

Quasi-axisymmetric stellarators with varying rotational transform profiles

Stefan Buller, Rahul Gaur, Toby Adkins, Patrick Kim, Noah Mandell, Bill Dorland, Matt Landreman

> APS DPP, Denver November, 2023

- In optimization for quasi-axisymmetry (QA), *ι*-profile is typically (partially) prescribed as an optimization target
- Example: radial average of *ι*-profile specified as an optimization target. (Landreman-Paul precise QA)

To make well-informed choices of optimization target

 \Rightarrow Need to assess compatibility of *i*-profile and other optimization and physics goals.

- In optimization for quasi-axisymmetry (QA), ι-profile is typically (partially) prescribed as an optimization target
- Example: radial average of *ι*-profile specified as an optimization target. (Landreman-Paul precise QA)

To make well-informed choices of optimization target

 \Rightarrow Need to assess compatibility of $\iota\text{-profile}$ and other optimization and physics goals.

- Quasisymmetry (QS)
- Flux-surface elongation
- Fast-particle losses
- Turbulent energy fluxes

- In optimization for quasi-axisymmetry (QA), *ι*-profile is typically (partially) prescribed as an optimization target
- Example: radial average of *ι*-profile specified as an optimization target. (Landreman-Paul precise QA)

To make well-informed choices of optimization target

> Need to assess compatibility of *i*-profile and other optimization and physics goals.

- Quasisymmetry (QS)
- Flux-surface elongation
- Fast-particle losses
- Turbulent energy fluxes

- $\implies \iota < 0.8$ for good QS
- \implies Higher elongation for higher ι
- \implies Lower losses at high ι
- \implies No clear trend

Optimization for quasi-axisymmetry (QA) at different iota

 $n_{\rm fp} = 2$, A = 6, vacuum QA (like Landreman-Paul Precise QA)

Optimization objective

$$f_{\mathrm{QS}}^2+(A-A_*)^2+(ar\iota-ar\iota_*)^2$$

 f_{QS} : quasisymmetry objective $A_* = 6$ (target aspect ratio) $\bar{\iota}_*$ (target mean iota)

Optimization for quasi-axisymmetry (QA) at different iota

 $n_{\rm fp} = 2$, A = 6, vacuum QA (like Landreman-Paul Precise QA)

Optimization objective

$$f_{\rm QS}^2 + (A - A_*)^2 + (\bar{\iota} - \bar{\iota}_*)^2$$

 f_{QS} : quasisymmetry objective $A_* = 6$ (target aspect ratio) $\bar{\iota}_*$ (target mean iota)

Attempt to find vacuum configuration with good quasisymmetry at even higher $\boldsymbol{\iota}$

Optimization objective: $f_{QS}^2 + (A - A_*)^2 + (\bar{\iota} - \bar{\iota}_*)^2$

Optimization by continuation

- $\bullet \hspace{0.1in} \text{Set} \hspace{0.1in} \overline{\iota}_{*} = 0.12$
- Optimize from purely toroidal initial condition
- **3** Increment $\bar{\iota}_*$ by +0.01
- Optimize starting from previous optimumGo to (3)

From 5000 3.5 $\rm MeV$ alpha particles launched at three different radii. Drift orbits traced with SIMPLE code

Stefan Buller

Linear ITG growth rates

Electrostatic stella simulations for different geometries and flux-tubes. $a/L_T = 3$, $a/L_n = 1$ α_0 : $\alpha = \theta - \iota \zeta$ at the center of flux tube.

8/12

Physics

Physics

Nonlinear ITG heat fluxes

- $\iota \in [0.2, 0.6]$ compatible with good quasi-axisymmetry
- Higher ι generally better for fast-particle confinement
- Nonlinear heat flux displays a more complicated trend, but seems to favor $\iota > 0.6$
- Other considerations, such as avoiding rational ι or minimizing elongation likely give stronger constraints
- At finite-beta, bootstrap current will be able provide a sizeable fraction of the ι . Less shaping needed.

Axis curvature goes to zero at points for high ι (Here, $\iota = 0.77$)

