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The shape gradient is a new (to fusion) way to think about 
derivatives involving shapes.

• Derivatives involving shapes are central to stellarator optimization.

• These derivatives also encode tolerances, which have been a leading 
driver of cost: 

• Compared to ‘parameter derivatives’, shape gradients have 2 advantages:

2

“The	largest	driver	of	the	project	cost	growth	were	the	
accuracy	requirements.”	
Strykowsky et	al,	Engineering	Cost &	Schedule	Lessons
Learned on	NCSX,	(2009).

o Spatially local

o Independent of parameterization and discretization



Outline: Understanding local sensitivity & tolerances of 
stellarators using shape gradients

• 2 ways to represent derivatives: parameter derivatives 
vs. shape gradients.

• Computing shape gradients from existing codes.

• Fast computation of shape gradients via adjoint methods.

• Coil tolerances

• Magnetic sensitivity and tolerances

3



Historically, we have represented derivatives of 
shapes using parameter derivatives.

4

Let		f 		denote	any	figure	of	merit,	e.g.	rotational	transform	ι =1/q,	neoclassical	transport,	etc.
Parameter	derivatives: 		Example:		∂ f /∂Rm ,n

c 	and	∂ f /∂Zm ,ns

		where		Rm ,n
c 	and	Zm ,ns 	parameterize	the	plasma	boundary	shape:

		

R θ ,ζ( ) =
m,n
∑ Rm,n

c cos mθ −nζ( ) , 							
Z θ ,ζ( ) =

m,n
∑ Zm,n

s sin mθ −nζ( )



Historically, we have represented derivatives of 
shapes using parameter derivatives.
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Let		f 		denote	any	figure	of	merit,	e.g.	rotational	transform	ι =1/q,	neoclassical	transport,	etc.
Parameter	derivatives: 		Example:		∂ f /∂Rm ,n

c 	and	∂ f /∂Zm ,ns

		where		Rm ,n
c 	and	Zm ,ns 	parameterize	the	plasma	boundary	shape:

n n

		

R θ ,ζ( ) =
m,n
∑ Rm,n

c cos mθ −nζ( ) , 							
Z θ ,ζ( ) =

m,n
∑ Zm,n

s sin mθ −nζ( )



Historically, we have represented derivatives of 
shapes using parameter derivatives.
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Parameter	derivatives: 		Example:		∂ f /∂Rm ,n
c 	and	∂ f /∂Zm ,ns

		

R θ ,ζ( ) =
m,n
∑ Rm,n

c cos mθ −nζ( ) , 							
Z θ ,ζ( ) =

m,n
∑ Zm,n

s sin mθ −nζ( )

• Successfully used in STELLOPT to 
design NCSX, etc.

• Computable by finite differencing 
any code.

But,
• Not unique: coordinate-dependent,
• Nonlocal: awkward for engineering.

		where		Rm ,n
c 	and	Zm ,ns 	parameterize	the	plasma	boundary	shape:

n n

Let		f 		denote	any	figure	of	merit,	e.g.	rotational	transform	ι =1/q,	neoclassical	transport,	etc.



The shape gradient is a complementary way to 
express derivatives involving shapes.
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For	surfaces,		the	shape	gradient = S 	where	δ f = d2a∫ δr ⋅n( )S.

• Local (real-space, not Fourier-space). More useful for engineering.

• Independent of coordinates & discretization used to represent surface.

Othmer, J Math. Industry (2014).

Unit normal



The shape gradient is a complementary way to 
express derivatives involving shapes.

8

For	surfaces,		the	shape	gradient = S 	where	δ f = d2a∫ δr ⋅n( )S.

• Local (real-space, not Fourier-space). More useful for engineering.

• Independent of coordinates & discretization used to represent surface.

Othmer, J Math. Industry (2014).

Unit normal
For	coils,		the	shape	gradient = Sk 	where	δ f = dℓ∫coils	k

∑ 	δr ⋅Sk .



The shape gradient representation can be expected 
to exist for many shape functionals.

9

Derivative	of	a	function	
of	n	numbers		f r1 ,r2 ,...,rn( ):

		
δ f = ∂ f

∂rj
δrj

j=1

n

∑

f = f r ℓ( )⎡
⎣

⎤
⎦ ,					δ f = dℓ∫

δ f
δr
S
!

δr

This	is	an	instance	of	the	“Riesz representation	theorem”:	
Any	linear	functional	can	be	written	as	an	inner	product	with	
some	element	of	the	appropriate	space.

n→∞:



Outline: Understanding local sensitivity & tolerances of 
stellarators using shape gradients

• 2 ways to represent derivatives: parameter derivatives 
vs. shape gradients.

• Computing shape gradients from existing codes.

• Fast computation of shape gradients via adjoint methods.

• Coil tolerances

• Magnetic sensitivity and tolerances
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The shape gradient can be computed from parameter 
derivatives by solving a small linear system.

11

Coils: Discretize	coil	shapes:

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

		&	Y , 	Z



The shape gradient can be computed from parameter 
derivatives by solving a small linear system.
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Coils:

Discretize	shape	gradient:

		
SX ϑ( ) = SX ,0c + SX ,m

c cos mϑ( )+ SX ,ms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

Discretize	coil	shapes:

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

		&	Y , 	Z

		&	SY , 	SZ



The shape gradient can be computed from parameter 
derivatives by solving a small linear system.
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Coils:

			 
dℓ	∫ δr ⋅S =δ f 						⇒ 						Solve		 dℓ	∫

∂r
∂pj

⋅S = ∂ f
∂pj

	for	S.

Discretize	shape	gradient:

		
SX ϑ( ) = SX ,0c + SX ,m

c cos mϑ( )+ SX ,ms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

Discretize	coil	shapes:

		
X ϑ( ) = X0c + Xm

c cos mϑ( )+ Xms sin mϑ( )⎡
⎣

⎤
⎦

m=1
∑

		Parameters	pj 	are	 Xm
c ,Xms ,Ymc ,Yms ,Zmc ,Zms{ }.

		Compute	∂ f /∂pj 	using	finite	differences,	e.g.	STELLOPT.

(Square	linear	system)

		&	Y , 	Z

		&	SY , 	SZ



Example: Neoclassical transport      at r/a=0.5 

14

Parameter	derivatives	from
STELLOPT	+	VMEC	+	NEO:

Shape	gradient	for	boundary	surface:
		εeff
3/2

			δ f = d2a∫ δr ⋅n( )S

m-3



Example: Neoclassical transport      at r/a=0.5 

15

Shape	gradient	for	coils:
		εeff
3/2

			 

Arrows	show	Sk 	where	
δ f = dℓ∫coils	k

∑ 	δr ⋅Sk .



Outline: Understanding local sensitivity & tolerances of 
stellarators using shape gradients

• 2 ways to represent derivatives: parameter derivatives 
vs. shape gradients.

• Computing shape gradients from existing codes.

• Fast computation of shape gradients via adjoint methods.

• Coil tolerances

• Magnetic sensitivity and tolerances
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For certain figures of merit, shape gradients can be computed 
extremely efficiently using adjoint methods.

17

Adjoint methods:

• You can get the derivative of a code result 
with respect to all N parameters with only 
1 (not N) extra calculation. 

• Requires some theory work and code 
modifications.



For certain figures of merit, shape gradients can be computed 
extremely efficiently using adjoint methods.
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Adjoint methods:

• You can get the derivative of a code result 
with respect to all N parameters with only 
1 (not N) extra calculation. 

• Requires some theory work and code 
modifications.

Recently used for optimizing tokamak divertor shapes:

• W. Dekeyser, Ph.D. thesis, KU Leuven (2014).

• W. Dekeyser et al, Nucl. Fusion 54, 073022 (2014).

• M. Baelmans, et al, Nucl. Fusion 57, 036022 (2017).



For certain figures of merit, shape gradients can be computed 
extremely efficiently using adjoint methods.
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Self-adjointness of linearized MHD:

ξ 2( ) ⋅F 1( ) −ξ 1( ) ⋅F 2( )( )Ω∫ = n ⋅ξ 1( )( ) B⋅δB 2( )( )− n ⋅ξ 2( )( ) B⋅δB 1( )( )⎡
⎣⎢

⎤
⎦⎥∂Ω∫

Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm

where		F j( ) = J j( ) ×B+ J×B j( ) −∇p j( ) , 									B j( ) =∇× ξ j( ) ×B( ) , 									µ0J j( ) =∇×B j( ) , 									p j( ) +ξ j( ) ⋅∇p=0.



For certain figures of merit, shape gradients can be computed 
extremely efficiently using adjoint methods.
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Self-adjointness of linearized MHD:

ξ 2( ) ⋅F 1( ) −ξ 1( ) ⋅F 2( )( )Ω∫ = n ⋅ξ 1( )( ) B⋅δB 2( )( )− n ⋅ξ 2( )( ) B⋅δB 1( )( )⎡
⎣⎢

⎤
⎦⎥∂Ω∫

Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm

where		F j( ) = J j( ) ×B+ J×B j( ) −∇p j( ) , 									B j( ) =∇× ξ j( ) ×B( ) , 									µ0J j( ) =∇×B j( ) , 									p j( ) +ξ j( ) ⋅∇p=0.

⇒ 			 ξ 1( ) ⋅F 2( )
Ω∫ = n ⋅ξ 1( )( ) −B⋅δB 2( )( )∂Ω∫ 																					

Shape	gradient
! "# $#

`Real'	perturbation	ξ 1( ) : 		n ⋅ξ 2( )
∂Ω

≠0,				F 1( ) =0.						

Adjoint	perturbation		ξ 2( ):			n ⋅ξ 2( )
∂Ω

=0,				F 2( ) ≠0.



For certain figures of merit, shape gradients can be computed 
extremely efficiently using adjoint methods.
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Self-adjointness of linearized MHD:
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⇒ 			 ξ 1( ) ⋅F 2( )
Ω∫ = n ⋅ξ 1( )( ) −B⋅δB 2( )( )∂Ω∫

⇒ 			If	perturbations	to	a	figure	of	merit		f 		can	be	written		δ f = ξ ⋅ something( )
Ω∫ ,

								adjoint	calculation	is	given	by	perturbing	the	equilibrium	by	the	"something".

																					
Shape	gradient
! "# $#

`Real'	perturbation	ξ 1( ) : 		n ⋅ξ 2( )
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For certain figures of merit, shape gradients can be computed 
extremely efficiently using adjoint methods.
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Self-adjointness of linearized MHD:
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⇒ 			 ξ 1( ) ⋅F 2( )
Ω∫ = n ⋅ξ 1( )( ) −B⋅δB 2( )( )∂Ω∫

Can be generalized to include perturbations that change ι, & vacuum region + coils.

⇒ 			If	perturbations	to	a	figure	of	merit		f 		can	be	written		δ f = ξ ⋅ something( )
Ω∫ ,

								adjoint	calculation	is	given	by	perturbing	the	equilibrium	by	the	"something".

																					
Shape	gradient
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∂Ω

≠0,				F 1( ) =0.						

Adjoint	perturbation		ξ 2( ):			n ⋅ξ 2( )
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Adjoint calculations for several figures of merit 
have now been demonstrated.
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Shape 
gradient 
from finite 
differences:

Only 2
VMEC
calls!!

Shape gradient 
from adjoint 
method:

f = ι	on	axis: Antonsen, Paul, & ML, PO5.00005 Wed 2:48pm



Adjoint calculations for several figures of merit 
have now been demonstrated.
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Shape 
gradient 
from finite 
differences:

Only 2
VMEC
calls!!

Shape gradient 
from adjoint 
method:

f = ι	on	axis: f = d3x
plasma∫ 	p



Adjoint calculations for several figures of merit 
have now been demonstrated.
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Shape 
gradient 
from finite 
differences:

Only 2
VMEC
calls!!

Shape gradient 
from adjoint 
method:

f = ι	on	axis: f = d3x
plasma∫ 	p

If we could include an arbitrary pressure 
tensor in VMEC or a perturbed-MHD 
code, we could use an adjoint to quickly 
compute the shape gradient of !eff.



Outline: Understanding local sensitivity & tolerances of 
stellarators using shape gradients

• 2 ways to represent derivatives: parameter derivatives 
vs. shape gradients.

• Computing shape gradients from existing codes.

• Fast computation of shape gradients via adjoint methods.

• Coil tolerances

• Magnetic sensitivity and tolerances
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Coil tolerances can be computed 
from the shape gradient.

		 Choose	an	acceptable	Δf &any	weight	w ℓ( )≥0.

			If		 δr ≤T ,

Let		T ℓ( )= w 	Δf
dℓ∫∑ 	w S

.

			 δ f 	 ≤ 	 dℓ∫ S ⋅δr 	 ≤ 	 dℓ∫ S δr 	 ≤ 	 dℓ∫ ST 	 = 	Δf .



Coil tolerances can be computed 
from the shape gradient.

		 Choose	an	acceptable	Δf &any	weight	w ℓ( )≥0.

			If		 δr ≤T ,

			 δ f 	 ≤ 	 dℓ∫ S ⋅δr 	 ≤ 	 dℓ∫ S δr 	 ≤ 	 dℓ∫ ST 	 = 	Δf .

Conservative: a bound on the worst possible outcome.

Let		T ℓ( )= w 	Δf
dℓ∫∑ 	w S

.



Coil tolerances can be computed 
from the shape gradient.
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	Δι =0.02 		Δεeff
3/2 = εeff

3/2 /2



Outline: Understanding local sensitivity & tolerances of 
stellarators using shape gradients

• 2 ways to represent derivatives: parameter derivatives 
vs. shape gradients.

• Computing shape gradients from existing codes.

• Fast computation of shape gradients via adjoint methods.

• Coil tolerances

• Magnetic sensitivity and tolerances
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A magnetic sensitivity SB can be computed 
from the shape gradient.

31

			Substitute	into	δ f = d2a	∫ Sδr ⋅n.

			Define		SB 	by	B0 ⋅∇SB = S − S.

			⇒ 				δ f = d2a∫ 	SBδB⋅n.

After	some	algebra	…



A magnetic sensitivity SB can be 
computed from the shape gradient.

32

δ f = d2a∫ 	SBδB⋅n
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A magnetic tolerance TB can be computed 
from the magnetic sensitivity.

		Choose	an	acceptable	Δf &any	weight	W θ ,ζ( )≥0.

			If		 δB⋅n ≤TB ,

			

δ f 	 ≤ 	 d2a∫ SB δB⋅n 	
≤ 	 d2a∫ SB TB 	
≤ 	Δf .

Let		TB θ ,ζ( )= W 	Δf
d2a∫ 	W SB

.
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A magnetic tolerance TB can be computed 
from the magnetic sensitivity.

		Choose	an	acceptable	Δf &any	weight	W θ ,ζ( )≥0.

			If		 δB⋅n ≤TB ,

			

δ f 	 ≤ 	 d2a∫ SB δB⋅n 	
≤ 	 d2a∫ SB TB 	
≤ 	Δf .

Let		TB θ ,ζ( )= W 	Δf
d2a∫ 	W SB

.



Conclusions
Shape gradients provide local sensitivity & tolerance information which could inform
• How accurately and rigidly the coils should be built,
• Where coils should be connected to support structure,
• Where sources of error fields like coil leads should be located.

Future work:
• Shape gradients for island width.
• Develop adjoint methods for more figures of merit. Need 3D equilibrium or

stability code with arbitrary pressure anisotropy.
• Target tolerances in STELLOPT to increase them.

35

Landreman & Paul, Nuclear Fusion 58 076023 (2018),
Antonsen, Paul, & Landreman, PO5.00005 Wed 2:48pm
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For some shape functionals,
the shape gradient can be computed analytically.

37

Example:	Given	B r( ) ,	vary	surface	to	minimize		f = 1
2 d2a∫ B⋅n( )2⎡
⎣⎢

⎤
⎦⎥

"Quadratic	flux"	[1]
! "## $##

+λ d3x∫
Volume
!

After	some	algebra…

δ f = d2a	∫ S 	δr ⋅n		

where		S = B⋅n( )2H +B⋅∇ B⋅n( )+λ ,
H =mean	curvature.

[1]	Dewar,	Hudson,	Price	(1994).

S =0	at	the	optimum.

Perturb		position	vector		r θ ,ζ( ).



The algorithm for computing shape gradients can be 
verified by comparison to analytic theory.
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		Consider		f = area.						Analytic	result:		S = −2× mean	curvature( )

			δ f = d2a∫ δr ⋅n( )S



Example: Rotational transform at r/a=0.5 

39

Parameter	derivatives	from
STELLOPT/VMEC:

Shape	gradient	for	boundary	surface:

			δ f = d2a∫ δr ⋅n( )S



Example: Rotational transform at r/a=0.5 

40

Shape	gradient	for	coils:

			 

Arrows	show	Sk 	where	
δ f = dℓ∫coils	k

∑ 	δr ⋅Sk .



The shape gradient can show where 
coils must be close to the plasma.

41

E. J. Paul & ML, 
Nuclear Fusion (2018)

			Shape	gradient	on	a	current	surface	for	f = d2a∫ B⋅n( )2 	
	given	a	fixed	plasma	boundary

Plasma boundary

Current surface



The shape gradient can be computed from parameter 
derivatives by solving a small linear system.

42

Plasma	boundary	shape:

Discretize	shape	gradient:
		
S θ ,ζ( ) = Sq cos mqθ −nqζ( )

q
∑

		Parameters	pj 	are	 Rm ,n
c ,Zm ,ns{ }.

		
Compute	 ∂ f

∂pj
	using	finite	differences,	e.g.	STELLOPT.

Linear	system,	not	square.

		
Check	that	 ∂ f

∂pj
	is	in	the	column	space	of	matrix.

		If	so,	 1( ) 	can	be	solved	for	Sq 	using	pseudo-inverse	of	matrix.

			
d2a∫ δr ⋅n( )S =δ f 						⇒ 						Solve		 d2a∫

∂r
∂pj

⋅nS = ∂ f
∂pj

	for	S.				 1( )



In some cases, shape gradients can be 
computed analytically.
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			 If		f C
⎡⎣ ⎤⎦ = dℓ

C∫ 	Q	for	some	Q r( ) 	and	space	curve	C ,
Integrals	over	a	curve:

			 
⇒ 		δ f = dℓ

C∫ 	δr ⋅
"
I − tt( )⋅∇Q−qκn⎡

⎣
⎤
⎦

S
# $%%% &%%%

		where		κ = curvature,		t = tangent.
Integrals	over	a	surface:

			 
⇒ 		δ f = d2a

∂Ω∫ δr ⋅n( ) n ⋅∇Q−2QH( )
S

! "## $##

		where		H =mean		curvature.

			If		f ∂Ω⎡⎣ ⎤⎦ = d2a	
∂Ω∫ Q	for	some	Q r( ) 	and	surface	∂Ω ,



The algorithm for computing coil shape gradients 
can be verified by comparison to analytic theory.

44
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Section III.B method:

(a)

			Consider		f = length.						Analytic	result:		S = −κn
(NCSX	type-A	coil) Shape	gradient	S:

Finite	diff.	method:
Analytic	answer:



A magnetic sensitivity SB can be computed 
from the shape gradient.
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		B⋅∇ψ =0											⇒ 														B0 ⋅∇δψ +δB⋅∇ψ 0 =0.

		⇒ 						B0 ⋅∇ δr ⋅∇ψ 0( ) =δB⋅∇ψ 0.									 1( )

			Substitute	 2( )& 1( ) 	into	δ f = d2a	∫ Sδr ⋅n

Perturbation	to	volume

			Define		SB 	by	B0 ⋅∇SB = S − S.									 2( )

			⇒ 				δ f = S δV + d2a∫ 	SBδB⋅n.

			Also				0= dψ =δψ +δr ⋅∇ψ 0.



3D MHD Toroidal Equilibrium

   
−∇p + J ×B

c
= 0

   
∇×B = 4π

c
J

   

B = ∇α ×∇θ −∇Φ p (α )×∇ζ

= ∇α ×∇ θ −ι(α )ζ( )

Assume good flux surfaces in plasma

Poloidal flux

Toroidal Flux

   
∇×B = 4π

c
JC

In vacuum

coil current

  
ι(α ) = dΦ p (α ) / dα

Rotational  transform

Coils



Linear Perturbations to Equilibrium

Generalized Forces:

Changes in 
current/shape/location of coils

Added pressure tensor

Change in poloidal flux profile

Generalized responses:

Changes in vacuum fields

Changes in magnetic field

Change in toroidal current  profile

  AV ⇒ AV +δAV

  B ⇒ B +∇× ξ ×B −δΦP∇ζ( )

  IT ⇒ IT +δ IT (α )

  JC ⇒ JC +δJC

  ∇p ⇒∇p +∇⋅δP

  
Φ p (α )⇒Φ p (α )+δΦ p (α )

  
ι(α ) = dΦ p (α ) / dα



Generalized Forces and Responses

   

δAV

ξ
dδ IT / dα

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= O

δJC

∇⋅δ P

δΦP

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ForcesResponses

More 
generically,
for two 
different 
perturbations

  
δ xi

(1) = Oij
j
∑ δ Fj

(1) δ xi
(2) = Oij

j
∑ δ Fj

(2)

Onsager Symmetry Gives
  

δ xi
(1)δ Fi

(2) −δ xi
(2)δ Fi
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Onsager Symmetry for MHD Equilibria (free boundary)
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Pressure - Displacement

Rotational transform –Toroidal current

Coil current – Vector potential



Onsager Symmetry for MHD Equilibria
(given or fixed boundary)
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Pressure - Displacement

Rotational transform –Toroidal current

Surface displacement



Fixed boundary shape 
gradient

Use fixed boundary Onsager relation

Forward (hard) problem Adjoint (easy) problem

Figure of merit 
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Computing the shape 
gradient the hard way

1HIrshman and Whitman, 1983 Phys. Fluids 25 3553
2Landreman and Paul, 2018 Nucl. Fusion 58 076023

• NCSX LI383 
equilibrium computed 
with VMEC1

• applied by 
perturbing boundary 
harmonics 

• S computed from 

by   
solving a small linear 

system2

Forward problem



Computing the shape 
gradient the adjoint way

• NCSX LI383 
equilibrium computed 
with VMEC1

• Requires ≈1% CPU 
hours in comparison 
with numerical 
derivative 

Adjoint problem



Free boundary shape 
gradient

Use free boundary Onsager relation

Forward (hard) problem Adjoint (easy) problem

Figure of merit 

S

Coil shape 
gradient (S) 
computed 
without 



Free boundary shape 
gradient

• NCSX LI383 equilibrium 
computed with VMEC1

• computed at coil locations 
using DIAGNO3

1H.J. Gardner 1990 Nucl. Fusion 30 1417


