Computing local sensitivity & tolerances of stellarators using shape gradients

The shape gradient is a new (to fusion) way to think about derivatives involving shapes.

- Derivatives involving shapes are central to stellarator optimization.
- These derivatives also encode tolerances, which have been a leading driver of cost:

"The largest driver of the project cost growth were the accuracy requirements."

Strykowsky et al, *Engineering Cost & Schedule Lessons Learned on NCSX*, (2009).

• Compared to 'parameter derivatives', shape gradients have 2 advantages:

• Spatially local

• Independent of parameterization and discretization

Outline: Understanding local sensitivity & tolerances of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from existing codes.
- Fast computation of shape gradients via adjoint methods.
- Coil tolerances
- Magnetic sensitivity and tolerances

Historically, we have represented derivatives of shapes using parameter derivatives.

Let *f* denote any figure of merit, e.g. rotational transform $\iota = 1/q$, neoclassical transport, etc. **Parameter derivatives:** Example: $\partial f / \partial R^c_{m,n}$ and $\partial f / \partial Z^s_{m,n}$ where $R^c_{m,n}$ and $Z^s_{m,n}$ parameterize the plasma boundary shape:

$$R(\theta,\zeta) = \sum_{m,n} R_{m,n}^{c} \cos(m\theta - n\zeta),$$
$$Z(\theta,\zeta) = \sum_{m,n} Z_{m,n}^{s} \sin(m\theta - n\zeta)$$

Historically, we have represented derivatives of shapes using parameter derivatives.

Let f denote any figure of merit, e.g. rotational transform i = 1/q, neoclassical transport, etc. Parameter derivatives: Example: $\partial f / \partial R_{m,n}^c$ and $\partial f / \partial Z_{m,n}^s$ where R_{mn}^{c} and Z_{mn}^{s} parameterize the plasma boundary shape: $|d \iota / d Z_{mn}^{s}|$ |d ι / d R^c_{mn}| $R(\theta,\zeta) = \sum_{m,n} R^{c}_{m,n} \cos(m\theta - n\zeta),$ $Z(\theta,\zeta) = \sum Z^{s}_{m,n} \sin(m\theta - n\zeta)$ m⁻¹ m⁻¹ 0 10⁰ 10^{0} 10⁻¹ 10⁻¹ 5 Е Ε 10⁻² 10⁻² 10 10 10⁻³ 10⁻³ 15 10⁻⁴ -10 10 -10 10 0 Ω n n

Historically, we have represented derivatives of shapes using parameter derivatives.

Let *f* denote any figure of merit, e.g. rotational transform $\iota = 1/q$, neoclassical transport, etc. **Parameter derivatives:** Example: $\partial f / \partial R^c_{m,n}$ and $\partial f / \partial Z^s_{m,n}$ where $R^c_{m,n}$ and $Z^s_{m,n}$ parameterize the plasma boundary shape:

$$R(\theta,\zeta) = \sum_{m,n} R_{m,n}^{c} \cos(m\theta - n\zeta),$$

$$Z(\theta,\zeta) = \sum_{m,n} Z_{m,n}^{s} \sin(m\theta - n\zeta)$$

- Successfully used in STELLOPT to design NCSX, etc.
- Computable by finite differencing any code.

But,

- Not unique: coordinate-dependent,
- Nonlocal: awkward for engineering.

The shape gradient is a complementary way to express derivatives involving shapes.

For surfaces, the shape gradient = *S* where
$$\delta f = \int d^2 a \left(\delta \mathbf{r} \cdot \mathbf{n} \right) S$$
.
Unit normal

- Local (real-space, not Fourier-space). More useful for engineering.
- Independent of coordinates & discretization used to represent surface.

The shape gradient is a complementary way to express derivatives involving shapes.

- Local (real-space, not Fourier-space). More useful for engineering.
- Independent of coordinates & discretization used to represent surface.

The shape gradient representation can be expected to exist for many shape functionals.

Derivative of a function
of *n* numbers
$$f(r_1, r_2, ..., r_n)$$
:
 $\delta f = \sum_{j=1}^n \frac{\partial f}{\partial r_j} \delta r_j$
 $n \to \infty$:
 $f = f[r(\ell)], \quad \delta f = \int d\ell \frac{\delta f}{\frac{\delta f}{\delta r}} \delta r$

This is an instance of the "Riesz representation theorem":

Any linear functional can be written as an inner product with some element of the appropriate space.

Outline: Understanding local sensitivity & tolerances of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from existing codes.
- Fast computation of shape gradients via adjoint methods.
- Coil tolerances
- Magnetic sensitivity and tolerances

<u>Coils</u>: Discretize coil shapes: $X(\vartheta) = X_0^c + \sum_{m=1} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right] \qquad \& Y, Z$ Parameters p_j are $\left\{ X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s \right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Coils: Discretize coil shapes:

$$X(\vartheta) = X_0^c + \sum_{m=1} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right] \qquad \& Y, Z$$
Parameters p_j are $\left\{ X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s \right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Discretize shape gradient:

$$S_{X}(\vartheta) = S_{X,0}^{c} + \sum_{m=1} \left[S_{X,m}^{c} \cos(m\vartheta) + S_{X,m}^{s} \sin(m\vartheta) \right] \qquad \& S_{Y}, S_{Z}$$

Coils: Discretize coil shapes:

$$X(\vartheta) = X_0^c + \sum_{m=1} \left[X_m^c \cos(m\vartheta) + X_m^s \sin(m\vartheta) \right] \qquad \& Y, Z$$
Parameters p_j are $\left\{ X_m^c, X_m^s, Y_m^c, Y_m^s, Z_m^c, Z_m^s \right\}$.

Compute $\partial f / \partial p_i$ using finite differences, e.g. STELLOPT.

Discretize shape gradient:

$$S_{X}(\vartheta) = S_{X,0}^{c} + \sum_{m=1} \left[S_{X,m}^{c} \cos(m\vartheta) + S_{X,m}^{s} \sin(m\vartheta) \right] \qquad \& S_{Y}, S_{Z}$$

$$\int d\ell \, \delta \mathbf{r} \cdot \mathbf{S} = \delta f \quad \Rightarrow \quad \text{Solve } \int d\ell \, \frac{\partial \mathbf{r}}{\partial p_j} \cdot \mathbf{S} = \frac{\partial f}{\partial p_j} \text{ for } \mathbf{S}.$$

(Square linear system)

Example: Neoclassical transport $\varepsilon_{eff}^{3/2}$ at r/a=0.5

Example: Neoclassical transport $\varepsilon_{eff}^{3/2}$ at r/a=0.5

Outline: Understanding local sensitivity & tolerances of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from existing codes.
- Fast computation of shape gradients via adjoint methods.
- Coil tolerances
- Magnetic sensitivity and tolerances

Adjoint methods:

- You can get the derivative of a code result with respect to <u>all</u> *N* parameters with only 1 (not *N*) extra calculation.
- Requires some theory work and code modifications.

Adjoint methods:

- You can get the derivative of a code result with respect to <u>all</u> *N* parameters with only 1 (not *N*) extra calculation.
- Requires some theory work and code modifications.

Recently used for optimizing tokamak divertor shapes:

- W. Dekeyser, Ph.D. thesis, KU Leuven (2014).
- W. Dekeyser et al, *Nucl. Fusion* 54, 073022 (2014).
- M. Baelmans, et al, Nucl. Fusion 57, 036022 (2017).

Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm

Self-adjointness of linearized MHD:

$$\int_{\Omega} \left(\boldsymbol{\xi}^{(2)} \cdot \mathbf{F}^{(1)} - \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} \right) = \int_{\partial \Omega} \left[\left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(2)} \right) - \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \right) \left(\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(1)} \right) \right]$$

where $\mathbf{F}^{(j)} = \mathbf{J}^{(j)} \times \mathbf{B} + \mathbf{J} \times \mathbf{B}^{(j)} - \nabla p^{(j)}$, $\mathbf{B}^{(j)} = \nabla \times \left(\boldsymbol{\xi}^{(j)} \times \mathbf{B} \right)$, $\mu_0 \mathbf{J}^{(j)} = \nabla \times \mathbf{B}^{(j)}$, $p^{(j)} + \boldsymbol{\xi}^{(j)} \cdot \nabla p = 0$.

Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm

Self-adjointness of linearized MHD:

$$\begin{split} \int_{\Omega} & \left(\boldsymbol{\xi}^{(2)} \cdot \mathbf{F}^{(1)} - \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} \right) = \int_{\partial \Omega} \left[\left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(2)} \right) - \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \right) \left(\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(1)} \right) \right] \\ \text{where } \mathbf{F}^{(j)} = \mathbf{J}^{(j)} \times \mathbf{B} + \mathbf{J} \times \mathbf{B}^{(j)} - \nabla p^{(j)}, \qquad \mathbf{B}^{(j)} = \nabla \times \left(\boldsymbol{\xi}^{(j)} \times \mathbf{B} \right), \qquad \mu_0 \mathbf{J}^{(j)} = \nabla \times \mathbf{B}^{(j)}, \qquad p^{(j)} + \boldsymbol{\xi}^{(j)} \cdot \nabla p = 0. \\ \text{`Real' perturbation } \boldsymbol{\xi}^{(1)} : \mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \Big|_{\partial \Omega} \neq 0, \quad \mathbf{F}^{(1)} = 0. \\ \text{Adjoint perturbation } \boldsymbol{\xi}^{(2)} : \mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \Big|_{\partial \Omega} = 0, \quad \mathbf{F}^{(2)} \neq 0. \end{split} \Rightarrow \begin{array}{c} \int_{\Omega} \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} = \int_{\partial \Omega} \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(-\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(2)} \right) \\ \text{Shape gradient} \end{array}$$

Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm

Self-adjointness of linearized MHD:

$$\begin{split} \int_{\Omega} & \left(\boldsymbol{\xi}^{(2)} \cdot \mathbf{F}^{(1)} - \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} \right) = \int_{\partial \Omega} \begin{bmatrix} \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(\mathbf{B} \cdot \delta \mathbf{B}^{(2)} \right) - \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \right) \left(\mathbf{B} \cdot \delta \mathbf{B}^{(1)} \right) \end{bmatrix} \\ \text{where } \mathbf{F}^{(j)} = \mathbf{J}^{(j)} \times \mathbf{B} + \mathbf{J} \times \mathbf{B}^{(j)} - \nabla p^{(j)}, \qquad \mathbf{B}^{(j)} = \nabla \times \left(\boldsymbol{\xi}^{(j)} \times \mathbf{B} \right), \qquad \mu_0 \mathbf{J}^{(j)} = \nabla \times \mathbf{B}^{(j)}, \qquad p^{(j)} + \boldsymbol{\xi}^{(j)} \cdot \nabla p = \mathbf{0}. \\ \text{`Real' perturbation } \boldsymbol{\xi}^{(1)} : \mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \Big|_{\partial \Omega} \neq \mathbf{0}, \quad \mathbf{F}^{(1)} = \mathbf{0}. \\ \text{Adjoint perturbation } \boldsymbol{\xi}^{(2)} : \mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \Big|_{\partial \Omega} = \mathbf{0}, \quad \mathbf{F}^{(2)} \neq \mathbf{0}. \end{split} \Rightarrow \begin{array}{c} \int_{\Omega} \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} = \int_{\partial \Omega} \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(-\mathbf{B} \cdot \delta \mathbf{B}^{(2)} \right) \\ \text{Shape gradient} \end{array}$$

⇒ If perturbations to a figure of merit *f* can be written $\delta f = \int_{\Omega} \xi \cdot (\text{something})$, adjoint calculation is given by perturbing the equilibrium by the "something".

Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm

Self-adjointness of linearized MHD:

$$\begin{split} \int_{\Omega} & \left(\boldsymbol{\xi}^{(2)} \cdot \mathbf{F}^{(1)} - \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} \right) = \int_{\partial \Omega} \begin{bmatrix} \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(2)} \right) - \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \right) \left(\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(1)} \right) \end{bmatrix} \\ \text{where } \mathbf{F}^{(j)} = \mathbf{J}^{(j)} \times \mathbf{B} + \mathbf{J} \times \mathbf{B}^{(j)} - \nabla p^{(j)}, \qquad \mathbf{B}^{(j)} = \nabla \times \left(\boldsymbol{\xi}^{(j)} \times \mathbf{B} \right), \qquad \mu_0 \mathbf{J}^{(j)} = \nabla \times \mathbf{B}^{(j)}, \qquad p^{(j)} + \boldsymbol{\xi}^{(j)} \cdot \nabla p = \mathbf{0}. \\ \text{`Real' perturbation } \boldsymbol{\xi}^{(1)} : \mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \Big|_{\partial \Omega} \neq \mathbf{0}, \quad \mathbf{F}^{(1)} = \mathbf{0}. \\ \text{Adjoint perturbation } \boldsymbol{\xi}^{(2)} : \mathbf{n} \cdot \boldsymbol{\xi}^{(2)} \Big|_{\partial \Omega} = \mathbf{0}, \quad \mathbf{F}^{(2)} \neq \mathbf{0}. \end{split} \Rightarrow \begin{array}{c} \int_{\Omega} \boldsymbol{\xi}^{(1)} \cdot \mathbf{F}^{(2)} = \int_{\partial \Omega} \left(\mathbf{n} \cdot \boldsymbol{\xi}^{(1)} \right) \left(-\mathbf{B} \cdot \boldsymbol{\delta} \mathbf{B}^{(2)} \right) \\ \text{Shape gradient} \end{array}$$

⇒ If perturbations to a figure of merit *f* can be written $\delta f = \int_{\Omega} \xi \cdot (\text{something})$, adjoint calculation is given by perturbing the equilibrium by the "something".

Can be generalized to include perturbations that change i, & vacuum region + coils.

Adjoint calculations for several figures of merit have now been demonstrated.

Adjoint calculations for several figures of merit have now been demonstrated.

Adjoint calculations for several figures of merit have now been demonstrated.

Outline: Understanding local sensitivity & tolerances of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from existing codes.
- Fast computation of shape gradients via adjoint methods.
- Coil tolerances
- Magnetic sensitivity and tolerances

Coil tolerances can be computed from the shape gradient.

Choose an acceptable Δf & any weight $w(\ell) \ge 0$.

Let
$$T(\ell) = \frac{w \Delta f}{\sum \int d\ell w |\mathbf{S}|}$$

If $|\delta \mathbf{r}| \leq T$, $|\delta f| \leq \int d\ell |\mathbf{S} \cdot \delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| |\delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| T = \Delta f$.

Coil tolerances can be computed from the shape gradient.

Choose an acceptable Δf & any weight $w(\ell) \ge 0$.

Let
$$T(\ell) = \frac{w \Delta f}{\sum \int d\ell w |\mathbf{S}|}$$
.

If
$$|\delta \mathbf{r}| \leq T$$
,
 $|\delta f| \leq \int d\ell |\mathbf{S} \cdot \delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| |\delta \mathbf{r}| \leq \int d\ell |\mathbf{S}| T = \Delta f$.

Conservative: a bound on the worst possible outcome.

Coil tolerances can be computed from the shape gradient.

Outline: Understanding local sensitivity & tolerances of stellarators using shape gradients

- 2 ways to represent derivatives: parameter derivatives vs. shape gradients.
- Computing shape gradients from existing codes.
- Fast computation of shape gradients via adjoint methods.
- Coil tolerances
- Magnetic sensitivity and tolerances

A magnetic sensitivity S_B can be computed from the shape gradient.

Define
$$S_{B}$$
 by $\mathbf{B}_{0} \cdot \nabla S_{B} = \langle S \rangle - S$.

Substitute into
$$\delta f = \int d^2 a \, S \delta \mathbf{r} \cdot \mathbf{n}$$
.

After some algebra ...

$$\Rightarrow \quad \delta f = \int d^2 a \, S_{B} \delta \mathbf{B} \cdot \mathbf{n}.$$

A magnetic tolerance T_B can be computed from the magnetic sensitivity.

Choose an acceptable Δf & any weight $W(\theta, \zeta) \ge 0$.

Let
$$T_{B}(\theta,\zeta) = \frac{W \Delta f}{\int d^{2}a W |S_{B}|}$$
.

If
$$\left| \delta \mathbf{B} \cdot \mathbf{n} \right| \leq T_{B}$$
,
 $\left| \delta f \right| \leq \int d^{2}a \left| S_{B} \right| \left| \delta \mathbf{B} \cdot \mathbf{n} \right|$
 $\leq \int d^{2}a \left| S_{B} \right| T_{B}$
 $\leq \Delta f$.

A magnetic tolerance T_B can be computed from the magnetic sensitivity.

Choose an acceptable Δf & any weight $W(\theta, \zeta) \ge 0$.

Conclusions

Shape gradients provide *local* sensitivity & tolerance information which could inform

- How accurately and rigidly the coils should be built,
- Where coils should be connected to support structure,
- Where sources of error fields like coil leads should be located.

Future work:

- Shape gradients for island width.
- Develop adjoint methods for more figures of merit. Need 3D equilibrium or stability code with arbitrary pressure anisotropy.
- Target tolerances in STELLOPT to increase them.

Landreman & Paul, Nuclear Fusion **58** 076023 (2018), Antonsen, Paul, & Landreman, PO5.00005 Wed 2:48pm

Extra slides

For some shape functionals, the shape gradient can be computed analytically. Example: Given $\mathbf{B}(\mathbf{r})$, vary surface to minimize $f = \frac{1}{2} \left[\int d^2 a (\mathbf{B} \cdot \mathbf{n})^2 \right] + \lambda \int d^3 x$ Volume "Quadratic flux" [1] Perturb position vector $\mathbf{r}(\theta, \zeta)$. 0.2 After some algebra... Poincare plot 0.15 S=0 surfaces $\delta f = \int d^2 a \, S \, \delta \mathbf{r} \cdot \mathbf{n}$ 0.1 0.05 where $S = (\mathbf{B} \cdot \mathbf{n})^2 H + \mathbf{B} \cdot \nabla (\mathbf{B} \cdot \mathbf{n}) + \lambda$, N H = mean curvature. -0.05 -0.1 S = 0 at the optimum. -0.15 -0.2 0.7 0.9 1.1 1.2 1.3 0.8 [1] Dewar, Hudson, Price (1994).

R

The algorithm for computing shape gradients can be verified by comparison to analytic theory.

Consider f = area. Analytic result: $S = -2 \times (\text{mean curvature})$

Example: Rotational transform at r/a=0.5

Shape gradient for boundary surface:

Parameter derivatives from STELLOPT/VMEC:

$$\delta f = \int d^2 a \Big(\delta \mathbf{r} \cdot \mathbf{n} \Big) S$$

Example: Rotational transform at r/a=0.5

Shape gradient on a current surface for $f = \int d^2 a (\mathbf{B} \cdot \mathbf{n})^2$ given a fixed plasma boundary

Plasma boundary shape:

Parameters p_{j} are $\left\{R_{m,n}^{c}, Z_{m,n}^{s}\right\}$. Compute $\frac{\partial f}{\partial p_{j}}$ using finite differences, e.g. STELLOPT. Discretize shape gradient: $S(\theta, \zeta) = \sum_{q} S_{q} \cos\left(m_{q}\theta - n_{q}\zeta\right)$ $\int d^{2}a \left(\delta \mathbf{r} \cdot \mathbf{n}\right) S = \delta f \implies \text{Solve } \int d^{2}a \frac{\partial \mathbf{r}}{\partial p_{j}} \cdot \mathbf{n} S = \frac{\partial f}{\partial p_{j}} \text{ for } S.$ (1)

Linear system, not square.

Check that $\frac{\partial f}{\partial p_j}$ is in the column space of matrix. If so, (1) can be solved for S_q using pseudo-inverse of matrix.

In some cases, shape gradients can be computed analytically.

Integrals over a curve:

If
$$f[C] = \int_{C} d\ell Q$$
 for some $Q(\mathbf{r})$ and space curve C ,
 $\Rightarrow \delta f = \int_{C} d\ell \delta \mathbf{r} \cdot \left[(\mathbf{\ddot{I}} - \mathbf{tt}) \cdot \nabla Q - q\kappa \mathbf{n} \right]$
where $\kappa = \text{curvature}$, $\mathbf{t} = \text{tangent}$.

Integrals over a surface:

If
$$f[\partial\Omega] = \int_{\partial\Omega} d^2 a Q$$
 for some $Q(\mathbf{r})$ and surface $\partial\Omega$,
 $\Rightarrow \delta f = \int_{\partial\Omega} d^2 a (\delta \mathbf{r} \cdot \mathbf{n}) \underbrace{(\mathbf{n} \cdot \nabla Q - 2QH)}_{S}$
where $H =$ mean curvature.

A magnetic sensitivity S_B can be computed from the shape gradient.

$$\mathbf{B} \cdot \nabla \boldsymbol{\psi} = 0 \qquad \Rightarrow \qquad \mathbf{B}_{0} \cdot \nabla \delta \boldsymbol{\psi} + \delta \mathbf{B} \cdot \nabla \boldsymbol{\psi}_{0} = 0.$$
Also $0 = d\boldsymbol{\psi} = \delta \boldsymbol{\psi} + \delta \mathbf{r} \cdot \nabla \boldsymbol{\psi}_{0}.$

$$\Rightarrow \qquad \mathbf{B}_{0} \cdot \nabla \left(\delta \mathbf{r} \cdot \nabla \boldsymbol{\psi}_{0} \right) = \delta \mathbf{B} \cdot \nabla \boldsymbol{\psi}_{0}. \qquad (1)$$
Define S_{B} by $\mathbf{B}_{0} \cdot \nabla S_{B} = \langle S \rangle - S. \qquad (2)$
Substitute $(2) \& (1)$ into $\delta f = \int d^{2}a \ S \delta \mathbf{r} \cdot \mathbf{n}$

$$\Rightarrow \qquad \delta f = \langle S \rangle \delta V + \int d^{2}a \ S_{B} \delta \mathbf{B} \cdot \mathbf{n}.$$

Perturbation to volume

3D MHD Toroidal Equilibrium

$$-\nabla p + \frac{\mathbf{J} \times \mathbf{B}}{c} = 0$$
$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J}$$

In vacuum $\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J}_{c}$ coil current

Assume good flux surfaces in plasma

Poloidal flux $\mathbf{B} = \nabla \alpha \times \nabla \theta - \nabla \Phi_p(\alpha) \times \nabla \zeta$ $= \nabla \alpha \times \nabla \left(\theta - \iota(\alpha) \zeta \right)$ Toroidal Flux $\int_{\iota(\alpha)}^{\iota(\alpha)} = d\Phi_p(\alpha) / d\alpha$ Rotational transform

Linear Perturbations to Equilibrium

$$\mathbf{J}_{c} \Rightarrow \mathbf{J}_{c} + \delta \mathbf{J}_{c}$$
$$\nabla p \Rightarrow \nabla p + \nabla \cdot \delta \mathbf{P}$$
$$\Phi_{p}(\alpha) \Rightarrow \Phi_{p}(\alpha) + \delta \Phi_{p}(\alpha)$$
$$\iota(\alpha) = d\Phi_{p}(\alpha) / d\alpha$$

Generalized Forces:

Changes in current/shape/location of coils

Added pressure tensor

Change in poloidal flux profile

Generalized responses:

Changes in vacuum fields

Changes in magnetic field

Change in toroidal current profile

$$\mathbf{A}_{v} \Rightarrow \mathbf{A}_{v} + \delta \mathbf{A}_{v}$$
$$\mathbf{B} \Rightarrow \mathbf{B} + \nabla \times (\xi \times \mathbf{B} - \delta \Phi_{p} \nabla \zeta)$$
$$I_{T} \Rightarrow I_{T} + \delta I_{T}(\alpha)$$

Generalized Forces and Responses

More generically, for two different persugert Synsmetry Give $\sum_{j} \left\{ \delta x_{i}^{(1)} \delta F_{i}^{(2)} - \delta x_{i}^{(2)} \delta F_{i}^{(1)} \right\} = 0$

Onsager Symmetry for MHD Equilibria (free boundary)

$$\int_{VP} d^3x \left(-\boldsymbol{\xi}^{(1)} \cdot \nabla \cdot \left(\boldsymbol{\delta} \underline{\underline{P}}^{(2)} + \boldsymbol{\xi}^{(2)} \cdot \nabla p \underline{\underline{1}} \right) + \boldsymbol{\xi}^{(2)} \cdot \nabla \cdot \left(\boldsymbol{\delta} \underline{\underline{P}}^{(1)} + \boldsymbol{\xi}^{(1)} \cdot \nabla p \underline{\underline{1}} \right) \right)$$

Pressure - Displacement

$$+\frac{2\pi}{c}\int_{VP}d\alpha\left(\frac{\delta\Phi_{p}^{(1)}}{d\alpha}\frac{d}{d\alpha}\delta I_{T}^{(2)}-\delta\Phi_{p}^{(2)}\frac{d}{d\alpha}\delta I_{T}^{(1)}\right)$$

Rotational transform – Toroidal current

$$+\frac{1}{c}\int_{V-ext} d^3x \left(\delta \mathbf{J}_C^{(1)} \cdot \mathbf{A}_V^{(2)} - \delta \mathbf{J}_C^{(2)} \cdot \mathbf{A}_V^{(1)} \right) = 0$$

Coil current – Vector potential

Onsager Symmetry for MHD Equilibria (given or fixed boundary)

$$\int_{VP} d^{3}x \left(-\boldsymbol{\xi}^{(1)} \cdot \nabla \cdot \left(\boldsymbol{\delta} \underline{\underline{P}}^{(2)} + \boldsymbol{\xi}^{(2)} \cdot \nabla p \underline{\underline{1}} \right) + \boldsymbol{\xi}^{(2)} \cdot \nabla \cdot \left(\boldsymbol{\delta} \underline{\underline{P}}^{(1)} + \boldsymbol{\xi}^{(1)} \cdot \nabla p \underline{\underline{1}} \right) \right)$$

Pressure - Displacement

$$-\frac{2\pi}{c}\int_{VP}d\alpha\left(\delta I_{T}^{(2)}\frac{d}{d\alpha}\delta\Phi_{p}^{(1)}-\delta I_{T}^{(1)}\frac{d}{d\alpha}\delta\Phi_{p}^{(2)}\right)$$

Rotational transform – Toroidal current

$$+\frac{1}{4\pi}\int_{S} d^{2}x \mathbf{n} \cdot \left(\boldsymbol{\xi}^{(1)} \boldsymbol{\delta} \mathbf{B}^{(2)} \cdot \mathbf{B} - \boldsymbol{\xi}^{(2)} \boldsymbol{\delta} \mathbf{B}^{(1)} \cdot \mathbf{B}\right) = 0$$

Surface displacement

Fixed boundary shape

$$\mathbf{Figure of merit}F = \int_{VP} d^3x \, p(\alpha)$$

$$dF(\boldsymbol{\xi}^{(1)}) = -\int_{VP} d^3x \, \boldsymbol{\xi}^{(1)} \cdot \nabla p + \int_{SP} d^2x \, (\boldsymbol{\xi}^{(1)} \cdot \boldsymbol{n})p$$

$$\mathbf{Forward (hard) problem}$$

$$\begin{pmatrix} \boldsymbol{\xi}^{(1)} \cdot \boldsymbol{n} \end{pmatrix}_{SP} \neq 0 \quad \delta \Phi_P^{(1)} = 0$$

$$\delta \underline{P}^{(1)} = -\boldsymbol{\xi}^{(1)} \cdot \nabla p \underline{1}$$

$$\mathbf{Forward}(\boldsymbol{\xi}^{(1)} \cdot \nabla p \underline{1})$$

Use fixed boundary Onsager relation $\int_{VP} d^3x \, \left(-\boldsymbol{\xi}^{(1)} \cdot \nabla \delta p \right) = \frac{1}{4\pi} \int_{SP} d^2x \, \left(\boldsymbol{n} \cdot \boldsymbol{\xi}^{(1)} \right) \delta \boldsymbol{B}^{(2)} \cdot \boldsymbol{B}$

$$dF(\boldsymbol{\xi^{(1)}}) = \int_{SP} d^2 x \, (\boldsymbol{\xi^{(1)}} \cdot \boldsymbol{n}) \left(\frac{\delta \boldsymbol{B^{(2)}} \cdot \boldsymbol{B}}{4\pi\delta} + p \right)$$
Shape gradient (S) computed

Computing the shape

gradient the hard way

¹HIrshman and Whitman, 1983 Phys. Fluids 25 3553 ²Landreman and Paul, 2018 Nucl. Fusion 58 076023

Computing the shape

gradient the adjoint $VV^{-1}_{\times 10^4}$

- NCSX LI383 equilibrium computed with VMEC¹
- Requires $\approx 1\%$ CPU hours in comparison with djoine piceblem $(\xi^{(2)})$ at ive $\delta \Phi_P^{(2)} = 0$

 $\delta \underline{\underline{P}}^{(2)} = \left(-\boldsymbol{\xi}^{(2)} \cdot \nabla p + \delta p\right) \underline{\underline{1}}$

$$F = \int_{VP} d^3x \, p(\alpha) \quad dF(\boldsymbol{\xi^{(1)}}) = \int_{SP} d^2x \, (\boldsymbol{\xi^{(1)}} \cdot \boldsymbol{n}) \left(\frac{\delta \boldsymbol{B^{(2)}} \cdot \boldsymbol{B}}{4\pi\delta} + p\right)$$

Free boundary shape

Free boundary shape gradient

¹H.J. Gardner 1990 Nucl. Fusion 30 1417