a weaker confinement condition than quasisymmetry.

Definition	of	omnigenity:	The	radial	drift	has	a	time	average	of	0	for	all	particles.
vd ⋅∇r( )dt!∫ = 0   ∀ magnetic moments & energies.

• J	Cary	&	S	Shasharina,	Physics	of	Plasmas	4,	3323	(1997).

• J	Cary	&	S	Shasharina,	Physical	Review	Letters	78,	674	(1997).

• P	Helander &	J	Nührenberg,	Plasma	Physics	and	Controlled	Fusion 51,	055004	(2009).

• M	Landreman &	P	J	Catto,	Physics	of	Plasmas	19,	056103	(2012).



Omnigenity is a weaker confinement condition than quasisymmetry.

2p

0
0 2p0 2p0 2p

Generalized	
quasi-axisymmetry

Generalized	quasi-poloidal
symmetry

Generalized	quasi-helical
symmetry

!

"

! !

Definition	of	omnigenity:	The	radial	drift	has	a	time	average	of	0	for	all	particles.
vd ⋅∇r( )dt!∫ = 0   ∀ magnetic moments & energies.

|B|



The near-axis analysis can be generalized to construct omnigenous configurations

46

G	G	Plunk,	ML,	and	P	Helander,
In	preparation

Quasi-poloidal	symmetry	is	not	possible	
near	the	axis,	but	omnigenity is.

∇⊥B = Bκn



Outline

• Construction	for	O(r)	quasisymmetry
– Theory,	&	the	number	of	solutions
– Numerical	results
– Comparison	to	“real	experiments”
– The	landscape	of	solutions

• Extensions
– Omnigenity
– O(r2)	quasisymmetry

47



Extending the construction to higher order is tricky
• We	can	only	“half-specify”	the	axis	shape:

– A	curve	like	the	axis	is	given	by	2	functions,	e.g.	{curvature,	torsion}	or	
{R(!),	Z(!)}.

– At	O(r),	(#	unknowns)-(#	equations)=2	so	we	can	specify	(almost)	any	
axis.	But	at	O(r2),	(#	unknowns)-(#	equations)=1	so	we	cannot.

48



Extending the construction to higher order is tricky
• We	can	only	“half-specify”	the	axis	shape:

– A	curve	like	the	axis	is	given	by	2	functions,	e.g.	{curvature,	torsion}	or	
{R(!),	Z(!)}.

– At	O(r),	(#	unknowns)-(#	equations)=2	so	we	can	specify	(almost)	any	
axis.	But	at	O(r2),	(#	unknowns)-(#	equations)=1	so	we	cannot.

• No	existence	&	uniqueness	theorem	for	solutions	(yet).

• Magnetic	shear	(variation	of	rotational	transform)	does	not	appear	until	
O(r3).

49



We are working to extend the construction to O(r2), enabling greater shaping

50

Const
!Boozer
curves

Axisymmetric
example:

Requested

Achieved

cosθ 		mode	amplitude	in	B

cos2θ 		mode	amplitude	in	B

Requested

Achieved

Normalized	minor	radius		r /rmax

r /rmax( )2



Questions – your input is welcome!
• How	can	coils	be	connected	to	this	model?

– Since	we	know	B and	!B along	the	axis,	can	we	say	anything	about	
how	close	coils	must	be?

• Are	there	other	ways	to	extrapolate	outward	from	the	axis?	E.g.	
Laplace’s	equation	as	initial	value	problem	in	r,	with	regularization.

• It	is	effective	to	optimize	in	the	space	of	axis	shapes?	(H	Mynick).

• For	O(r2),	how	do	you	best	half-specify	the	axis	shape?	Can	anything	be	
proved	about	the	number	or	character	of O(r2)	solutions?

• Is	there	an	analogous	construction	to	give	quasisymmetry at	an	off-axis	
surface?	

51



Conclusions
• The	equations	for	quasisymmetric magnetic	fields	can	be	solved	directly	
(without	optimization)	if	you	expand	about	the	magnetic	axis.

• The	resulting	construction	can	be	useful	for	generating	new	initial	
conditions	for	optimization.

• We	precisely	understand	the	size	of	the	space	of	magnetic	fields	that	are	
quasisymmetric near	the	axis	(i.e.	to	O(r)).

• The	construction	is	consistent	with	configurations	obtained	by	optimization.
• There	is	hope	of	definitively	identifying	all	classes	of	practical	
quasisymmetric fields	(near	the	axis).

52
J	Plasma	Phys	(2019)									arXiv:1809.10246 https://github.com/landreman/quasisymmetry



Extra slides
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We will expand in the skinniness of the inner flux surfaces

54

Define	effective	radius		r 		by		Ψ =πr2Baxis .

Ψ = flux	through	patch = B⋅da∫

Average	major
radius		R

Flux	surface

"Aspect	ratio"= R
r
	is		≫1



Theory: Expand position vector using Frenet frame, equate 2 representations of B.

55

			 
Frenet	frame	 t ,n,b( ):		 ∂r0∂ℓ = t , 					

dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
		t = tangent,								n=normal,								b=binormal

Magnetic axis
Tangent
Normal
Binormal



Theory: Write position vector using Frenet frame

56

r0 =magnetic	axis,						κ = curvature,							τ = torsion,							t = tangent,								n= normal,								b= binormal

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

Magnetic axis
Tangent
Normal
Binormal

Frenet	frame	 t ,n,b( ):		 dr0dℓ = t , 					
dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn



Theory: Write position vector using Frenet frame, expand in small r = (flux)1/2
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r0 =magnetic	axis,						κ = curvature,							τ = torsion,							t = tangent,								n= normal,								b= binormal

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )
= r0 ζ( )+ rX1c ζ( )cosθn ζ( )+ r Y1s ζ( )sinθ +Y1c ζ( )cosθ⎡⎣ ⎤⎦b ζ( )+O r2( )
Using	magnetohydrodynamic	equilibrium		 J×B=∇p( )

Frenet	frame	 t ,n,b( ):		 dr0dℓ = t , 					
dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn



Theory: Write position vector using Frenet frame, expand in small r = (flux)1/2
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r0 =magnetic	axis,						κ = curvature,							τ = torsion,							t = tangent,								n= normal,								b= binormal

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

		
dσ
dζ

+ι
η 4

κ 4 +1+σ
2⎡

⎣
⎢

⎤

⎦
⎥−2η

2

κ 2 I2−τ
⎡
⎣

⎤
⎦=0 I2 = current	density

= r0 ζ( )+ rX1c ζ( )cosθn ζ( )+ r Y1s ζ( )sinθ +Y1c ζ( )cosθ⎡⎣ ⎤⎦b ζ( )+O r2( )

Toroidal	angle	ζ ∝arclength,										η = constant:		B = B0 1+ rη cos θ −Nϕ( )+O r2( )⎡
⎣

⎤
⎦

X1c ζ( )= η
κ ζ( ) , 								Y1s ζ( )= κ ζ( )

η
, 								Y1c ζ( )= σ ζ( )κ ζ( )

η

Frenet	frame	 t ,n,b( ):		 dr0dℓ = t , 					
dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn
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Frenet	frame	 t ,n,b( ):		 ∂r0∂ℓ = t , 					

dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
		t = tangent,								n=normal,								b=binormal

Theory: Expand position vector using Frenet frame, equate 2 representations of B.
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Frenet	frame	 t ,n,b( ):		 ∂r0∂ℓ = t , 					

dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

		X r ,θ ,ζ( ) = r X1s ζ( )sinθ + X1c ζ( )cosθ⎡⎣ ⎤⎦+O r2( ).					Same	for	Y ,	Z .

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
		t = tangent,								n=normal,								b=binormal

Theory: Expand position vector using Frenet frame, equate 2 representations of B.



61

			B= Br∇r +Bθ∇θ +Bζ∇ζ , 									B=∇ψ ×∇θ +ι∇ζ ×∇ψ

			 
Frenet	frame	 t ,n,b( ):		 ∂r0∂ℓ = t , 					

dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

		X r ,θ ,ζ( ) = r X1s ζ( )sinθ + X1c ζ( )cosθ⎡⎣ ⎤⎦+O r2( ).					Same	for	Y ,	Z .

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
		t = tangent,								n=normal,								b=binormal

Theory: Expand position vector using Frenet frame, equate 2 representations of B.
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			B= Br∇r +Bθ∇θ +Bζ∇ζ , 									B=∇ψ ×∇θ +ι∇ζ ×∇ψ

			
Dual	relations:			∇r = ∂r

∂r
⋅ ∂r
∂θ

× ∂r
∂ζ

⎡

⎣
⎢

⎤

⎦
⎥

−1
∂r
∂θ

× ∂r
∂ζ
,			cyclic	permutations.

			 
Frenet	frame	 t ,n,b( ):		 ∂r0∂ℓ = t , 					

dt
dℓ

=κn, 					 dn
dℓ

= −κ t +τb,						 db
dℓ

= −τn

			r r ,θ ,ζ( ) = r0 ζ( )+ X r ,θ ,ζ( )n ζ( )+Y r ,θ ,ζ( )b ζ( )+ Z r ,θ ,ζ( )t ζ( )

		X r ,θ ,ζ( ) = r X1s ζ( )sinθ + X1c ζ( )cosθ⎡⎣ ⎤⎦+O r2( ).					Same	for	Y ,	Z .

		r0 =magnetic	axis,						κ = curvature,							τ = torsion
		t = tangent,								n=normal,								b=binormal

Theory: Expand position vector using Frenet frame, equate 2 representations of B.



The rotational transform computed by VMEC converges to the value 
computed by the Garren-Boozer approach. 
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The ODE is solved with spectral accuracy using pseudospectral discretization + Newton iteration
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dσ
dφ

	→ 	Dσ 		where	D	is	a	pseudospectral	differentiation	matrix.

		Vector	of		N 	unknowns:		 ι , 	σ φ2( ) , 	σ φ3( ) , 	..., 	σ φN( )( )T
		Uniform	grid	in	φ 	with	N 	points:		φ1 =0,	φ2 =2π / Nnfp( ) , 	..., 	φN =2π N −1( )/ Nnfp( ).

		N 	equations:		impose	ODE	at	φ1 , 	..., 	φN .



Of 10 configurations examined, the fit is less good for 2
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65
0.8 0.9 1 1.1 1.2

R [m]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Z
 [
m

]

CFQS

=0

=(1/8)(2 /n
fp

)

=(2/8)(2 /n
fp

)

=(3/8)(2 /n
fp

)

=(4/8)(2 /n
fp

)

=(5/8)(2 /n
fp

)

=(6/8)(2 /n
fp

)

=(7/8)(2 /n
fp

)

Dark dashed curves: Optimized VMEC equilibrium     Light solid curves: Best-fit construction

ARIES-CS CFQS
Dotted: VMEC equilibrium
Solid: Garren-Boozer construction



The configurations with relatively poor fits can be explained by their larger 
symmetry-breaking
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