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Motivation

• In optimization for quasi-axisymmetry (QA), ι-profile is typically (partially) prescribed as
an optimization target

• Example: radial average of ι-profile specified as an optimization target.
(Landreman-Paul precise QA)

To make well-informed choices of optimization target

=⇒ Need to assess compatibility of ι-profile and other optimization and physics goals.

• Quasisymmetry (QS)

• Flux-surface elongation

• Fast-particle losses

• Turbulent energy fluxes

=⇒ ι < 0.8 for good QS

=⇒ Higher elongation for higher ι

=⇒ Lower losses at high ι

=⇒ No clear trend
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Optimization for quasi-axisymmetry (QA) at different iota

nfp = 2, A = 6, vacuum QA (like Landreman-Paul Precise QA)

Optimization objective

f 2QS + (A − A∗)
2 + (ῑ − ῑ∗)

2

fQS : quasisymmetry objective

A∗ = 6 (target aspect ratio)

ῑ∗ (target mean iota)
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Continuation method

Attempt to find vacuum configuration with good quasisymmetry at even higher ι

Optimization objective: f 2QS + (A − A∗)
2 + (ῑ − ῑ∗)

2

Optimization by continuation

1 Set ῑ∗ = 0.12

2 Optimize from purely toroidal initial
condition

3 Increment ῑ∗ by +0.01

4 Optimize starting from previous optimum

5 Go to (3) 0.0 0.2 0.4 0.6 0.8
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Fast-particle losses

For thin drift orbits

orbit width ∝ 1

|ι|
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Linear ITG growth rates

Electrostatic stella
simulations for different

geometries and flux-tubes.
a/LT = 3, a/Ln = 1

α0 : α = θ − ιζ at the
center of flux tube.
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Closer look at ι = 0.5
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Closer look at ι = 0.5
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Irrational iota flux-tubes sample very different |∇α|2 at bad curvature
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Nonlinear ITG heat fluxes
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Conclusions & Outlook

• ι ∈ [0.2, 0.6] compatible with good quasi-axisymmetry

• Higher ι generally better for fast-particle confinement

• Nonlinear heat flux displays a more complicated trend, but seems to favor ι > 0.6

• Other considerations, such as avoiding rational ι or minimizing elongation likely give
stronger constraints

• At finite-beta, bootstrap current will be able provide a sizeable fraction of the ι. Less
shaping needed.

Outro Stefan Buller 12/12



Bonus slide
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Axis curvature goes to zero at points for high ι (Here, ι = 0.77)
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Irrational iota flux-tubes ι = 0.49
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Rational iota flux-tubes. ι = 0.5

0.00 0.25 0.50 0.75 1.00 1.25
field-line label 0

0.5

1.0

1.5

2.0

2.5

|
|2

| |2 at maximum cvdrift = 0.50

— — Stefan Buller 4/4


	Introduction
	Optimization
	Physics
	Outro
	Appendix

