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The stellarator is a fusion energy concept that relies on fully three-dimensional

shaping of magnetic fields to confine particles. Stellarators have many favorable

properties, including, but not limited to, the ability to operate in steady-state,

many optimizable degrees of freedom, and no strict upper limit on the plasma den-

sity. Due to the three-dimensional character of stellarators, theoretical and compu-

tational studies of stellarator physics are challenging, and they also possess some

disadvantages compared with tokamaks. Namely, particle confinement and impurity

control are problems in generic stellarator magnetic fields that must be addressed

with optimized magnetic fields. Further, simulations will require a substantial in-

crease in grid points because of the three-dimensional structure, leading to more

expensive computations. This thesis will address both topics, by first exploring the

behavior of impurity particle transport in optimized stellarators, and then introduc-

ing a boundary condition to reduce the cost of stellarator turbulence simulations.

Impurity temperature screening is a favorable neoclassical phenomenon in-



volving an outward radial flux of impurity ions from the core of fusion devices.

Quasisymmetric magnetic fields lead to intrinsically ambipolar neoclassical fluxes

that give rise to temperature screening for low enough η−1 ≡ d lnn/d lnT . Here

we examine the impurity particle flux in a number of approximately quasisymmet-

ric stellarator configurations and parameter regimes while varying the amount of

symmetry-breaking in the magnetic field. Results indicate that achieving tempera-

ture screening is possible, but unlikely, at low-collisionality reactor-relevant condi-

tions in the core. Further, in configurations optimized for quasisymmetry, results

suggest that neoclassical fluxes are small compared with a gyro-Bohm estimate of

turbulent fluxes.

Calculating these turbulent fluxes is generally done by solving the gyrokinetic

equation in a flux tube simulation domain, which employs coordinates aligned with

the magnetic field lines. The standard “twist-and-shift” formulation of the bound-

ary conditions [7] was derived assuming axisymmetry and is widely used because

it is efficient, as long as the global magnetic shear is not too small. A generaliza-

tion of this formulation is presented, appropriate for studies of non-axisymmetric,

stellarator-symmetric configurations, as well as for axisymmetric configurations with

small global shear. The key idea of this generalization is to rely on integrated local

shear, allowing one significantly more freedom when choosing the extent of the sim-

ulation domain in each direction. Simulations of stellarator turbulence that employ

the generalized parallel boundary conditions allow for lower resolution to be used

compared with simulations that use the (incorrect, axisymmetric) standard parallel

boundary condition.
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Chapter 1: Introduction

1.1 Magnetic Confinement Fusion

Nuclear fusion as an energy source has the potential to generate clean, safe,

and sustainable energy using a near-inexhaustible fuel supply. The promise of fusion

energy has prompted the design of many concepts aimed at achieving fusion in a

practical sense, with arguably the most successful of these being magnetic confine-

ment fusion (MCF). MCF aims to confine a high-temperature plasma (ionized gas)

using magnetic fields for a long enough time in order to allow for self-sustaining

nuclear fusion reactions to occur.

The MCF devices that will be considered here achieve plasma confinement

with toroidally-shaped vessels that use electromagnetic coils and/or plasma cur-

rents to generate a set of nested magnetic surfaces, or flux surfaces (see Figure

1.1). The innermost flux surface is a line that is referred to as the magnetic axis.

The magnetic field lines are tangent to these flux surfaces, approximately confining

charged particles to the surface, in principle. Further, the magnetic field lines have

an average pitch, or twist, within the surface known as the rotational transform.

A nonzero rotational transform is required to prevent the secular motion of

particles away from flux surfaces that arises due to the shaping of the magnetic field.
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There are two prominent MCF concepts that use distinct approaches to generate

the rotational transform, the tokamak and the stellarator, which will be discussed

presently.

Figure 1.1: Depiction of a set of nested toroidal magnetic surfaces (flux surfaces),
on which magnetic field lines will be confined. Figure courtesy of Matt Landreman.

1.1.1 Tokamaks

The most studied MCF concept to date is the tokamak (see Figure 1.2), which

generates toroidal flux surfaces that have a continuous rotational symmetry in the

toroidal direction (axisymmetry). By the toroidal direction, we are referring to the

direction of increase of the toroidal angle, ζ, which is taken to be the long way around

the torus, and the poloidal angle, θ, is the short way around the torus (see Figure

1.3). This toroidal symmetry in tokamaks leads to favorable confinement properties,

and can simplify the engineering of the electromagnetic coils that are required to

create the flux surfaces. Further, the ability to ignore toroidal variation has led to

extensive theoretical progress in the understanding of tokamak plasmas. However,

in order to produce the poloidal magnetic field component that is responsible for a
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nonzero rotational transform, tokamaks require the presence of a toroidal current.

The presence of a large toroidal current is a major drawback because it makes the

plasma vulnerable to instabilities that lead to disruptions, which can cause a loss

of confinement, and potentially damage the machine. It is also difficult to drive the

required current in steady-state, forcing tokamaks toward pulsed operation.

Figure 1.2: Cartoon of a tokamak experiment, where the purple torus represents a
flux surface. The blue toroidal field coils generate the toroidal component of the
magnetic field (blue arrow). The green transformer circuit generates the toroidal
current, which is depicted by the green arrow. This current produces a poloidal
magnetic field that gives the twist to the magnetic field that can be seen in the
black line on the flux surface. Figure from [62].

1.1.2 Stellarators

Stellarators are an alternative to the tokamak, and although the concept was

introduced first [91], they are not as well understood. Stellarators aim to confine

particles through the use of three-dimensional flux surfaces, removing the axisymme-
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Figure 1.3: Toroidal coordinate system (r, θ, ζ).

try constraint that defines tokamaks (see Figure 1.4). A consequence of having 3-D

surfaces is that stellarators possess the superior properties that they are not prone

to disruptions, and are able to operate in steady-state. This is possible because of

how the rotational transform is generated.

There are three different ways to produce a rotational transform [46]: an

electric current (tokamaks), torsion of the magnetic axis, or rotation of the cross-

section along the magnetic axis. Stellarators employ the second and third techniques

by using complex electromagnetic coils to create the flux surfaces and fields, and

thus do not require a plasma current. In principle, this also means that stellarators

are able to operate with minimal toroidal current, making the positional equilibrium

more robust as it will not be so reliant on the state of the plasma.

Further, the variation of the rotational transform across flux surfaces, which is

related to the (global) magnetic shear is often made to be small in stellarators. This
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avoids the low-order rational surfaces that lead to magnetic islands, and is enabled

by the robustness of the positional equilibrium.

Along with the general problems in MCF, such as turbulence, there are of

course unique challenges that arise when considering 3-D surfaces. Generating this

shaping requires complex coils, which can be exceptionally difficult and expensive to

engineer. Confinement of particles is also of concern because of secular drifts away

from flux surfaces that result from asymmetries in the magnetic field.

These problems can be overcome, however. For the case of coils, the stellarator

Wendelstein 7-X (W7-X) [40] currently operates with 50 of these modular coils,

and experiments are able to create the desired flux surfaces to within errors of

δB/B ∼ 10−5 [79]. The issue of particle transport can be addressed by a special

type of symmetry known as quasisymmetry, which will be discussed in detail in

Chapter 2. Stellarators designed to be quasisymmetric will have improved particle

confinement similar to that of tokamaks.

Figure 1.4: Cartoon of the W7-X stellarator showing the modular coils (blue) that
produce the 3-D flux surfaces.
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1.2 Transport in Plasmas

Before MCF can be realized as a practical energy source, there are a number of

outstanding problems that must be overcome. Many of these outstanding issues are

related to plasma transport, which covers the flow of particles and energy within the

plasma. In this thesis, we will only address transport in the core of fusion devices.

The core is defined to be the region of closed flux surfaces, where magnetic field

lines ergodically cover the surface or connect with themselves, and do not intersect

with the wall. In certain regions of the core, chaotic field lines or magnetic islands

may be present, both of which do not lead to flux surfaces. However, in this work

it is assumed that good flux surfaces exist in the regions where simulations are

performed. Figure 1.5 provides a visual for the relative locations of different regions

in toroidal fusion devices.

Since a long confinement time of particles and energy is central to MCF, the

issues of plasma transport deserve considerable attention. For example, turbulence

is a ubiquitous problem in tokamaks and stellarators that causes an increase in

radial transport, which leads to decreased confinement times. There is also the

issue of confining the hot alpha particle by-products of fusion reactions that are

necessary for a self-sustaining reactor. However, not all particles participate in the

fusion reaction. Specifically, impurity ions and the cold alpha particles (ash) that

accumulate, need to be flushed from the core to avoid radiative power losses and

fuel dilution. Improving the confinement time by addressing such issues in plasma

transport will both enable the construction of smaller (cheaper) devices, and push
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devices closer to the Lawson criterion, which is a threshold for achieving a state of

self-sustaining fusion reactions.

Figure 1.5: Toroidal cross section of a tokamak. The red area depicts the core region
where the field lines are (ergodically) closed, leading to flux surfaces. The core is
the region of interest for this thesis. Figure adapted from [96].

The study of transport in plasma revolves around solving the Fokker-Planck

equation. The Fokker-Planck equation describes the evolution of the distribution

function, which represents the number of particles per unit volume with position

x = (x, y, z) and velocity v = (vx, vy, vz). The position and velocity together (x,v)

represent all possible states of a dynamical system, and is referred to as the phase

space of the system. In the presence of collisions, this evolution of the distribution

function in 6-D phase space is the Fokker-Planck equation and can be written as

dfa
dt

=
∂fa
∂t

+ v · ∇fa +
F

ma

· ∂fa
∂v

=

(
∂fa
∂t

)
coll

= C(fa). (1.1)

Here, fa is the distribution function, and C(fa) is the collision operator. Solving a
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6-D equation plus time is a difficult problem irrespective of the method, making it

useful to simplify the problem in some way.

In transport theory, this is done by choosing particular orderings of certain

quantities in the Fokker-Planck equation to describe different physical processes.

To describe what is meant by orderings, assume that any physical quantity can be

expanded in some small parameter ε. For example, for the distribution function fa,

this would look like

fa = fa0 + εfa1 + ε2fa2 + . . . (1.2)

where ε � 1. Each additional term will then be O(ε) smaller than the previous

one. Once the small parameter is selected, choices can be made about the size of

each quantity. For example, if a quantity Q is known to be small, one could drop

the O(1) term to get Q = εQ1 + ε2Q2 + . . . . By then substituting these expansions

for each part of an equation in powers of ε, one can derive a set of equations at

each order in ε. Depending on how the orderings are chosen, the resulting equations

provide information about the behavior and relative importance of different physical

processes.

As an example, the particle gyroradius ρa = vta/Ωa, where vta is the thermal

velocity of species a and Ωa = eB/m is the gyrofrequency, is one instance of a

parameter that is commonly used in the ordering procedure. The gyroradius is

typically small compared to larger, equilibrium-scale quantities such as the device

size, and the ratio can be used as a small parameter ρ∗a ≡ ρa/L � 1, in which to

take asymptotic expansions.
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In this thesis, two sets of orderings are covered that lead to equations describing

the primary channels of transport in fusion devices. The first leads to the drift-

kinetic equation (DKE), which describes transport due to collisions and guiding-

center drifts that exist in the absence of turbulence. This type of transport is

termed neoclassical. The other leads to the gyrokinetic equation, which describes

turbulent transport. This is concerned with the flow of particles and energy caused

by instabilities that develop from fluctuating fields. The following subsections aim

to cover the differences in the orderings that lead to the respective drift-kinetic

and gyrokinetic equations. It should be noted here that taking an appropriate time

average in the gyrokinetic ordering can actually reproduce neoclassical processes [1],

indicating that turbulence and neoclassical processes can coexist. However, with

the hope of both highlighting some of the properties of neoclassical and turbulent

processes, as well as their differences, separate orderings will be used in the following

sections.

1.2.1 Neoclassical Transport

1.2.1.1 The Drift-kinetic Ordering

To begin to describe the processes behind neoclassical transport, the following

orderings are assumed: ρ∗a = ρa/L � 1, ∂/∂t ∼ ρ2
∗avta/L, and νa ∼ vta/L, where

νa is the collision frequency. In the expansion of the Fokker-Planck equation, ρ∗a =

ρa/L� 1 is taken to be the small parameter. It is important to note that all length

scales are ordered as the equilibrium scale length L, in contrast to the gyrokinetic
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ordering (Section 1.2.2.1).

The O(ρ∗) terms resulting from this ordering of the Fokker-Planck equation

give rise to what is known as the drift-kinetic equation (DKE) [41], which is the

governing equation of neoclassical transport theory. The DKE will be discussed in

more detail in Section 2.2.1.

There are a number of consequences resulting from this drift-kinetic ordering.

Taking ρ∗ � 1 removes information concerning the finite size of the fast particle

gyration around the magnetic field, and treats the motion based on the guiding-

center of its orbit (see Figure 1.6). The ordering ∂/∂t ∼ ρ2
∗vta/L assumes a slow

variation in time of all physical quantities compared to all terms of O(ρ∗). Thus, for

the DKE, the plasma is assumed to be in a state of equilibrium (on each flux surface),

where quantities such as the density and temperature, as well as their gradients are

taken as constants. Finally, the choice of νa ∼ vta/L allows for subsidiary expansions

to describe different levels of collisionality. These limits are discussed more in Section

2.6.

Since neoclassical transport is strongly influenced by both collisions and trapped

particles, a brief subsection has been devoted to each. This is with the hope of clar-

ifying some of the underlying processes that lead to the calculation of neoclassical

quantities, which will be covered in the final subsection.
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Figure 1.6: Depiction of the motion of a charged particle along a curved magnetic
field. Guiding center motion concerns the motion of the center of the gyromotion,
which will drift relative to the magnetic field due to the E×B, ∇B, and curvature
drifts. Figure adapted from [55].

1.2.1.2 The Fokker-Planck Collision Operator

The typical collision operator of the DKE (the so-called Fokker-Planck colli-

sion operator) considers the frequent small-angle collisions between charged parti-

cles. Due to the long-range forces acting between charged particles, the large-angle

collisions that are seen in neutral gases are not as important in plasmas. Instead,

the frequent small-angle collisions will have a much larger effect on the plasma as

a whole. This behavior is standard in high-temperature plasmas with plasma pa-

rameter Λ � 1, where Λ is a measure of the kinetic to potential energy of the

system. The small perturbations in velocity space that result from these collisions

lead to simplifications and a more intuitive understanding of the collision operator.

By performing an expansion in velocity space, the collision operator can be seen as

a drag term plus a diffusion in velocity space [42, 60]. The drag term tends to slow
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particles down, bringing the plasma as a whole toward a Maxwellian distribution.

1.2.1.3 Trapped Particles

Along with collisions, the magnetic field structure is an integral component of

neoclassical transport. The variation in magnetic field strength gives rise to particles

that become trapped between regions of strong magnetic fields. The cause of this can

be traced back to the kinetic energy of a particle E = 1
2
m(v2

‖+v
2
⊥), which is conserved

in the absence of an electric field. In the above equation v‖ and v⊥ represent the

velocity parallel and perpendicular to the magnetic field, respectively. The kinetic

energy can also be written in terms of the magnetic moment, µ = mv2
⊥/2B as

E =
1

2
mv‖ + µB. (1.3)

The magnetic moment is an adiabatic invariant if the time variation of the magnetic

field is small compared to the gyrofrequency (ωB/Ω� 1). This is a condition that

is almost always satisfied for the fluctuations relevant for transport. In this case it

becomes clear that v‖ must decrease with increasing B in order to conserve E and

µ. Further, for a given E , there can be a limiting value of B that will lead to v‖ = 0.

Along a field line, the parallel velocity can be expressed as

v‖(θ) = σ

√
2

m
(E − µB(θ)), (1.4)

where σ = ±1 represents the direction of the parallel velocity. Particles with rel-
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atively large v⊥ will not have the parallel velocity to overcome the increase in B

along a field line and will be reflected via the mirror force when v‖ = 0 for some

θ = θ0. For the case of a tokamak, the field strength takes the form of a single well

along a field line, and the reflected particle will then be reflected back at θ = −θ0,

which can be seen in Figure 1.7. The particle then becomes “trapped” in the sense

that it becomes localized in the poloidal angle, and does not traverse the entire field

line/flux surface. Conversely, for particles with large v‖, the particle will not be

reflected, and will traverse the entire flux surface.

Figure 1.7: The blue curve is a plot of the magnitude of the magnetic field as a
function of the poloidal angle for a tokamak. The dashed line represents a passing
particle, and the solid line represents a trapped particle. Here, the locations θ = ±θ0

are the bounce points for the trapped particle. Note: The zero of |B| is suppressed
in this figure.

While the conservation principles remain the same, trapping becomes more

complicated in stellarator magnetic fields (or tokamaks with magnetic field ripple),

which have multiple wells of different sizes. An example of this can be seen in Figure

1.8, which shows a portion of the magnetic field as a function of θ for the W7-X
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stellarator. Figure 1.8 shows that there are different classes of trapped particles,

where the trapping occurs between different poloidal angles. More importantly, some

of these regions are not symmetric about the center. Unlike stellarators, neoclassical

transport in tokamaks is independent of the radial electric field, which leads to zero

net radial motion of particles and good confinement. This net radial particle drift

is zero because the drift that is experienced in moving from one bounce point to

the other is equal and opposite to the drift experienced by returning to the starting

bounce point in the opposite direction. In asymmetric stellarator trapping regions

this cancellation does not occur. The result is secular radial motion away from

the flux surface, and poor confinement of trapped particles. The exploration of

techniques to mitigate this problem for impurity ions is the focus of Chapter 2.

Figure 1.8: The blue curve is a plot of the magnitude of the magnetic field as a
function of the poloidal angle for some stellarator. The dashed line represent a
passing particle, and the solid lines represent different classes of trapped particles
(i.e. localized in θ). Note: The zero of |B| is suppressed in this figure.
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1.2.1.4 Neoclassical Fluxes

The DKE solves for the distribution function on a flux surface. The distribu-

tion function enables the calculation of macroscopic quantities by integrating the

distribution function over velocity space

A ≡ 1

ns

∫
Afsd

3v, (1.5)

where A is some function of the particle velocity v. For example, the macroscopic

fluid velocity Va(x, t) and temperature Ta(x, t) are calculated via

Va(x, t) = v (1.6)

3

2
Ta(x, t) =

mav′2a
2

, (1.7)

where v′a ≡ v − Va. Using Eq 1.5, quantities such as the particle and heat flux

at any given point on a flux surface can be calculated. Of principal interest is

the radial component of such quantities, as it is a direct measure of how well the

plasma is confined in a given magnetic field. As a function of position within a flux

surface, however, these quantities can have considerable variation. It is thus more

practical to obtain flux surface averages of the radial component of these quantities

to determine the total transport across surfaces. The neoclassical heat flux for such

an average would be

Qnc =

〈∫
d3vfs

msv
2

2
vds · ∇r

〉
, (1.8)

15



where vds is the drift velocity, and ∇r is a vector normal to the surface, whose

magnitude varies within the flux surface. The notation 〈. . . 〉 in Eq 1.8 represents a

flux surface average, defined by

〈f(r)〉 =
1

V ′(r)

∫ 2π

0

∫ 2π

0

f(r, θ, ζ)
√
g dθdζ, (1.9)

where V ′ is the radial derivative of the volume bounded by the flux surface, and

√
g is the Jacobian. The drift velocity is related to the slow motion (relative to

the gyromotion) of the particle guiding center. For the work in this thesis, vds

specifically refers to a combination of the motion caused by inhomogeneities in the

magnetic field (Eq 2.2), and the E ×B-drift

vE =
c

B2
E ×B. (1.10)

Detailed calculations of neoclassical quantities in stellarators can be found in [93].

In summary, neoclassical transport is mainly concerned with the surface av-

erage of the radial component of quantities, which are a result of charged-particle

collisions in the presence of toroidal magnetic fields.

1.2.2 Turbulent Transport

1.2.2.1 The Gyrokinetic Ordering

The assumed ordering of plasma turbulence is based on four main assump-

tions: strong magnetization, low frequencies, small fluctuations, and anisotropy of
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these fluctuations. Strong magnetization is the equivalent of ρs/L � 1, and the

low frequency assumption considers only frequencies well below the gyrofrequency

ω � Ωs. Fluctuations of fields, distributions and potentials are small compared

to their equilibrium quantities |f̃ |/f � 1 (fluctuations will be defined in the next

section). Further, turbulent fluctuations are strongly anisotropic. They have long

wavelengths parallel to the magnetic field k‖L ∼ 1, and short wavelengths perpen-

dicular to the field k⊥L � 1 (which can be seen in Figure 3.2). Here, k = 2π/λ

is the typical wavenumber for a wavelength λ. The gradients of physical quantities

will then scale differently depending on the direction relative to the magnetic field.

Specifically, parallel gradients vary on the equilibrium scale ∇‖f ∼ f/L, and per-

pendicular gradients vary on the gyroradius scale ∇⊥f ∼ f/ρ. This scale disparity

is caused by rapid, sound speed communication along field lines, and diamagnetic

speed communication perpendicular to field lines. The flux tube simulation domain

(the topic of Chapter 3) was developed as a minimum simulation domain based on

this natural scale separation.

Assuming these orderings (known as the gyrokinetic ordering) for the Fokker-

Planck equation will lead to the derivation of the gyrokinetic equation (Appendix

A). The derivation exploits ω/Ωs � 1 to average over the fast gyromotion, which

consequently leads the gyrokinetic equation to describe the evolution of a distribu-

tion of rings in 5-D phase space.
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1.2.2.2 Fluctuating Quantities

Fluctuations in gyrokinetics and turbulence refer to a particular part of some

physical quantity. For instructive purposes, one could consider the distribution func-

tion f to be comprised of an equilibrium Maxwellian part, F0, plus a perturbation

to the Maxwellian, δf , such that f = F0 + δf . Figure 1.9 presents an example

distribution function decomposed into its equilibrium and perturbed parts. The

perturbed part of the distribution function is formally much smaller than the equi-

librium Maxwellian part in this ordering, and this should be evident from Figure 1.9

(it is important to note that the small-scale v-dependence of Figure 1.9 is exagger-

ated for instructional purposes, as it is standard to assume ∂F0/∂v � ∂(δf)/∂v).

One can further subdivide δf by defining the fluctuations f̃ of the distribution

function as

f̃ ≡ δf − 〈δf〉t , (1.11)

where 〈. . . 〉t is a time average that is defined so that
〈
f̃
〉
t

= 0. Specifically, the

time average is performed on a time scale that is well-separated from the time scale

of fluctuating quantities ω−1 and equilibrium variation of the gradients τE. Thus,

for an intermediate time T satisfying ω−1 � T � τE, the time average as defined

in [1] is

〈δf〉t ≡
1

T

∫ t+T/2

t−T/2
δf dt′. (1.12)

The averaged part of the perturbation 〈δf〉t is the quantity that is calculated in

neoclassical transport. Since the above discussion is generally true for any physical
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Figure 1.9: The upper figure represents an example of what a total distribution func-
tion might look like. The bottom figures represent the Maxwellian (left) and per-
turbed distribution (right), which together create the upper total distribution func-
tion. Each figure is plotted as a function of velocity. The small-scale v-dependence
of δf is not typical (usually ∂F0/∂v � ∂δf/∂v), and is meant for instructional
purposes.

quantity (apart from the assumption of a Maxwellian for the equilibrium part), it

should then be apparent that neoclassical processes ignore fluctuating quantities

and involve only the steady-state behavior of small deviations to the equilibrium

part of some quantity.

Turbulent processes treat these averaged quantities as constants, and instead

involve the time evolution of fluctuations. The fluctuations are typically expressed

as a series of Fourier harmonics f̃ =
∑

k f̃kexp (ik · x). This makes it convenient to
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study the evolution of plasma waves, using the k values as labels.

A common way to use the fluctuations to understand turbulence is through

the use of correlation functions. The spatial correlation C(z) of f̃ along the field

line (z here represents the parallel coordinate) can be defined by

C(z) =

〈
f̃(x⊥, z) f̃(x⊥, z = 0)

〉
〈
f̃(x⊥, z = 0)2

〉 , (1.13)

where the angled brackets denote an average over the perpendicular coordinates.

This measures how well correlated the fluctuations are at different points along the

field line, once a quasi-steady state is reached. A similar expression for the per-

pendicular coordinates can be constructed. The parallel (perpendicular) correlation

length lz (l⊥) can be taken as the constant length scale in

C(z) ∼ exp

(
−|∆z|

lz

)
, (1.14)

describing the typical length scale over which fluctuations are correlated. Knowledge

of the correlation lengths allow one to efficiently set the dimensions of a simulation

domain. This is in the sense that the fluctuations should be sufficiently decorrelated

from one end of the domain to the other, which is discussed further in Chapter 4.

1.2.2.3 Important Quantities in Turbulent Transport

Analogous to neoclassical transport, turbulent transport concerns the trans-

port of particles and energy across surfaces to diagnose the confinement properties

20



under various conditions. Simulations of the linearized gyrokinetic equation are a

common way to study the evolution of each individual mode in the absence of inter-

actions with other modes. Determining the growth rate is a standard goal of linear

simulations, as it reveals which instabilities can be most problematic. Further, the

structure of each mode along a magnetic field line can be found. This provides

valuable information about where in the device such modes tend to concentrate.

However, the full physical picture that is seen with the nonlinear interaction

is quite different. Growth rates, for example, which can be useful in determining

how fast turbulence is reached, become less important at the state of turbulent

saturation. For a saturated turbulent state, quantities such as the turbulent particle

flux, and the fluctuation amplitudes for each individual mode are usually of interest.

Perhaps the most valuable information, however, is the radial heat flux, summed

over each of the Fourier modes, since we’re really concerned about the total transport

across surfaces. Like neoclassical transport, this provides a direct measure for how

well the plasma is able to confine heat under a given set of parameters.

1.3 Optimized Stellarator Configurations

As discussed in Section 1.1.2 above, stellarators have a distinct advantage over

tokamaks in that the positional equilibrium is well-maintained as the plasma state

changes. This is because stellarators use external coils to generate the confining

magnetic fields, and do not rely on the self-organization of plasma currents like in

tokamaks. The consequence is that one can create optimized equilibria that will not
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be strongly affected during operation. The equilibria can then be created to target

the improvement of certain properties. This has led to efforts in the stellarator

community to explore how to best optimize stellarators for future experiments or

reactors [37].

While the possibility of optimizing the behavior of stellarators is exciting, the

large number of possible parameters to optimize will require trade-offs. This typi-

cally leads to the choice of optimizing for a particular behavior, while still keeping

other behaviors in check. For example, because stellarators have poor neoclassi-

cal transport, efforts have been made to optimize the equilibrium in order to reduce

that transport. W7-X is an example of a stellarator optimized for neoclassical trans-

port. It is also possible to optimize for properties like fast particle transport [5],

turbulence [107], or even certain types of symmetry (explored in Chapter 2).

One specific optimization technique is to make stellarators quasisymmetric.

Quasisymmetry is a property that appears only in a particular coordinate system

known as Boozer coordinates. Such a symmetry in stellarators leads to guiding-

center transport properties that are identical to tokamaks. This could eliminate

the issue of poor particle confinement in stellarators. However, actual devices will

deviate from perfect quasisymmetry, and the transport properties of these config-

urations must be studied. The topic of Chapter 2 addresses impurity transport in

such quasisymmetric stellarators with “symmetry-breaking”.

These cases are only a few examples of the potential of stellarator optimization.

There is a vast landscape of parameter space that remains to be explored, making

the future of stellarator experiments (or reactors) very hopeful.
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1.3.1 Visualization of Optimized Stellarator Flux Surfaces

A number of optimized stellarator configurations are considered throughout

this work. For visualization and reference, a flux surface is shown for each of these

configurations in Figures 1.10-1.17 below. While nost configurations are visually dis-

tinct from one another, the Wistell-A [5] and ARIES-CS [75] configurations evolved

from the HSX [3] and NCSX [109] designs, respectively. This results in similar-

looking flux surfaces in Figures 1.11,1.12 and 1.13,1.14.

Figure 1.10: Henneberg-QA [48]

Figure 1.11: NCSX [109]
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Figure 1.12: ARIES-CS [75]

Figure 1.13: Wistell-A [5]

Figure 1.14: HSX [3]
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Figure 1.15: Garabedian [33]

Figure 1.16: Nuhrenberg [77]

Figure 1.17: CFQS [63,90]
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Figure 1.18: TJ-II [47]

Figure 1.19: LHD [72]

Figure 1.20: W7-X [40]

1.4 Unsolved Problems in Stellarator Plasma Transport

There remain a number of open problems in stellarator transport that must

be addressed [38].
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Turbulence has a strong impact on plasma confinement, and it is not well-

understood, especially in stellarators. Part of the problem can be traced to the high

cost of turbulence simulations that have severely limited the size and scope of the

runs. Therefore, to better understand and characterize turbulence, it is necessary

to reduce simulation times as much as possible.

Energetic particle confinement is another transport issue that must be over-

come to reach a state of self-sustaining fusion reactions. The low-collisionality of

fast particles promotes the importance of achieving configurations very close to qua-

sisymmetry to bring neoclassical transport levels closer to the respective tokamak

values. Instabilities can also develop in the presence of energetic particles through

wave-particle interactions that can lead to further losses.

Another foreseen problem in the stellarator community is impurity control.

Impurities in the core can cause fuel dilution and radiative power losses, while im-

purities near the edge can reduce heat fluxes on the divertors. Specifically, the

neoclassical theory of impurity particle transport in various optimized stellarators

(including Φ1 effects) needs to be better understood, along with the relative impor-

tance of turbulent vs. neoclassical processes in impurity transport.
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Martin M.F., Landreman M. Journal Plasma Phys. 86 905860317 (2020) [67]

The content in this chapter borrows heavily from the work in:

Chapter 2: Effects of Magnetic Field Symmetry-Breaking on Impu-

rity Transport in Quasisymmetric Stellarators

2.1 Introduction

The ideal makeup of particles in the core of magnetic confinement fusion de-

vices would consist exclusively of particles participating in the fusion reaction. The

presence of any impurity ions can degrade fusion performance by means of fuel di-

lution and radiative cooling of the plasma [50, 80]. Removing impurities from the

plasma core and preventing further accumulation is then of primary importance in

present devices, and when designing future experiments.

Due to the symmetric nature of a tokamak, its neoclassical transport properties

yield a distinct advantage over non-axisymmetric configurations because they are

independent of the radial electric field, Er, at leading order in (ρi/L) [42,86]. Here, ρi

is the ion gyroradius, and L is some equilibrium scale length. In particular, if certain

conditions are met (see Section 2.2.2), this absence of Er in the transport equations

leads to a property known as temperature screening [101], which guarantees an

outward radial flux of impurities for large enough temperature gradients.

Conversely, unoptimized stellarator designs have been predicted to behave
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poorly with regards to impurity accumulation [45, 50, 56, 57]. The lack of toroidal

symmetry in the magnetic field complicates the transport quantities because of a

dependence on Er in order to maintain ambipolarity of the constituent particle

fluxes. This can become an issue in reactor-relevant plasmas, which are expected

to operate in the ion-root regime [65], where the negative (inward) Er will tend to

pull impurities into the core. Recent work [43], however, has found that outward

impurity fluxes can be achieved in the “mixed-collisionality” regime in a stellarator

(later qualified analytically with flux-surface variations in Er by [15,16]), alleviating

some of the concern.

Improving the behavior of impurities in stellarators could be addressed by con-

temporary stellarator design optimization, where one of the current foci is on qua-

sisymmetric magnetic fields [77]. Quasisymmetric fields have the allure of possessing

the superior transport properties of tokamaks alongside the stability of stellarators.

Ideally, perfect quasisymmetry would lead to neoclassical and guiding-center trans-

port properties identical to tokamaks [12,81]. However, it has been shown [36] that

perfect quasisymmetry can likely be achieved only on a single flux surface. There-

fore, any future experiment or reactor will necessarily have some finite degree of

symmetry-breaking. This makes it important to study quasisymmetric equilibria

with some departure from perfect symmetry.

In this chapter, we examine the temperature screening effect using the SFINCS

[61] (Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) drift-

kinetic solver to calculate the impurity particle flux for a number of quasisymmetric

equilibria. As we proceed, it will be necessary to distinguish between a perfectly
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quasisymmetric magnetic field, and the quasisymmetry of configurations such as the

National Compact Stellarator Experiment (NCSX) [109] or the Helically Symmetric

Experiment (HSX) [3]. For example, the magnetic field of HSX is quasisymmetric

in the sense that its quasisymmetric harmonics are dominant compared with the

smaller, but non-zero, symmetry-breaking harmonics. Such a magnetic field will

be referred to as the actual, or true, magnetic field of a configuration. A perfectly

quasisymmetric magnetic field is one in which the symmetry-breaking modes are

identically zero.

With this distinction, the unanswered question we would like to address is

whether, in a nominally quasisymmetric stellarator with realistic deviations from

perfect symmetry, the sign of the neoclassical impurity flux is outward like in toka-

maks at low collisionality, or inward like in a generic stellarator.

By altering the magnitude of symmetry-breaking harmonics in the magnetic

field of a given equilibrium (see Section 2.3), we are able to probe the region where

temperature screening is lost. Holding the temperature constant, this effect was

studied at three distinct densities, and correspondingly three distinct collisionalities

(all of which are considered to be low collisionality, as defined in Section 2.6). At

the lowest collisionality, no configurations are able to maintain an outward impurity

flux at the true magnetic field, even for η−1 ≡ d ln(na)/d ln(Ta) = 0, where a

refers to species. (Introducing a finite peaked density gradient for the main ions,

η−1
i > 0, always makes the impurity particle flux more inward, which is explained

in Section 2.6.1.2). Increasing the collisionality has a favorable effect, where some

configurations were even found to have an outward impurity flux. However, there
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is an upper collisionality limit, beyond which temperature screening is not observed

for most configurations, even in perfect quasisymmetry.

Impurity accumulation in perfect quasisymmetry with η−1 = 0 can either be

caused by exceeding some collisionality limit, or by a dependence of the neoclassical

transport on Er, indicative of a breakdown in the intrinsic ambipolarity assumption.

In the latter case, the E×B drift, vE, is close to being in violation of the vE ∼ ρ∗vtα

ordering in deriving the equations solved in neoclassical codes. In Section 2.4, we

examine this in further detail and calculate the resonant radial electric field, Eres
r ,

in quasisymmetric configurations. One finds that Eres
r is fundamentally smaller in

quasi-axisymmetry (QA) than in quasi-helical symmetry (QH).

We have also compared the magnitude of the resulting neoclassical fluxes to a

gyro-Bohm estimate for turbulence [22,29,103]. At reactor-relevant parameters, the

neoclassical impurity particle flux did not exceed the respective turbulent flux for any

impurity species or configuration. Even in the presence of a strongly peaked (η−1 =

0.5) density gradient, in most configurations the neoclassical impurity particle flux

is less than 10% of the estimated turbulent value. This suggests that regardless

of whether a configuration can achieve temperature screening, the nature of the

turbulence will determine the sign of the particle flux on a surface.

The total (bulk ion + impurity) neoclassical heat flux also did not exceed the

turbulent contribution. However, the ratio was larger than the analogous impu-

rity particle flux ratio. Furthermore, the neoclassical contribution is largest near

the magnetic axis, and results indicate that turbulence becomes increasingly more

dominant as one moves further out radially. This is in agreement with experimen-
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tal observations [19, 78] in Wendelstein 7-X (W7-X) [40] and HSX, which find that

neoclassical transport is the dominant radial transport channel near the magnetic

axis.

Finally, we compared the critical amount of symmetry-breaking that it takes

to change the sign of the particle flux, εcsb, to two metrics that have been used to

quantify symmetry on a flux surface. These metrics are the effective helical rip-

ple [76], εeff , which is a measure of neoclassical transport in the 1/ν regime, and

the magnitude of the symmetry-breaking terms on a flux surface, S (see Eq. 2.17).

While it was found that there was some anti-correlation between εcsb and S, there

does not appear to be much of a relationship between εeff and εcsb. (This should

not be surprising, however, if one considers that W7-X has a very low εeff , yet it

is far from quasisymmetry). This difference between how εeff and S depend on

εcsb, a quantity related to symmetry, motivates a comparison between εeff and S.

Results indicate a configuration-specific dependence of εeff on S, which in many

cases is non-monotonic. There is thus a disconnect between these two quantities,

such that minimizing the amount of symmetry-breaking on a flux surface does not

simultaneously minimize εeff . So while εeff is a useful proxy for optimizing neo-

classical transport in stellarator optimization, it is a poor proxy for achieving good

quasisymmetric surfaces.

This chapter is organized as follows: In Section 2.2.1, we introduce the govern-

ing equation and ordering assumptions of SFINCS in the results presented herein.

In Section 2.2.2, we explain the principle of ambipolarity, the fundamentals of the

temperature screening phenomenon, and the issues that arise in non-axisymmetric
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geometries. In Section 2.3 we explain our approach to varying the degree of qua-

sisymmetry on a flux surface. The quasisymmetric configurations that have been

explored, and the way that these equilibria have been scaled can be found in Section

2.5. Section 2.4 explains an issue in present neoclassical stellarator codes based on

the vE ∼ ρ∗vta ordering, which limits the value of the radial electric field when impu-

rities are included. Section 2.6.1 presents results on how the amount of symmetry-

breaking, collisionality, and density gradient affect the behavior of the impurity

particle flux for various quasisymmetric configurations. Section 2.6.2 compares the

results of Section 2.6.1 to a gyro-Bohm estimate of turbulent particle and heat fluxes

as a function of the impurity species, and normalized radius. Finally, Section 2.7

compares the effective helical ripple to the amplitude of symmetry-breaking terms

on a flux surface.

2.2 Background

2.2.1 Drift Kinetic Equation

Neoclassical transport follows from a drift-ordering of the Fokker-Planck equa-

tion in toroidal magnetic geometry, and solving the resulting drift-kinetic equa-

tion (Eq.19 in [41]). The drift ordering assumes ρ∗a = ρa/L � 1, vE ∼ ρ∗avta,

∂/∂t ∼ ρ2
∗avta/L, and νa ∼ vta/L, where νa is the collision frequency. The gyro-

radius of species a is ρa = vta/Ωa, the thermal velocity vta =
√

2Ta/ma, with Ta

and ma the temperature and mass of species a, respectively. The gyrofrequency is

Ωa = ZaeB/mac, where Za is the species charge, B is the magnetic field magnitude,
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c is the speed of light, and e is the proton charge.

Results in this chapter have been obtained by solving the drift-kinetic equation

(DKE) using the SFINCS [61] code over a range of collisionality regimes, for various

impurity ions. SFINCS is a radially-local DKE-solver that has been generalized

to non-axisymmetry, allowing for an arbitrary number of species, fully linearized

Fokker-Planck collision operator, and the capability of simulating on-surface varia-

tions in the electrostatic potential, Φ1. The exact form of the DKE that is solved in

SFINCS for this chapter (with the exception of Section 2.6.2.2) is given by Eq.(16)

in [61]

ṙ · (∇fa1)xa,ξ + ẋa

(
∂fa1

∂xa

)
r,ξ

+ ξ̇a

(
∂fa1

∂ξ

)
r,xa

− Ca = − (vma · ∇r)
(
∂Fa
∂r

)
Wa0

,

(2.1)

where Fa and fa1 represent a Maxwellian distribution and the first-order pertur-

bation to the distribution function, respectively. The position vector is given by

r, the cosine of the pitch angle is ξ ≡ v‖/v, the velocity is xa ≡ v/vta, Wa0 =

v2/2 + ZaeΦ0/ma is the lowest-order total energy, Ca is the collision operator, and

vma is the magnetic drift velocity defined by

vma · ∇r =
mac

ZaeB2

(
v2
‖ +

v2
⊥
2

)
b×∇B · ∇r. (2.2)

The coordinate r =
√

2ψt/Bav is a surface label, where 2πψt is the toroidal flux,

and Bav is some averaged magnetic field, such as the field on the magnetic axis.

The electrostatic potential is split into zeroth- and first-order contributions Φ =
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Φ0(r) + Φ1(r, θ, ζ), where θ and ζ are the poloidal and toroidal angles. The zeroth-

order term Φ0 ≡ 〈Φ〉, where 〈. . . 〉 is a flux surface-average, and Φ1 is determined

from the first-order quasineutrality equation

∑
a

(
−Z

2
aeΦ1

Ta
na + Za

∫
d3vfa1

)
= 0. (2.3)

The time derivative terms, ṙ, ẋa, and ξ̇a are the phase space particle trajecto-

ries. Since SFINCS offers variations in how these trajectories are defined, we have

chosen to use the “full trajectories” definition (Eq.(17) in [61]). This choice takes

into account the change in potential energy as a particle drifts radially, with the

corresponding change to ξ̇a in order to conserve the magnetic moment, µ. Finally,

note that Φ1 effects are neglected in these phase space trajectories and in Eq 2.2.1;

we will discuss how Φ1 effect can be included in Section 2.6.2.2.

2.2.2 Ambipolarity and Temperature Screening

The property of ambipolarity can be expressed as

∑
a

ZaΓa = 0, (2.4)

where Γa is the radial component of the particle flux of species a

Γa =

〈∫
fa (vma · ∇r) d3v

〉
. (2.5)
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This results from the charge density being small for length scales much longer than

the Debye length. Ambipolarity is then a statement that the flux surface-averaged

radial current vanishes on each flux surface. While this is true in both tokamaks

and stellarators, the radial electric field is set by different physical mechanisms, and

Er only affects the ambipolarity condition in stellarators. The value of the radial

electric field that satisfies the ambipolarity condition in a non-axisymmetric plasma

is referred to as the ambipolar radial electric field.

Neoclassical fluxes are determined from a linear combination of the equilibrium

gradients in the system. The radial neoclassical impurity particle flux can be written

in the form of Eq (1) in [100]:

Γz = −nz
∑
a

La11

[
1

na

dna
dr
− ZaeEr

Ta
+ δa

1

Ta

dTa
dr

]
, (2.6)

where r is an arbitrary radial coordinate, and La11 and δa are transport coefficients

[10,65,100] that can have a complicated dependence on Er and the collision frequency

νz = νzi + νzz, where

νab =
4
√

2πnbZ
2
aZ

2
b ln Λ

3
√
maT

3/2
a

. (2.7)

In the case of a tokamak, the toroidal symmetry causes the electric field dependence

to cancel out in Eq 2.4, making transport intrinsically ambipolar. This, in principle,

allows for rapid toroidal rotation of the plasma, as the radial electric field profile

is not governed by the ambipolarity constraint, but rather by angular momentum

conservation [1,42,52,89]. Moreover, for a plasma in the banana regime with δi+δz >
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0, this cancellation assures a radially outward flux of the impurity species when

η−1
i ≡ d lnni/d lnTi < η−1

c , where η−1
c is some critical ratio of the density and

temperature gradients (the ratio η−1
i is used here since∇ lnni drives inward impurity

transport, whereas∇ lnnz drives outward transport). This beneficial phenomenon is

generally referred to as temperature screening. Specifically, we define temperature

screening to be present when the flux surface-averaged impurity particle flux is

positive. This definition makes clear how certain parameters affect the direction of

travel of the impurities, which is ultimately the quantity of interest. However, it

should be noted that temperature screening can also be defined by the sign of the

temperature gradient coefficient in Eq 2.6.

The situation is less positive in stellarator geometries since the ambipolarity

condition is dependent on the radial electric field, and the temperature screening

effect is no longer guaranteed. For fusion-relevant, high-density plasmas, the radial

electric field is directed inward [65] and will presumably act to drive higher-Z impu-

rities into the core. It should be stated clearly here that temperature screening is a

neoclassical effect, and its presence, or lack thereof, is independent of the turbulent

fluxes.

A potential solution to this situation in stellarators lies in the design of qua-

sisymmetric configurations. A truly quasisymmetric device, whose magnetic field

varies through a fixed linear combination of Boozer angles on a flux surface, will

have neoclassical and guiding-center transport properties identical to a tokamak,

up to O(ρ∗a) [12,81]. However, evidence suggests that in the absence of axisymme-

try, quasisymmetry cannot be achieved exactly throughout a volume [36], meaning
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that quasisymmetric devices will necessarily deviate from symmetry to some level.

Therefore, it would be informative to optimization efforts to know how much break-

ing in the symmetry of the magnetic field can be tolerated before the temperature

screening effect is lost. In the following sections, we explore the effect that magnetic

field symmetry-breaking has on the impurity particle flux.

2.3 Magnetic Field Symmetry-breaking

Any magnetic field within a flux surface can be written as a sum of harmonics

in the Boozer poloidal θ, and toroidal ζ angles [13]

B(r, θ, ζ) =
∑
m,n

Bmn(r)ei(mθ−nζ). (2.8)

Only by expressing the magnetic field in Boozer coordinates will the property of

quasisymmetry become apparent. A magnetic field is considered quasisymmetric if

its magnitude varies within a flux surface only through the fixed linear combination

χ = Mθ +Nζ, where M,N are fixed integers, one of which may be zero. However,

since perfect quasisymmetry is not practically achievable, it is possible to express

the magnetic field of a quasisymmetric configuration as a sum of quasisymmetric

and non-quasisymmetric Boozer harmonics, the latter of which will be referred to

as symmetry-breaking terms. Therefore, symmetry-breaking terms with smaller

magnitudes will produce better approximations to perfect symmetry.

Our approach to understanding temperature screening in stellarators exploits

this fact by allowing one to adjust the amplitude of the symmetry-breaking terms
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by an overall, constant scaling factor. The way we have decided to approach this is

to expand in the harmonics of 1/B2, which can be expressed as

1

B2
=
∑
q

hq(r)e
iqχ + εsb

∑
m,n

hmn(r)ei(mθ−nζ), (2.9)

where the quantities hq and hmn are the quasisymmetric and non-quasisymmetric

harmonics of the 1/B2 expansion, respectively. The parameter εsb is a scaling factor

(fixed for a given simulation) that controls the amplitude of the symmetry-breaking

terms. The special case of εsb = 0 denotes a truly quasisymmetric field, while εsb = 1

corresponds to the original magnetic field that one would get from an equilibrium

code. By running simulations with εsb between these values, one can gain further

insight into how temperature screening is affected under magnetic fields with varying

degrees of symmetry-breaking.

In the context of MHD, artificially scaling the magnetic field with εsb 6= 1

will lead to a plasma that no longer satisfies the equations of an MHD equilibrium.

However, if we consider the work of Garren/Boozer [36], it is likely that the con-

struction of a single quasisymmetric flux surface is possible. Then, an arbitrarily

quasisymmetric magnetic field could be constructed on one of many flux surfaces

that, in principle, will satisfy an MHD equilibrium. Since this applies to only one

flux surface, our approach prevents the scaling of multiple flux surfaces simultane-

ously.

To understand our choice of expanding 1/B2, it is important to recognize that

artificially scaling the magnetic field of an MHD equilibrium can potentially become

39



problematic if large currents are introduced near rational surfaces [14,46]. This can

be seen in the expression for the parallel current [46]

J‖ ∼
hmn

r − rmn
dp

dr
. (2.10)

Since our simulations will always assume a finite pressure gradient, the hmn modes

must vanish on rational surfaces to avoid an infinite Pfirsch-Schlüter current. There-

fore, scaling hmn modes as opposed to Bmn modes will guarantee that such currents

will not appear in this altered equilibrium.

2.4 Resonant Radial Electric Field Considerations

In tokamaks, it is well known that rapid plasma rotation is possible in the

toroidal direction as a result of symmetry. If one then assumes the ordering of

vE ∼ vta, then radial electric fields are capable of producing sonic flows. The radial

electric field that corresponds to sonic rotation is known as the resonant electric

field, which in axisymmetry is Eres
r = rιBvta/(Rc) [11]. We take the radial electric

field here to be defined by Er ≡ −dΦ/dr.

Constraints on the symmetry of the magnetic field, however, prevent order-

ing the flow velocity with the thermal speed in generic stellarators [44], as well as

perfectly quasisymmetry ones [95]. The form of the drift kinetic equation that is

solved in SFINCS uses the vE ∼ ρ∗avta ordering to avoid the symmetric restrictions

to the magnetic field that result from sonic flows. From the SFINCS ordering, the

vast majority of parameter regimes, geometries, and species, yield ambipolar ra-
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dial electric fields, Ea
r , that are considerably smaller than the resonant electric field

magnitude. However, the m
−1/2
a dependence of the resonant electric field can cause

the ordering to break down for heavy impurities under certain conditions. Solving

this issue completely would demand a reordering to derive a new form of the drift

kinetic equation. We do not attempt to tackle this problem here, but leave it to

future work.

It is also very interesting and relevant to note that quasi-helically-symmetric

(QH) configurations produce a considerably larger gap between Ea
r and Eres

r than

quasi-axisymmetric (QA) configurations for otherwise identical plasma parameters.

The relative size of these electric fields for a given simulation can be found by deriv-

ing an analogous expression for the resonant radial electric field in quasisymmetry.

If we start by assuming the vE ∼ vta ordering, then the vE and parallel stream-

ing terms will be of the same order

v‖b̂ · ∇χ ∼
c

B2
E ×B · ∇χ, (2.11)

where χ = Mθ −Nζ. The contravariant and covariant representations of the mag-

netic field are, respectively,

B = ∇ψt ×∇θ + ι∇ζ ×∇ψt (2.12)

B = L∇ψt + I∇θ +G∇ζ, (2.13)
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where 2πψt is the toroidal flux, L = L(ψt, θ, ζ) is some scalar, and as detailed in [46]

∫
Sζ

J · ∇ζ√g dθ dψt =
c

2
I(ψt) (2.14)∫

Sθ

J · ∇θ√g dζ dψt =
c

2
G(ψt), (2.15)

where 1/
√
g = (∇ψt×∇θ)·∇ζ is the Jacobian, and Sζ and Sθ correspond to surfaces

where ζ = const and θ = const, respectively. Solving for Er when vE ∼ v‖ ∼ vth

yields an expression for the resonant electric field

Eres
r ∼

∣∣∣∣rvtaB2

c

Mι−N
MG+NI

∣∣∣∣ . (2.16)

Typically, I � G, so the QH devices examined in the following sections (all of which

have M = 1, |N | ≥ 4) will have (Eres
r )QH ' |(ι−N)/ι| (Eres

r )QA. This allows one

to run neoclassical codes at larger Ea
r before the ordering breakdown is reached.

For this reason, only QH results are available in some SFINCS simulations with

steep gradients and/or heavier impurity ions. As a workaround for QA, we have

only considered cases where Ea
r /E

res
r < 1/3, in order to be sufficiently far from the

resonance to avoid unreliable results due to the breakdown of vE ∼ ρ∗avta.

2.5 Magnetic Field Configurations

Throughout the remainder of this chapter, we aim to provide results that are

general to a wide range of quasisymmetric stellarators. We have therefore chosen

eight distinct quasisymmetric stellarator configurations (summarized in table 2.1)
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Quasisymmetric Stellarators
Configuration QS Type Nfp Aspect Ratio
Henneberg [48] QA 2 3.40
NCSX [109] QA 3 4.37
ARIES-CS [75] QA 3 4.56
Wistell-A [5] QH 4 6.94
HSX [3] QH 4 10.17
Garabedian [33] QA 2 2.60
Nuhrenberg-Zille [77] QH 6 11.76
CFQS [63,90] QA 2 4.35

Table 2.1: Quasisymmetric stellarator configurations that have been studied in this
work. QA-quasi-axisymmetric, QH-quasi-helically-symmetric, Nfp-Number of Field
Periods.

to examine, some of which were designed to be QA, and the others QH. Here, we

have used the C09R00 equilibrium from NCSX, the Nuhrenberg configuration from

figure 1 and table 1 in [77], and the quasi-helically-symmetric configuration of HSX.

HSX is the only configuration in this list that has been constructed to date. To allow

for a fair comparison between devices, each device was scaled to the minor radius,

a, and on-axis magnetic field, B0, of the Henneberg et al QA configuration [48],

a = 0.602m and B0 = 2.10T.

2.6 Results

The results generated below employ the full linearized Fokker-Planck collision

operator of SFINCS, with two ion species. The main ions are taken to be hydrogen

in each of the simulations, while the charge and mass of the impurity ion can vary

between runs. Unless otherwise specified (2.6.2.2), the electrostatic potential is

taken to be constant on a flux surface Φ = Φ0(r). It is assumed here that ion
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temperatures are equivalent, Ti = Tz, due to the fast equilibration time. The choice

of the temperature and density profiles in the following results is based on the

modeling of an ECRH-heated, W7-X plasma in Fig 5 of [98]. The density gradient,

however, is not determined from Fig 5 in [98], but rather chosen so as to give

particular values of η−1. Further, the density gradient is taken to be equivalent

between ion species ∇ lnni = ∇ lnnz (or equivalently η−1 = η−1
i = η−1

z ), meaning

that the profile of Zeff is flat.

The recent work of [43] has shown that temperature screening can be achieved

in reactor-relevant, mixed-collisionality plasmas (highly-collisional impurities and

low-collisionality bulk ions) at large normalized radius rN = 0.88. With the in-

creased temperature in the core, however, it is possible that the bulk ions and

impurities in reactor-grade plasmas will both have low collisionalities, depending of

course on the particular impurity ion. The picture for temperature screening be-

comes more pessimistic as collisionality decreases, which can be seen in Fig 1 and

2 in [43]. For our purposes of understanding how much symmetry-breaking can be

tolerated prior to losing this effect, we choose to study collisionalities below the

region of temperature screening in [43], in order to ensure that this transition will

be observed in at least some cases.

Specifically, in the results that follow, both the ions and impurities will fall

into what is generally considered the low-collisionality regime in stellarators νa∗ �

1, where we define νa∗ ≡ νaR/vta. The low-collisionality regime can be further

subdivided into the plateau, 1/ν, and
√
ν regimes, as derived for realistic aspect

ratio in [16]. The plateau regime is defined by ε3/2 � νa∗ � 1, the 1/ν regime by
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ε−1ρ∗a � νa∗ � ε3/2, and the
√
ν regime by νa∗ � ε−1ρ∗a, where ε ≡ a/R. We further

explicitly define the equilibrium length scale in ρ∗a ≡ ρa/R to be consistent with

the use of the major radius in the definitions of [16].

2.6.1 Impact of Magnetic Field Symmetry-Breaking on Impurity Par-

ticle Flux

2.6.1.1 Flat Density Profile: η−1 = 0

As one increases the magnitude of εsb from 0 up to the true magnetic field, the

transport due to the helical wells will also increase. It is not clear a priori exactly

how this incremental breaking of symmetry will change the impurity particle flux.

However, it is clear that for many cases of interest there should be some critical value,

εcsb, where the radial impurity particle flux, Γz, changes sign, which will depend on

the particular magnetic equilibrium.

In this section, we examine the εsb dependence of Γz for each of the configu-

rations in table 2.1 in select parameter regimes. It should be understood that the

magnitude of Γz is less important than the sign in this section.

The Er for each simulation was chosen to be the ambipolar Er for the εsb = 1

case, considering that Er becomes progressively less important in calculating radial

fluxes as the magnetic field approaches symmetry (this can be seen from Figure 2.6,

which is discussed at the end of this section). It also becomes difficult to accurately

calculate the radial electric field for small values of εsb. We choose fully-ionized

carbon, C6+, as the impurity in Figures 2.1 and 2.3 in order to avoid proximity to
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Figure 2.1: (Color online) The impurity particle flux at η−1 = 0 for C6+ is plotted
as a function of the symmetry-breaking amplitude at a normalized radius of rN =
0.25. T = 4 keV, dT/dr = −0.97 keV/m, and Zeff = 2 were kept constant for all
subplots. The upper, green-shaded region denotes positive Γz (impurity screening).
The lower, red-shaded region corresponds to negative Γz (impurity accumulation).
The normalized C6+ gyroradius is ρ∗z = 4.17 ·10−3ε, and the collisionalities for each
subplot are (a) νz∗ = 2.26·10−4ε−1, (b) νz∗ = 2.26·10−3ε−1, and (c) νz∗ = 3.29·10−2ε−1.

the resonant electric field in all configurations (see Section 2.4). Finally, we take

α =
∑

a6=i naZ
2
a/(niZ

2
i ) = 1, corresponding to Zeff = 2.

In Figure 2.1(a)-(c), we have plotted results at rN ' 0.25 for all devices at

increasing values of collisionality, which is achieved by varying the ion density at

constant temperature. Here, and in the results that follow, rN ≡ r/a =
√
ψt/ψa,

where a is the minor radius, and 2πψa is the toroidal flux at the last closed flux

surface (computed in VMEC [53]). At this radial location we take Ti = Tz = 4 keV

and dTi/dr = dTz/dr = −0.97 keV/m. In the lowest-collisionality case of Figure

2.1(a) (with ni = 1018 m−3), there is a similar εsb dependence of Γz for each of the
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devices, regardless of the type of quasisymmetry (QA or QH). For a magnetic field

with near-perfect quasisymmetry (εsb = 10−2), the resulting Γz is positive, indicating

a presence of the temperature screening effect. As εsb is increased, Γz decreases until

eventually changing sign at some value of εsb < 1.

The first thing that can be understood from this plot is that at this collision-

ality, none of the devices that were studied displayed temperature screening at the

actual magnetic field, εsb = 1. However, the value of εcsb where temperature screening

is lost will depend on the magnetic configuration. In the case of Nuhrenberg-Zille,

for example, the transition occurs at εcsb ' 0.6, which is essentially saying that the

symmetry-breaking terms must be ∼ 60% of their actual values to ensure tempera-

ture screening under these conditions. Toward the left side of the plot, the NCSX

transition occurs at εcsb ' 0.1, requiring the symmetry-breaking terms to be ∼10x

smaller.

In Figure 2.1(b), the same plot as in Figure 2.1(a) is constructed, however, the

density (and hence collisionality) has been increased by an order of magnitude. First,

it should be remarked that at this collisionality, the Nuhrenberg-Zille configuration

actually achieves temperature screening at εsb = 1. While this is the only such

configuration to do so, it is also true that εcsb has increased for each configuration

from the respective values in Figure 2.1(a). Since εcsb can approximate closeness to

quasisymmetry, it follows that increasing the collisionality appears to improve the

“effective quasisymmetry” of a flux surface, as it relates to impurity transport.

The meaning behind our use of the term “effective quasisymmetry”, which is

only applicable for impurity transport and not bulk particles, can nevertheless be
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Figure 2.2: (Color online) Definitions of normalizations, markers/colors, and details
can be found in Figure (14) of [10]. The D11 transport coefficient is plotted as a
function of collisionality for HSX geometry. Here, the colors represent different vE
values. DKES [51,99] results are depicted by triangles (4), NEO-2 [59,76] by filled
circles (•), and Monte-Carlo results are plotted using open circles (©) [97], and
right-point triangles (.) [2]. The dotted line is a simulation with equivalent perfect
helical symmetry and Er = 0.

understood from a figure in [10] looking at bulk ion transport (which has been reused

in Figure 2.2 with permissions). For comparison, the normalized ion collisionality

of Figure 2.1(a) corresponds to ν∗ ∼ 10−5 in Figure 2.2. At low collisionality, there

is a difference (depending on Er) between the D11 coefficient (describing radial

transport) for HSX and the perfectly quasisymmetric case, indicating a sensitivity

of the particles to the exact structure of the magnetic field. As collisionality is

increased, this difference becomes less pronounced as the contribution to transport

from helically trapped particles decreases. At a high-enough collisionality, D11 in
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Figure 2.2 is about the same for perfect quasisymmetry as it is for HSX, regardless

of Er. Noting that the magnetic trapping structures can be quite different in perfect

symmetry and a nominally quasisymmetric field, the similarities in D11 indicate a

decreased sensitivity of the particles to the exact structure of the magnetic field

at higher collisionalities. Thus, in the context of quasisymmetry, increasing the

collisionality brings the transport closer to symmetric levels, “effectively” increasing

quasisymmetry.

However, there is a limit to the beneficial impacts of increasing the density,

as can be seen in Figure 2.1(c), where ni = 1.46 · 1020 m−3. Aside from the Wistell-

A configuration, all of the other configurations at near-perfect quasisymmetry do

not display an outward impurity flux. There are two possible explanations for

why this might take place in perfect symmetry. First, for QA configurations, it is

possible that Ea
r and Eres

r are close enough that ambipolarity no longer holds, and

the higher-order Er terms [94] become important. To explain this effect in QH,

one must recall that temperature screening in axisymmetry is not predicted at high

collisionalities [87], except for cases where α→ 0 for collisional ions and impurities.

In Appendix C, it can be seen that beyond some critical νii∗ in axisymmetry, the

impurity flux becomes negative for most η−1. Figure 2.1(c) is thus indicating that

we are hovering around that critical collisionality where temperature screening is

not possible, even in perfect symmetry. It is interesting to note here that in Figure

2.1(a) and 2.1(b), the impurities are mostly in the
√
ν or 1/ν regime. However, in

Figure 2.1(c), all QH configurations are well into the plateau regime, and most of

the QA configurations have transitioned to the plateau regime as well. The ions are
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Figure 2.3: (Color online) The impurity particle flux at η−1 = 0 for C6+ is plotted as
a function of the symmetry-breaking amplitude at a normalized radius of rN = 0.50.
T = 3.3 keV, dT/dr = −4.78 keV/m, and Zeff = 2 were kept constant for all
subplots. The upper, green-shaded region denotes positive Γz (impurity screening).
The lower, red-shaded region corresponds to negative Γz (impurity accumulation).
The normalized C6+ gyroradius is ρ∗z = 3.79 ·10−3ε, and the collisionalities for each
subplot are (a) νz∗ = 3.32·10−4ε−1, (b) νz∗ = 3.32·10−3ε−1, and (c) νz∗ = 4.58·10−2ε−1.

in the
√
ν regime in all but a couple cases at the highest collisionality.

The situation is less pessimistic in Figure 2.3, where we look at rN = 0.50 with

T = 3.3 keV and dT/dr = −4.78 keV/m. The trends are largely similar to Figure

2.1 at each collisionality, however, there are a handful of cases where temperature

screening can be seen at εsb = 1. Furthermore, at the highest collisionality, the

Wistell-A, Garabedian, and Nuhrenberg configurations have an outward impurity

particle flux for all εsb. The collisionality at rN = 0.50 is only slightly higher than

at rN = 0.25, and η−1 = 0 at both rN , so the differences at these radii are likely

caused by the distinct magnetic field modes, Bmn.
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The differences between Figures 2.1 and 2.3 can be understood by looking at

the magnitude of symmetry-breaking terms

S ≡
√ ∑

m,n 6=mN

B2
mn/B

2
00, (2.17)

as a function of rN in Figure 2.4. The summation in Eq 2.17 includes all modes

that are not an integer multiple of the dominant magnetic helicity χ (i.e. M = 1,

N = 4 for HSX). If we consider the curves for Henneberg QA and Garabedian, we

can compare the difference in the values of εcsb in Figure 2.1(a) and Figure 2.3(a). In

moving from rN = 0.25 to rN = 0.50 in Figure 2.4, the symmetry-breaking amplitude

for Henneberg QA and Garabedian decreases by ∼ 4. The corresponding increase

in εcsb from rN = 0.25 to rN = 0.50 is ∼ 2− 3 for both configurations. If we were to

then consider the respective CFQS curves (Figure 2.1(a) and Figure 2.3(a)), there

is an increase in S between these radii of ∼ 2, where a decrease in εcsb is observed.

This presents a connection between the closeness to quasisymmetry of a flux surface,

and the realization of temperature screening. The remaining configurations have a

difference in S of less than a factor of two at these radii, and S is also larger at

rN = 0.50. Unlike the connection between S and the change in εcsb for Henneberg

QA, Garabedian, and CFQS, the change in εsb is positive (although small) for the

remaining configurations. This could potentially be accounted for by a complicated

dependency on collisionality, Er, and the aspect ratio.

The arguments in this section are also relevant when considering higher-Z

impurities. In Figure 2.5, a similar plot to Figures 2.1 and 2.3 has been constructed
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Figure 2.4: (Color online) The amplitude of the symmetry-breaking terms, S, are
plotted as a function of normalized radius, rN .

for Cr24+, where results from both rN = 0.25 and rN = 0.50 have been consolidated

into Figure 2.5. To restate from Section 2.4, only configurations where Ea
r /E

res
r <

1/3 have been considered. One difference between Cr24+ and C6+ is that the value

of εcsb decreases for the QA configurations between Figure 2.5(a) and 2.5(b). This

behavior is likely due to the increase in collisionality from Figures 2.1 and 2.3,

(where the impurities are now in the plateau regime in Figure 2.5(b) and collisional

in 2.5(c)), meaning that the critical density where temperature screening is lost has

decreased. Further, the behavior of Wistell-A in Figure 2.5 is interesting compared

with other configurations. From Figure 2.4, the values of S at rN = 0.25 and

rN = 0.50 are quite similar, however, there is clear increase in εcsb that may not be

related to the amplitude of symmetry-breaking terms.

As mentioned at the beginning of this section, Ea
r at εsb = 1 has been used

as the Er value for all εsb simulations. In Figure 2.6, we use the Wistell-A curve
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Figure 2.5: (Color online) The impurity particle flux at η−1 = 0 for Cr24+ (mz =
52mi) is plotted as a function of the symmetry-breaking amplitude. For rN = 0.25:
T = 4.0 keV, dT/dr = −0.97 keV/m, and ρ∗z = 2.17 · 10−3ε with collisionalities (a)
νz∗ = 3.61 · 10−3ε−1, (b) νz∗ = 3.61 · 10−2ε−1, and (c) νz∗ = 0.53 ε−1. At rN = 0.50:
T = 3.3 keV, dT/dr = −4.78 keV/m, and ρ∗z = 1.97 · 10−3ε with collisionalities
(a) νz∗ = 5.31 · 10−3ε−1, (b) νz∗ = 5.31 · 10−2ε−1, and (c) νz∗ = 0.73 ε−1. Zeff = 2
was kept constant for all subplots. The upper, green-shaded region denotes positive
Γz (impurity screening). The lower, red-shaded region corresponds to negative Γz
(impurity accumulation).
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Figure 2.6: (Color online) (left y-axis) The impurity particle flux is plotted as a
function of the symmetry-breaking amplitude in Wistell-A using the parameters of
Figure 2.1(b). The yellow curve is identical to the yellow curve of Figure 2.1(b).
The red curve uses the calculated Ea

r value for each εsb. (right y-axis) The blue
dashed line is the Ea

r for each point in the red curve.

from Figure 2.1(b) and compare it to one generated with Ea
r calculated at each εsb,

as evidence for our argument in making this approximation. From the dashed blue

curve indicating the calculated Ea
r value, there is little variation as εsb decreases.

More importantly, this variation also has a minor impact on Γz, as evinced by the

red curve in Figure 2.6, which utilizes the Er values from the dashed blue curve at

each εsb.

The overall results in Figures 2.1, 2.3, and 2.5 indicate that for reactor-relevant

plasma parameters, temperature screening could be achievable in certain configura-

tions. However, as it is unlikely that the density profile will be completely flat, it is

imperative to understand how Γz varies with η−1.
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2.6.1.2 Finite Peaked Density Gradients: η−1 > 0

Peaking of the main ion’s density profile drives an inward neoclassical impurity

flux. This result is shown for axisymmetry or quasisymmetry in Appendix C. In

non-symmetric stellarators, the situation is complicated by not only the presence of

the radial electric field as a driving gradient in the impurity flux, but the fact that

L11 depends on Er, and in different ways depending on the collisionality regime.

An exact analytic solution for Γz is therefore intractable in most cases. However,

it is possible to approximate the solution by using a similar procedure to that used

in [100], but generalizing for arbitrary Zeff . We start with an expression for the

particle flux of an arbitrary species that is valid far from quasisymmetry at low

collisionality

Γa = −naLa11

[
1

na

dna
dr
− ZaeEr

Ta
+ δa

1

Ta

dTa
dr

]
. (2.18)

It is possible to then explicitly solve the ambipolarity condition
∑

a ZaΓa = 0 for

Er. If we take Ti = Tz = Te, it is possible to drop the contribution of Γe to the

ambipolar condition since Le11 � Li11 (though this approximation does not hold at

very low collisionalities, as described in [100]). Finally, we take the temperature

(T ′a/Ta) gradients to be equivalent for the bulk ions and impurities. This allows one

to solve for the radial electric field

eEr
T

=
Li11

n′i
ni

+ α
Z
Lz11

n′z
nz

+ AT ′

T

Li11 + αLz11

. (2.19)
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By plugging this back into the expression for Γz

Γz = nzL
z
11

[
Li11(Z

n′i
ni
− n′z

nz
)

Li11 + αLz11

+ C
T ′

T

]
, (2.20)

where A and C are scalars that are not relevant to the following discussion, and

La11 > 0 in all cases so that the diffusive flux is always opposite dna/dr. In the

approximation that La11, A, and C (which are implicitly dependent on the pressure

gradient through Er) do not vary strongly with n′/n, and assuming Zeff = constant

(n′i/ni = n′z/nz), Eq 2.20 indicates that for n′/n < 0, the density gradient will

have an unfavorable effect on impurity accumulation, and one that worsens as Z

increases. If one were to instead assume that the ions alone determine Er, yielding

a peaked Zeff profile, this would lead to n′z = (α/Z)n′i if terms proportional to T ′

are neglected. Therefore, for α = 1, we have |n′z| � |n′i| and a slightly stronger, yet

similarly adverse effect on impurity accumulation when n′/n < 0.

This is evident in Figure 2.7 in the context of how Γz is affected by εsb. Each

curve in the figure was calculated with the Wistell-A configuration at various η−1.

The red curve is the η−1 = 0 case (identical to the Wistell curve in Figure 2.1(c)),

where the degree of quasisymmetry is nearly good enough to retain temperature

screening at such parameters. If a small density gradient η−1 = 0.03 is introduced,

εcsb decreases by nearly a factor of 2. Any further increase in η−1 pushes the plasma to

the point where even perfect quasisymmetry cannot support temperature screening.

This makes the situation of temperature screening even more pessimistic, because

even if Γz > 0 in a particular collisionality regime, simply introducing a density
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Figure 2.7: (Color online) The impurity particle flux for C6+ in Wistell-A is plotted
as a function of εsb, the scaling factor for the symmetry-breaking terms, at rN = 0.25.
Each curve represents a different relative density gradient, but the physical parame-
ters are otherwise identical to those of Figure 2.1(c). The upper, green-shaded region
denotes positive Γz (impurity screening). The lower, red-shaded region corresponds
to negative Γz (impurity accumulation).

gradient can flip the sign.

In all likelihood, there will be some finite density gradient in a reactor-relevant

plasma, likely corresponding to an inward flux of impurities. It is then of interest to

see how the magnitude of Γz changes, relative to its value at η−1 = 0, as the strength

of the density gradient is increased. In Figure 2.8, the ratio Γz/|Γz|η−1=0 is plotted

as a function of η−1 for various configurations, where each simulation was calculated

at the true magnetic field, and used its own Ea
r . In every case shown in Figure

2.8(a), Γz is negative and a decreasing function of η−1, indicating that increasing

the strength of the peaked density gradient will intensify impurity accumulation.
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In a scenario where the length scale of the density gradient is only twice that of

the temperature gradient (η−1 = 0.5), the enhancement in Γz at this radius can be

increased by a factor of ∼ 20. The picture appears to at least slightly worsen at

rN = 0.50 in Figure 2.8(b), where the enhanced accumulation has close to doubled

from the values in Figure 2.8(a) in most cases.

2.6.2 Comparison to Gyro-Bohm Turbulence Estimate

In this section, we use results from the parameter scans in the previous section

to compare the neoclassical particle flux, Γz, and heat flux, Qtotal = Qi + Qz, to

a gyro-Bohm estimate for turbulent transport, Γgbz ∼ nzDgb|∇T |/T , and Qgb
total ∼

Dgb|∇T |(ni + nz). In these expressions, Dgb = ρ2
∗vtia is the gyro-Bohm diffusion

coefficient, where we have taken the minor radius to be the relevant length scale. The

gyro-Bohm estimate is not a substitute for turbulent fluxes obtained from solving the

gyrokinetic equation, but rather an order of magnitude estimate of the turbulence.

2.6.2.1 Impurity Particle Flux with Φ = Φ0(r)

Figure 2.9 examines how the neoclassical particle fluxes compare to Γgbz as a

function of the impurity ion charge for each device, using the equilibrium magnetic

field, εsb = 1. At Z = 6, the impurities are in the plateau regime, and by Z = 24 all

impurities have become collisional νz∗ ≥ 1 (depending on the aspect ratio, the Z = 13

impurities are also collisional). Only flat density profiles (η−1 = 0) are considered

in Figure 2.9. In Figure 2.9(a), we look at the impurity particle flux for rN = 0.25,
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Figure 2.8: (Color online) The impurity particle flux for C6+ has been normalized
to its magnitude at η−1 = 0 and plotted as a function of η−1 at (a) rN = 0.25, and
(b) rN = 0.50. Every simulation was performed at the true magnetic field εsb = 1,
with the Ea

r independently calculated at every η−1. The physical parameters are
otherwise identical to those of Figures 2.1(c) and 2.3(c). The data points above
−100 in (b) are those corresponding to devices with positive Γz at εsb = 1, thus
giving a value of +100 at η−1 = 0.
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Figure 2.9: (Color online) The neoclassical impurity particle flux at η−1 = 0 has
been normalized to a gyro-Bohm estimate of the turbulent impurity particle flux
(see text). This ratio is plotted as a function of the impurity charge (and mass) for
(a) rN = 0.25, and (b) rN = 0.50. Plasma parameters correspond to those of Figures
2.1(c) and 2.3(c). Collisionalities can be found from (a) νz∗ = 9.14 · 10−4Z2ε−1, and
(b) νz∗ = 1.27 · 10−3Z2ε−1.
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where the temperature gradients are weaker. At this radial location, the ratio of

fluxes does not have a consistent strong trend with Z. This is observed in both QA

and QH configurations, as well as the non-quasisymmetric TJ-II stellarator [47], and

the W7-X standard configuration. Note that symmetry-breaking harmonics of B are

not modified in Figure 2.9. The most striking feature of Figure 2.9(a), however, is

the dominance of turbulent transport. Of the quasisymmetric configurations that

were studied, the largest calculated neoclassical flux at rN = 0.25 is only ∼ 5% of the

turbulent value. These small ratios indicate that regardless of whether temperature

screening is present at a given collisionality, it is possible that the turbulence could

control the sign of the particle flux.

At rN = 0.50 in Figure 2.9(b), the overall sensitivity of this ratio to the

impurity species in QA is unclear since the larger gradients push Ea
r close enough to

Eres
r that results are unreliable (see Section 2.4). Only configurations with at least

two points have been shown in Figure 2.9, eliminating all but one QA configuration.

Apart from W7-X, there is an eventual point for each configuration at which further

increase in Z corresponds to an increase in the relative importance of neoclassical

fluxes. Even with this increase in the ratio, the neoclassical contribution to the

radial particle flux is < 3% of the turbulent value.

It should be reiterated here that these results have been generated with a flat

density profile. While it is still unknown exactly how the density profiles will behave

in a reactor, it is likely that |η−1| > 0. From Figure 2.8, it can then be inferred

how this neoclassical to turbulence ratio will change if a peaked density gradient

is introduced. In a non-ideal scenario, where η−1 = 0.5, the ratio could increase
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by more than a factor of 10, depending on the configuration. At rN = 0.25, this

would still only lead to the neoclassical flux being ∼ 10% of the turbulence for most

configurations.

It is also of practical importance to understand how this ratio of neoclassical

to turbulent particle flux varies with distance from the magnetic axis. This radial

profile is shown in Figure 2.10, where the radial points rN = 0.15 and rN = 0.40

(profiles can be found in the caption of Figure 2.10) have been added to the previ-

ously calculated values at rN = 0.25 and rN = 0.50. For most but not all, the ratio

tends to either decrease or remain constant as one moves out radially, indicating that

turbulence becomes increasingly more important. This follows experimental obser-

vations [19,78] that show neoclassical fluxes at negligible levels when compared with

turbulence far from the magnetic axis.

While these results point to reactor-relevant plasmas where turbulence is likely

the dominant impurity particle transport channel, more work is needed to fully

understand the significance of these findings. The most obvious step would be a more

accurate value for the turbulent fluxes such as a quasilinear model or gyrokinetic

simulations, so as to better quantify this neoclassical to turbulence particle flux

ratio. Also, a recent study comparing neoclassical simulations and experimental

fluxes from an laser blow-off injection of iron in W7-X [39] similarly found that

|ΓNCz /Γanomz | � 1. However, by separately considering the diffusive and convective

contributions to the particle flux, it was found that neoclassical fluxes could still

be responsible for determining the sign of the total particle transport, while the

turbulence (anomalous transport) could control its magnitude.
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Figure 2.10: (Color online) The neoclassical impurity particle flux at η−1 = 0 for
C6+ has been normalized to a gyro-Bohm estimate of the turbulent impurity particle
flux (see text). This ratio is plotted as a function of the normalized radius rN .
Plasma profiles at rN = 0.25 and rN = 0.50 correspond to those of Figures 2.1(c)
and 2.3(c), respectively. At rN = 0.15: T = 4.1 keV, dT/dr = −0.58 keV/m,
ni = 1.51 · 1020 m−3. At rN = 0.40: T = 3.75 keV, dT/dr = −3.88 keV/m, ni =
1.43 · 1020 m−3.
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2.6.2.2 Impurity Particle Flux including Φ1 Effects

The form of the DKE in Eq. 2.1 was found by linearizing about Φ0, assuming

that it is close to a flux function, where Φ1 � Φ0. When including Φ1 effects,

one can no longer neglect the contributions of Φ1 in the zeroth-order distribution

function fa0 ≈ Fa[1 − ZaeΦ1/Ta], and the energy Wa = Wa0 + ZaeΦ1/ma, as was

done in Eq 2.2.1. Furthermore, the radial component of the E ×B vanishes when

Φ = Φ0, but enters the DKE for non-zero Φ1, which would change the final term of

Eq 2.2.1 to

− (vma + vE) · ∇r
(
∂fa0

∂r

)
Wa

, (2.21)

where vE = (c/B2)B × ∇Φ1. The above replacements in the DKE will have the

effect of both altering the phase space trajectories, and making the DKE nonlinear.

For details on the implemented equations with Φ1 effects see [70].

When considering Φ1 in neoclassical transport, recent results [34] indicate that

it has only a moderate impact on the particle flux for highly-charged impurities

(W 40+), in the case of the non-quasisymmetric Wendelstein 7-X (W7-X) stellarator.

While not quasisymmetric, W7-X is still a neoclassically optimized stellarator and

will have reduced radial excursions of helically-trapped particles, limiting the size of

density variations on a flux surface. Since Φ1 is closely connected to these density

fluctuations [73], it would make sense to assume (and indeed [34] has shown) that

Φ1 fluctuations are small in such configurations. In quasisymmetric experiments

not deviating too far from perfect symmetry, it is reasonable to expect a similarly
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Figure 2.11: (Color online) The neoclassical impurity particle flux in Wistell-A at
η−1 = 0 has been normalized to a gyro-Bohm estimate of the turbulent impurity
particle flux (see text). A kinetic electron species has been included for all points,
and plasma parameters correspond to those of Figure 2.3(c). The red curve includes
Φ1 effects in the DKE, and Φ1 is neglected for the blue points.

small Φ1. However, the impact of Φ1 on the neoclassical particle flux in stellarator

configurations optimized for quasisymmetry has yet to be shown. We present a first

look at this behavior using the Wistell-A configuration.

In the blue curve of Figure 2.11, we recreate the Wistell-A curve from Figure

2.9(b), but now include a kinetic electron species (maintaining α = 1 and Φ1 = 0).

In plasmas where quasineutrality is satisfied, this permits one to solve the DKE

with Φ1 effects, which is shown in the red curve of Figure 2.11 (where Ea
r has been

calculated at each point through the inclusion of Φ1 effects). It is evident from

Figure 2.11, that Φ1 has a minimal effect on impurities with low charge, especially

so for C6+ and Al13+. However, with increasing Z, the difference in Γz with and

without Φ1 effects becomes non-negligible, differing by about a factor of 2. Also
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of interest is the magnitude of Φ1 fluctuations, which in our results range from

e|Φmax
1 |/Ti = 8.9 · 10−4 to e|Φmax

1 |/Ti = 1.4 · 10−3, which are generally smaller than

the analogous W7-X values of Figure 18 in [34].

Considering how our results differ from those for W7-X in [34], there are some

differences that must be appreciated. In [34], the authors take α = 0.1 (Zeff = 1.1),

and use this to solve a quasineutrality equation that does not consider the effect of

the impurities on Φ1. While this is reasonable for a low Zeff plasma, when α = 1 the

impurity contribution will be commensurate with bulk ions in the quasineutrality

equation and their effect on Φ1 must be considered. Second, because Wistell-A is

quasisymmetric, |Γz| is small in the sense that it is closer to the transition between

positive and negative Γz than the non-quasisymmetric W7-X. This could result in

similarly-sized e|Φmax
1 |/Ti values having a comparatively stronger effect on Γz in

Wistell-A than in W7-X. Finally, results presented in [34] employ a small but finite

density gradient, where we have taken η−1 = 0. As we have outlined in detail in

Section 6.1.2, introducing a peaked density gradient tends to have a strong influence

on the impurity particle flux. Therefore, the result of introducing a density gradient

alongside Φ1 effects can be expected to modify the curves of Figure 2.11.

It is not our aim in this section to exactly quantify the differences between our

results and [34]. This has been meant to both introduce new results on the effect of

Φ1 in a quasisymmetric geometry, and attempt to identify key differences between

similar Φ1 studies. Therefore, a more comprehensive study will be left to future

work.
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2.6.2.3 Total Heat Flux

Along with particle fluxes, it is also of great practical importance to compare

the neoclassical and turbulent heat fluxes at different locations within the plasma.

If the dominant transport channel can be identified, this can better inform future

efforts in optimizing for a certain type of transport over a particular radial domain.

In this section we do not distinguish between ion and impurity heat fluxes, since

we primarily care about the total heat flux (ion+impurity) that is crossing a flux

surface.

Thus, shifting our attention to the ratio of neoclassical to turbulent heat fluxes,

the results in Figure 2.12 show the radial profiles of this ratio for each configuration.

The overall trend is similar to Figure 2.10, except that the magnitude of this ratio

is a bit higher than the respective points in Figure 2.10, especially closer to the

magnetic axis.

However, it is important to mention here that unlike the impurity particle

flux, we have found this ratio to be independent of η−1, and the particular impurity

species. So while the ratios in Figure 2.10 may appear smaller in comparison, a

heavy impurity in the presence of a density gradient could change that. This is

to say that these heat flux ratios are more robust over a wider range of potential

reactor-relevant parameters than the impurity particle flux.

The general trend of the decreasing relative importance of neoclassical heat flux

compared with turbulence with respect to radius is in agreement with experimental

results [19, 78]. With that said, for rN ≥ 0.25, the neoclassical heat flux is, at best,
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30% of the turbulent value, and in many cases this ratio is even smaller.

These magnitudes appear to be at odds with Figure 7 in [78], where neoclas-

sical simulations (SFINCS) of an ECRH-heated W7-X experiment show that the

neoclassical electron heat flux constitutes ∼ 65% of the input power through the flux

surface at rN = 0.25. If the remaining flux is presumed to be turbulence-driven, then

the neoclassical electron heat flux should be about twice the turbulent value. By

comparing this neoclassical result to a gyro-Bohm estimate using ρs = 3.21 ·10−3 m,

and LTe ≡ (1/Te|dTe/dr|)−1 = 0.66 m in the expression Qgb
e ∼ neρ

2
∗scsaTeL

−1
Te

one

finds |Qe/Q
gb
e | ∼ 0.05, where Qe is the computed neoclassical electron heat flux. The

above expression uses the ion sound speed cs =
√
Te/mi and gyroradius ρs = cs/Ωi,

where ρ∗s ≡ ρs/a. A similar comparison can be done for HSX with Figure 13 in [19],

where the neoclassical electron thermal diffusivity appears to account for ∼ 10% of

the experimentally measured diffusivity at rN = 0.25. Using the above approxima-

tion for Qgb
e , with length scales ρs = 3.42 · 10−3 m and LTe = 0.042 m, results in

|Qe/Q
gb
e | ∼ 0.02.

These inconsistencies in how well gyro-Bohm approximates the turbulence

underlines the nature of gyro-Bohm as only an estimate of turbulence.

Setting the coefficient of Dgb to 1 for every configuration and set of plasma

parameters is bound to yield results that can differ by an appreciable amount relative

to the actual turbulent fluxes.

It should be mentioned that for the above cases, Te � Ti, indicating that

electrons will likely be important for both neoclassical and turbulent energy trans-

port. This is in contrast to the majority of results in our work, where electrons
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Figure 2.12: (Color online) The total (ion+impurity) heat flux at η−1 = 0 for C6+

has been normalized to a gyro-Bohm estimate of the total turbulent heat flux (see
text). This ratio is plotted as a function of the normalized radius rN . Plasma
profiles are the same as for Figure 2.10.

were excluded from simulations. For plasmas with large Te/Ti, the ion temperature

gradient is no longer the relevant driving gradient, which is why cs and ρs have been

used in Qgb
e above, in place of vti and ρi. While the HSX result in particular is

interesting in the sense that it is the only experimental quasisymmetric stellarator

data comparing transport channels, it is unclear of how relevant it is to the rest of

the results in this chapter, considering that Te � Ti.

2.7 Effective Helical Ripple as a Quasisymmetry Metric

From Section 2.6.1, we showed how there was a connection between S and

εcsb that helped to explain how εcsb changed between the two flux surfaces that were

studied. This connection can be seen more clearly in Figures 2.13(a)-(b), where

the value of εcsb from Figures 2.1(a) and 2.3(a) has been plotted as a function of S
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on the respective surfaces for each of the configurations. For both rN = 0.25 and

rN = 0.50, there is a visible anti-correlation between the two quantities even when

considering that these configurations have very different properties. It thus seems

reasonable to expect that minimizing S on a flux surface will increase εcsb.

Along with S, the effective helical ripple, εeff , is sometimes taken to be a

metric for quasisymmetry that could be used for stellarator optimization. εeff ,

which is a measure of neoclassical transport in the 1/ν regime, was computed with

the NEO code [76].

In Figure 2.14, the effective helical ripple is plotted as a function of S for

each configuration. A number of these curves are multi-valued, indicating a non-

monotonic change in quasisymmetry from the magnetic axis to the last closed flux

surface (LCFS). To clarify the radial dependency of each curve, the open circle at

the end of a curve denotes the magnetic axis, rN = 0, and a closed circle the LCFS,

rN = 1. It can be seen [48,74] that if individual symmetry-breaking Bmn harmonics

are plotted as a function of rN , that the amplitude tends to increase with distance

from the magnetic axis. Indeed, this trend can be seen for a handful of configu-

rations in Figure 2.14, indicating a correlation between εeff and the closeness to

quasisymmetry. However, this is decidedly not universal among QA configurations.

Henneberg QA, for example, has a symmetry-breaking amplitude that decreases by

nearly an order of magnitude from rN = 0→ rN ' 0.6, and then increases again to

a value at rN = 1 that is larger than its value at the rN = 0.

Moreover, this monotonicity in S, or lack thereof, is not necessarily tied to the

value of εeff . Returning to Henneberg QA as an example, the initial decrease in S
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Figure 2.13: The critical symmetry-breaking parameter εcsb for each configuration as
a function of the corresponding S value has been plotted at (a) rN = 0.25, and (b)
rN = 0.50, which correspond to the εcsb values from Figure 2.1(a) and Figure 2.3(a),
respectively.
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Figure 2.14: (Color online) The effective helical ripple (calculated with NEO [76]) is
plotted as a function of the amplitude of the symmetry-breaking terms. The open
circles here denote the value on-axis (rN = 0). The closed circles correspond to the
value at rN = 1. These curves do not change with plasma parameters.
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with rN is accompanied with a decrease in εeff . Then, the subsequent increase in S

corresponds to an increase in εeff , indicating a possible correlation between S and

εeff . However, the behavior is different in the core of ARIES-CS, where the smallest

value of S corresponds to a relatively large value of εeff , which decreases considerably

as S is increased. The point here is that while there are certainly configurations

where εeff scales with S, it is just as likely that they may not correlate well at

all, and the assumption that small εeff indicates good quasisymmetry cannot be

justified a priori. It has in fact been shown in [20] that one can achieve omnigeneity

(εeff = 0) far from quasisymmetry.

It is further interesting to note that in the cases where εeff does not scale with

S, the radial location where this disagreement happens is usually within rN ' 0.5.

Above this rN (or in some configurations, a position much closer to the magnetic

axis), the scaling of εeff with S can be observed in every case. An interpretation of

this behavior is left to future work.

2.8 Conclusions

In this work, we have examined how impurity particle flux and the temper-

ature screening effect are influenced by varying the closeness of the magnetic field

to perfect quasisymmetry. For realistic departures from symmetry, at the lowest

studied collisionality (both species in the
√
ν regime) with a flat density gradi-

ent, temperature screening was not observed for any quasisymmetric configuration.

However, with increasing collisionality one can see an increase in the “effective qua-
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sisymmetry” of a flux surface. This can lead to temperature screening in some

cases. Unfortunately, there is an upper limit to the benefits of increasing collision-

ality, where any further increase will lead to impurity accumulation even in perfect

quasisymmetry.

When peaked density gradients are introduced, there is an overall negative

effect on the impurity particle flux. Increasing the density gradient peaking (η−1 >

0) enhances the strength of the impurity accumulation, and also leads to a reduction

in the “effective quasisymmetry”. Overall, while temperature screening is technically

possible at the true magnetic field in select cases, it is unlikely to be present in low-

collisionality reactor-relevant regimes.

The magnitudes of these results at the true magnetic field (εsb = 1) were then

compared with a gyro-Bohm estimate for the turbulent fluxes. Even in the non-

ideal scenario of η−1 = 0.5, the majority of configurations show neoclassical impurity

particle fluxes that don’t exceed 10% of the respective turbulent flux, even for highly

charged impurities. However, a complete understanding of the implications of a

relatively large turbulent particle flux will require further work, since determining

sign of the particle flux may be more complicated than taking the sign of the largest

transport channel [39]. In other words, while neoclassical fluxes may potentially be

small, they cannot be considered irrelevant.

It was also found that when studying highly charged impurities in Wistell-

A in relevant Zeff plasmas, one cannot disregard the effect that including Φ1 can

have on Γz. Even though the effect on Γz is considerable, the absolute value of Φ1

is quite small, indicating that its relationship to Γz is more complicated than just
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considering its magnitude.

Finally, it was shown that the critical value of symmetry-breaking, εsb, where

the impurity particle flux changes sign, appears to be anti-correlated with the am-

plitude of symmetry-breaking harmonics, S, on a flux surface. That this trend

appears when considering configurations with widely varying properties suggests

that minimizing the S on a flux surface will increase εsb.
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Chapter 3: Flux Tube Geometry

Calculating turbulent fluxes through simulations using the gyrokinetic equa-

tion generally require enormous computational effort. Solving the gyrokinetic equa-

tion with impurities enhances this cost since at least one additional kinetic species

must be evolved. Therefore, it is important to choose the correct simulation domain

and boundary conditions (Chapter 4) to minimize the overall cost.

3.1 What is a Flux Tube?

For instance, a gyrokinetic simulation of a full flux surface that uses field-line-

following coordinates [7] and adiabatic electrons in stellarator geometry using the

GENE code [58] currently requires on the order of 0.1 M CPU hours. The most

cost-effective option is to run these codes in a flux tube (∼10-20 times faster), a sim-

ulation domain that follows a magnetic field line, is much longer than it is wide, and

conserves magnetic flux throughout. The advantages of flux tube simulations and

field-line-following coordinates can be seen no matter how one chooses to represent

the distribution function (as f(v), moments of f(v), with particles, etc.). Figure 3.1

presents a visualization of a flux tube in the W7-X stellarator geometry.

The construction of this simulation domain starts with the expression of the

76



Figure 3.1: (Color online) 3D visualization of a flux tube domain in real space
superimposed on a flux surface in the W7-X stellarator. (The perpendicular extent
of the tube in was set for visualization purposes).

magnetic field in Clebsch coordinates

B = ∇ψ ×∇α, (3.1)

where ψ is the magnetic surface label (e.g. toroidal or poloidal flux), and α is a

magnetic field line label. This form ofB leads toB ·∇ψ = B ·∇α = 0, meaning that

ψ and α are constant along magnetic field lines and thus create ideal coordinates

in the plane perpendicular to B. The parallel coordinate z, identified with the

poloidal angle θ, measures distance along the field line. These are known as field-

line-following coordinates.

The field-line-following coordinate system is a particularly fitting choice in

gyrokinetic simulations because of the anisotropic nature of turbulent fluctuations,

which are elongated along a field line, and very short across it k‖/k⊥ � 1 (see

Figure 3.2). The perpendicular coordinate requires resolution on the gyroradius

scale, while the parallel coordinate can be much more coarse-grained. For a more

arbitrary chunk of plasma volume, one would need to resolve the gyroradius scale

in all directions. Thus, the advantage to using field-line-following coordinates is not
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solely convenient based on the structure of turbulent fluctuations, but also leads to

an O(ρ∗) reduction in the required resolution.

Figure 3.2: Cartoon representation of the scale of a perturbed quantity (the electro-
static potential φ in this case, in black) in the direction parallel and perpendicular
to the magnetic field (blue).

Now since the flux tube has nonzero perpendicular extent, and ψ and α are

being used as perpendicular coordinates, the logical conclusion would be that the

domain simulates multiple magnetic field lines. However, flux tubes are local in both

flux surface and magnetic field line, so it is important to understand how certain

quantities are treated in the perpendicular domain.

The small-scale nature of turbulent fluctuations perpendicular to B helps to

explain this. As will be discussed in 4.2, the extent of the domain is chosen to

ensure that it is not shorter than the correlation length in any direction. For core

plasmas, this will result in the perpendicular domain being on the order of a few

ion gyroradii. Equilibrium quantities will have minimal variation across this domain

and can be considered constants to lowest-order. This does not, however, restrict
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variation of certain equilibrium quantities along the field line, such as the Jacobian

g1/2(ψ0, α0, z) = [(∇ψ ×∇α) · ∇z]−1 . (3.2)

This is because the parallel correlation length is on the order of the equilibrium

scales.

The parallel gradients ∂/∂z of perturbed quantities (such as the electrostatic

potential) will be assumed small compared to perpendicular gradients. This is a

result of the anisotropy of plasma turbulence. It can then be shown that the spatial

operators found in the gyrokinetic equation do not explicitly contain the perpen-

dicular coordinates ψ and α. As shown in [7], the perpendicular Laplacian of some

scalar function A

∇2
⊥A = |∇ψ|2∂

2A

∂ψ2
+∇ψ · ∇α ∂2A

∂ψ∂α
+ |∇α|2∂

2A

∂α2
, (3.3)

is an important example of this fact. The above discussion (which is more thoroughly

explored in [7]) demonstrates that physical quantities may vary along a field line,

but will not depend on the location within the perpendicular plane (ψ, α).

The rotational transform

ι = ι(ψ) =
dθ

dφ
=
B · ∇θ
B · ∇φ

, (3.4)

79



and the global magnetic shear

ŝ ≡ ψ0

q0

dq

dψ

∣∣∣∣
ψ=ψ0

, (3.5)

which are flux functions, are constant throughout the flux tube, not just the per-

pendicular plane.

To understand the shape of the flux tube in physical space, let us start by

assuming that a field line is chosen about which to center a flux tube simulation

domain in the perpendicular plane. The perpendicular coordinates of this field line

are (ψ0, α0), which can be seen in Figure 3.3.

Figure 3.3: The shape of the perpendicular plane of a flux tube is defined by∇ψ·∇α.
This figure is a representation of how this shape changes along a magnetic field line.
This figure has been adapted from [8].

Since the magnetic field is taken to be B = ∇ψ × ∇α, the flux tube sides

are defined by the ψ = const and α = const surfaces. This means that the scalar

product of these gradients ∇ψ · ∇α (which represents the non-orthogonality of the

coordinates) will define the shape of the plane perpendicular to B. From the argu-

ments above, the quantities ∇ψ and ∇α are both functions of z = θ. This variation
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along B is a result of magnetic shear considerations, which is the central focus of

Chapter 4. The main point, however, is that the the variation in ∇ψ ·∇α will cause

a distortion in the shape of the perpendicular plane.

3.2 Acquiring Geometric Information

Since the main objective of the flux tube is to provide a simulation domain in

which to solve the gyrokinetic equation, one needs to provide the necessary geometric

information at each grid point. The specific quantities that are needed can be found

in Table 3.1. For tokamaks with circular cross-sections, the calculation of these

geometric quantities is relatively straightforward, as there are standard analytic

formulas available. Significant complexities arise when dealing with non-standard

toroidal geometries, such as shaped tokamaks or stellarators. The process involved

in calculating these quantities will be detailed here.

3.2.1 Equilibrium Information

Prior to any simulations of turbulence, one must find a plasma that is in

magnetohydrodynamic (MHD) equilibrium by satisfying the force balance equation

∇p = j ×B. (3.6)

Perhaps the most widely used equilibrium code in the fusion community for 3D

shapes is VMEC [53]. VMEC calculates an MHD equilibrium by assuming good flux

surfaces, and reports the geometric and physical information needed to compute the
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Geometric Information
Quantity Normalizing Factor

|B| 1/Bref

b · ∇ = ∇‖ Lref

(ŝ2/ψN)|∇ψ|2 1/L2
refB

2
ref

ŝ∇ψ · ∇α 1/Bref

ψN |∇α|2 L2
ref

(2
√
ψN/B

3)B ×∇B · ∇α L2
refBref

2ŝ/(B3
√
ψN)B ×∇B · ∇ψ 1

(2
√
ψN/B

2)B × κ · ∇α L2
refBref

2ŝ/(B2
√
ψN)B × κ · ∇ψ 1

Table 3.1: A list of geometric quantities necessary for gyrokinetic simulations in a
flux tube geometry. To appropriately normalize these quantities, a scale length and
reference magnetic field must also be chosen.
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quantities of Table 3.1.

VMEC returns a prescribed number of Fourier harmonics for these geometric

and physical quantities on each flux surface as a function of (θV , ζ). Here, ζ is

the standard azimuthal angle in cylindrical coordinates, and θV is a poloidal angle,

which is not a straight field line coordinate (this can be seen in the red curve of

Figure 3.4, where θV is not a linear function of ζ). This poloidal angle was chosen

because it reduces the number of terms required in the Fourier series. Flux surfaces

are labeled by the radial coordinate s ≡ ψ/ψLCFS, where ψLCFS is the toroidal flux

at the last closed flux surface. The angle of the sine and cosine terms in the Fourier

expansions is defined as mθV −nζ, where m and n denote the poloidal and toroidal

mode number, respectively. For example, the entire right hand side of the expression

B =
∑
m,n

Bmn cos(mθV − nζ), (3.7)

would be provided to determine the magnetic field magnitude within a given flux

surface.

VMEC also provides the function Λ = Λ(s, θV , ζ) (analagous to the more

general ν in Eq (8) of [7]), which is periodic in θV and ζ, and allows one to convert

between poloidal coordinates via

θP = θV + Λ. (3.8)

Here, θP is the poloidal angle in PEST coordinates, which is a straight-field-line
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Figure 3.4: The VMEC poloidal angle θV is plotted in red as a function of the
standard azimuthal angle ζ for the field line α = θV + Λ− ιζ = 0. The fact that θV
is not a linear function of ζ indicates that it is not a straight-field-line coordinate.
The straight-field-line coordinate PEST coordinate θP is plotted in the dashed blue
for the field line α = θP − ιζ = 0.

angle. A plot of θP as a function of ζ results in a straight line, which can be

seen by the dashed blue curve in Figure 3.4. PEST coordinates are realized with a

straight-field-line poloidal angle in the case of the toroidal angle ζ being the standard

azimuthal angle in cylindrical coordinates.

It is also possible to convert to another straight-field-line coordinate system

known as Boozer coordinates, with extra steps. Using the same Λ function as well

as ι = ι(s) and a transformation function p̃ = p̃(s, θV , ζ) (that is periodic in θV and

ζ), it has been shown [54] that the conversion to Boozer coordinates from VMEC is

θB = θV + Λ + ιp̃ (3.9)

ζB = ζ + p̃. (3.10)
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There is also a code BOOZ XFORM [88] in the STELLOPT [82,92] suite of codes,

which performs this conversion. Boozer coordinates are a special set of straight-

field-line coordinates, which reveal hidden symmetries in the magnetic field. This

was discussed in detail in Chapter 2.

Table 3.2 lists and provides a brief description of the VMEC output quantities

necessary to compute the geometric information needed for flux tube simulations.

The parenthetical quantities in Table 3.2 are additional quantities for the case of

equilibria that do not have up-down (or stellarator) symmetry. The covariant and

contravariant components of the magnetic field, and the Jacobian, are defined in

the usual sense

Bθ = B · ∇θV ,

Bζ = B · ∇ζ,

Bθ = B · ∂r
∂θV

,

Bζ = B · ∂r
∂ζ
,

Bs = B · ∂r
∂s
,

√
g =

∂r

∂s
· ∂r
∂θV
× ∂r

∂ζ
= (∇s · ∇θV ×∇ζ)−1 .
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VMEC Output Quantities
Output Name Description
Aminor p averaged minor radius at LCFS
xm,xn poloidal and toroidal mode numbers
xm nyq,xn nyq poloidal and toroidal mode numbers (Nyquist)
iotaf ι on full mesh
presf pressure on full mesh
phi toroidal flux on full mesh
rmnc (rmns) cosmn (sinmn) components of cylindrical R, full mesh
zmns (zmnc) sinmn (cosmn) components of cylindrical Z, full mesh
bmnc (bmns) cosmn (sinmn) components of |B|, half mesh
gmnc (gmns) cosmn (sinmn) components of Jacobian, half mesh
bsupumnc (bsupumns) cosmn (sinmn) components of Bθ, half mesh
bsupvmnc (bsupvmns) cosmn (sinmn) components of Bζ , half mesh
bsubumnc (bsubumns) cosmn (sinmn) components of Bθ, half mesh
bsubvmnc (bsubvmns) cosmn (sinmn) components of Bζ , half mesh
bsubsmns (bsubsmnc) sinmn (cosmn) components of Bs, full mesh

Table 3.2: A list and description of VMEC output quantities that are necessary to
compute geometric information for flux tube simulations.

3.2.2 Calculating Geometric Quantities

The next step is to select the desired flux surface, which will allow for the

calculation of flux functions such as ι, dι/dψ, and dp/dψ, where p is the pressure.

The value of ι is provided directly as a function of the flux surface on a uniform

grid. The derivative quantities must then be calculated by finite difference.

At this point, quantities in the straight-field-line coordinates (ψ, θV , ζ) have

been calculated. The next step is to calculate these quantities in the field-line-

following coordinates (ψ, α, z) of [7]. Apart from the physical reason of choosing

these coordinates, an advantage of transforming to (ψ, α, z) lies in the relative sim-

plicity of the nonlinear term in the gyrokinetic equation. In the ballooning represen-

tation, for example, the nonlinear term includes an additional p sum over sections of
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increasing length in the parallel coordinate (θ+2πp) that can become very expensive

to evaluate for long flux tubes [8, 31]. The nonlinear term in field-line-following co-

ordinates does not have such a sum, with the result being proportional to a Poisson

bracket that involves only convolutions in Fourier space.

This transformation first requires the creation of poloidal and toroidal coor-

dinates satisfying α = θ − ιζ. Since VMEC quantities are provided on the (θV , ζ)

grid, however, one must solve for θV at each θ in order to represent these quantities

on the straight-field-line grid. Determining θV requires satisfying

θV − θ = θV − α + ιζ = 0, (3.11)

for the desired field line α at each ζ on the grid.

With the quantities now matched to the θV values corresponding to the straight-

field-line θ values, one must then convert the VMEC Fourier representation of each

quantity in Table 3.2 to their real-space representation as functions of (θV , ζ). This

is a straightforward exercise of performing the equivalent of the sum in Eq (3.7),

over the all modes that were used in VMEC.

The next step is to compute the vectors ∇ψ, ∇α, ∇θ, and ∇B. It is helpful at

this point to convert to Cartesian coordinates (X, Y, Z), by first using X = R cos(ζ)

and Y = R sin(ζ), and taking the appropriate derivatives. One can then use the
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dual relations to find gradients of the field-line-following coordinates

∇θV =
1
√
g

(
∂r

∂ζ
× ∂r

∂s

)
, (3.12)

∇ζ =
1
√
g

(
∂r

∂s
× ∂r

∂θV

)
, (3.13)

∇s =
1
√
g

(
∂r

∂θV
× ∂r

∂ζ

)
=

(
dψ

ds

)−1

∇ψ. (3.14)

From this information, ∇α = ∇(θV + Λ− ιζ) can be computed, with the reminder

that ι = ι(s) and Λ = Λ(s, θV , ζ)

∇α =

(
∂Λ

∂s
− ζ dι

ds

)
∇s+

(
1 +

∂Λ

∂θV

)
∇θV +

(
−ι+

∂Λ

∂ζ

)
∇ζ. (3.15)

Finally, we can now calculate (in Cartesian coordinates) the magnetic field vector

B = ∇ψ ×∇α and the gradients of its magnitude

∇B =
dB

ds
∇s+

dB

dθV
∇θV +

dB

dζ
∇ζ. (3.16)

The derivatives here can be calculated with either finite difference or analytic deriva-

tives using Eq 3.7.

These gradients, appropriately normalized, provide the necessary information

to calculate the required geometric quantities. Table 3.1 simply lists these quantities

appropriately normalized by the unspecified reference values Bref and Lref . Each

quantity in 3.1 is approximately constant within the perpendicular plane of a flux

tube because of its narrow width. They are therefore treated as only a function of
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the parallel coordinate.

3.3 Straight-field-line and Equal Arc Length Coordinates

The above quantities are calculated from VMEC to yield a straight-field-line

coordinate system, which is what permits the use of field-line-following coordinates.

However, while straight, the parallel (poloidal angle in this case) grid points are

generally not equally-spaced along the field line. Unequally-spaced coordinates are

certainly allowable, but equally-spaced grids can sometimes lead to an improvement

in performance.

The subtlety of equal arc length coordinates can be understood by considering

a simple equation, which considers only motion along a field line

∂f

∂t
+ v

∂θ

∂l

∂f

∂θ
= 0. (3.17)

Here, l is the equal arc coordinate, which parameterizes the distance along a field

line. In most gyrokinetic codes, the poloidal angle is chosen to be the parallel

coordinate, so that θ parameterizes distance along a field line. The quantity ∂θ/∂l

represents how the actual poloidal angle θ (for some definition of θ) varies with

distance along the magnetic field. Due to the complicated helical nature of toroidal

magnetic field lines, even an equally-spaced θ-grid will still result in ∂θ/∂l = g(θ),

where g is some scalar function of θ. The only way to ensure that a set of grid points

are equally-spaced along the field is to ensure that ∂θ/∂l = const.

As mentioned above, equal arc length coordinates are not required to run flux
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tube simulations of turbulence. Many existing codes [18,27,58] use a θ-grid without

equal arc lengths. The benefits to using an equally-spaced coordinate can be found

when performing Fourier transforms. Having ∂θ/∂l = const. permits the use of Fast

Fourier Transfrom (FFT) libraries that require an equally-spaced grid. For codes

that require FFTs [49,66], it is straightforward to interpolate quantities onto a grid

that is constructed to satisfy ∂θ/∂l = const., and still retain the straight-field-line

coordinates. The majority of results in Chapter 4 are produced using the GryfX [49]

code, which utilizes an equal arc length parallel coordinate.
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Martin M.F., et al. Plasma Phys. Control. Fusion 60 095008 (2018) [68]

The content in this chapter borrows heavily from the work in:

Chapter 4: The Parallel Boundary Condition in Turbulence Simula-

tions

4.1 Introduction

Understanding and predicting turbulent transport in fusion devices remains

one of the most pressing issues in moving fusion energy forward. In the tokamak

community, microinstabilities and core turbulence have been extensively studied

using an array of gyrokinetic codes [18, 27, 58, 105]. However, solving the gyroki-

netic equation is a generally expensive endeavor, and the geometric complexities

introduced when moving to stellarators result in commensurately more expensive

computational studies. As discussed in the previous section, flux tubes are the most

cost-effective option for gyrokinetic simulations, and are the focus of this chap-

ter. Such domains use the field-line-following coordinates and boundary conditions

originally developed in [7] for gyrofluid simulations. The combination of field-line-

following coordinates and a flux tube domain reduces turbulence simulation runtimes

by 10/ρ2
∗ ∼ 105 but requires an implementation of periodicity. As the coordinates

are non-orthogonal and curvilinear, the flux tube domain boundaries are not mani-

festly periodic. For axisymmetric geometries (e.g., tokamaks) the “twist-and-shift”
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boundary condition [7] has been used for decades and can be expressed in logically

Cartesian (x, y, z) coordinates, with (x, y) measuring appropriately normalized dis-

tances in the plane locally perpendicular to the magnetic field and z measuring

distances along the magnetic field. Expressing the flux tube periodicity involves

all three directions but is typically expressed as a “parallel” boundary condition,

as the spatial “twist” of the magnetic field which is accumulated as one moves

along a bundle of magnetic field lines is accommodated by “shifted” alignments

of perpendicular-to-the-field-line Fourier modes at either end of the flux tube. The

twist-and-shift boundary conditions [7,26] were designed to unwind the secular twist

that arises from strong global magnetic shear, denoted here by ŝ. There are two im-

portant consequences of any physically correct twist-and-shift boundary condition.

First, each (kx, ky) Fourier mode undergoes a shift in kx (proportional to ky) across

the z boundary. (An equivalent condition exists for non-spectral representations.)

Second, the perpendicular aspect ratio of the simulation domain, Lx/Ly, is neces-

sarily quantized. As will be discussed in Section 4.2, all existing expressions of these

constraints explicitly depend on the global magnetic shear.

Problems arise in devices such as W7-X [40], which was designed to have ro-

tational transform with minimal radial variation, to avoid low-order rational flux

surfaces. Low global shear designs are not exclusive to stellarators, however, as ad-

vanced tokamak scenarios [64] can have similarly flat q profiles, where q is the safety

factor. In such geometries, the existing expression of the parallel boundary condition

is inconvenient because of the intrinsically low global magnetic shear. In particular,

the perpendicular aspect ratio of the simulation domain is inversely proportional to
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the global shear (Lx ∝ Ly/ŝ). For ŝ� 1, this imposes restrictive resolution require-

ments (a large number of x grid points) that increase computation time. Moreover,

naive application of the axisymmetric formulas to non-axisymmetric geometries re-

sults in errors.

To address these shortcomings, we have generalized the parallel boundary

condition for flux tube simulations. Our generalization allows for non-axisymmetric

geometries and depends on local rather than global magnetic shear. In many cases

of interest, the local magnetic shear can vary considerably along a flux tube, even

when the global shear is weak. For 3-D equilibria, our approach requires stellarator

symmetry (Section 4.4.1). In the case of axisymmetry, this generalized boundary

condition reduces to conventional “twist-and-shift” when the flux tube ends are

separated by an integer number of poloidal turns.

The significant variation of local magnetic shear in low global shear geometries

presents the opportunity to optimize the flux tube length. For appropriately selected

flux tube lengths, it is possible to use periodic parallel boundary conditions, or

to preserve continuity in the magnetic drifts across the parallel boundary with a

perpendicular aspect ratio of the simulation domain close to unity. The effects of

this new boundary condition on the speed and accuracy of microinstability and

turbulence simulations are explored here.

This chapter is organized as follows: In Section 4.2, we define the field-line-

following coordinate system and how fluctuating quantities are represented within

the simulation domain and across its perpendicular boundaries, with Section 4.3

detailing the conventional method of handling the parallel boundary. Section 4.4
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presents the full derivation of the new, generalized version of the “twist-and-shift”

boundary condition, including discussions of some of its useful properties. Section

4.5 discusses the characteristic behavior of shear in a stellarator flux tube geome-

try possessing low global shear, and how this behavior can be used to optimize the

new boundary condition. Finally, Section 4.6 presents numerical studies of linear

instability, secondary instability, and nonlinear turbulence, showing how relevant

physical quantities depend on the parallel boundary condition choice. In the cases

tested here, results indicate that even incorrect implementations of the new bound-

ary condition do not affect the ability of a simulation to predict certain important

quantities. A significant computational speedup is also observed when using the

new boundary condition, compared with the conventional method.

4.2 Flux Tube Simulations

The microinstabilities that develop into the turbulence responsible for the high

levels of transport observed in fusion devices are characteristically highly elongated

along the magnetic field relative to their scale lengths perpendicular to the magnetic

field. It is thus natural to introduce field-aligned coordinates [7] for toroidal magnetic

confinement devices. Such coordinates are readily understood when the magnetic

field is expressed in Clebsch form,

B = ∇ψ ×∇α. (4.1)
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Here, ψ and α are constant on magnetic field lines, and so can be used as coordinates

in the plane perpendicular to B. Without loss of generality, we identify ψ as a

magnetic surface label (e.g., toroidal or poloidal flux) and thus think of it as the

logically radial coordinate. The coordinate α is a magnetic field line label. The

third coordinate z measures distances along a magnetic field line. Again without

loss of generality, we identify z with the poloidal angle θ. Further details on the flux

tube geometry can be found in Chapter 3.

The minimal simulation domain for a turbulence simulation should not be

shorter than the correlation length in any direction. Perpendicular correlation

lengths λ are observed to be on the order of a few ion gyroradii in core plasmas. It

should therefore be possible to model these fluctuations in a periodic perpendicular

domain of size Lψ × Lα, as long as Lα/λ, Lψ/λ are both large enough. We wish

to find a minimal domain and so we use a periodic perpendicular domain whose

lengths are measured in ion gyroradii. For any fluctuating quantity φ,

φ(ψ, α, z, t) = φ(ψ + Lψ, α, z, t) = φ(ψ, α + Lα, z, t). (4.2)

The small perpendicular extent of the box also means that geometric quantities

(B,∇ψ,∇α) can be fully characterized by their local values and gradients, approx-

imately independent of ψ, α (see Chapter 3).

The periodic perpendicular boundary conditions allow one to represent φ as a
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Fourier series in these coordinates:

φ(ψ, α, z, t) =
∞∑

m=−∞

∞∑
n=−∞

φ̂m,n(z, t) exp
(2πi(ψ − ψ0)m

Lψ
+

2πi(α− α0)n

Lα

)
, (4.3)

with the constants (ψ0, α0) representing the center of the flux tube in the perpen-

dicular plane. For both a simplified representation and a means to understand the

steps which follow, the fluctuations can also be represented by the wavenumbers

kψ ≡ 2πm/Lψ and kα ≡ 2πn/Lα:

φ(ψ, α, z, t) =
∞∑

kψ=−∞

∞∑
kα=−∞

φ̂kψ ,kα(z, t) exp
(
ikψ∆ψ + ikα∆α

)
, (4.4)

where ∆ψ = ψ − ψ0 and ∆α = α − α0. The rest of this chapter concerns the

conditions imposed at the ends of the domain in the parallel coordinate, z, in the

context of fluctuations defined as in Eq. (4.4).

4.3 The Standard Parallel Boundary Condition

The standard parallel boundary condition [7] is based on the assumption that

turbulent fluctuations should be statistically identical at two locations with the same

poloidal angle (but different toroidal angle) in an axisymmetric geometry. It should

be clear that this renders the boundary condition formally incorrect when simulating

flux tubes in a stellarator, as the geometry is inherently non-axisymmetric.

Quantitatively, this assumption about turbulent fluctuations produces the fol-
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lowing constraint on the fluctuating quantity φ:

φ[ψ, α(θ + 2πN, ζ), z(θ + 2πN)] = φ[ψ, α(θ, ζ), z(θ)]. (4.5)

Here, we take θ and ζ to be the poloidal and toroidal angles, respectively, where

magnetic field lines are straight in the (θ, ζ) plane. Further, the field line label is

taken to be

α = ζ − qθ, (4.6)

where q = q(ψ). By applying the above constraint to the fluctuation form (4.4), one

can derive a set of conditions that must be satisfied in the simulation, namely:

[kα]z=+πN = [kα]z=−πN ,

k′ψ ≡ [kψ]z=+πN − [kψ]z=−πN = 2πN
dq

dψ
kα,

(4.7)

with N being a positive integer. Thus, by imposing the constraint in (4.5), there is a

required shift in kψ that a (kψ, kα) Fourier mode of φ must undergo in passing from

one end of the domain to the other. This results in the standard parallel boundary

condition on fluctuating quantities in flux tube simulations:

φkψ+k′ψ ,kα
[θ + 2πN, t]Ckα = φkψ ,kα [θ, t] , (4.8)

where Ckα is a phase factor, |Ckα | = 1. Since we cannot retain an infinite number of

modes in a simulation, the shift in kψ, along with the number of modes we choose
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to evolve, determines the maximum k⊥ value able to be resolved.

At this point, it is appropriate to introduce the coordinates (x, y), which are the

standard normalization-dependent code representations of (ψ, α) that have units of

length. The following normalization choices have been used in the steps that follow:

dx

dψt
=

1

aB0
√
s0

,
dy

dα
=
a
√
s0

q0

. (4.9)

where x ≡ a
√
ψt/ψedge, with ψt taken to be the toroidal flux and ψedge is the value

of ψt at the plasma edge. In the above definitions, a is a constant representing

an effective minor radius, s0 is a flux surface label where s ≡ ψt/ψedge, and B0 =

2ψedge/a
2 is the reference magnetic field. Using (4.9), we can rewrite k′ψ in terms of

x and y as

k′x = 2πNŝ ky, (4.10)

with ŝ ≡ (x/q)dq/dx|x=x0
. It is also straightforward to show that these conditions

impose a quantization on the perpendicular aspect ratio of the domain

Lx
Ly

=
J

2πN |ŝ|
, (4.11)

where J is a nonzero integer that can be set in the code to potentially achieve a

more desirable aspect ratio. These constraints, when applied to stellarator geome-

tries possessing low global shear, become very restrictive with respect to resolution

requirements. For instance, on the x/a = 0.357 surface of W7-X, where ŝ = −0.019,
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(4.11) corresponds to Lx/Ly = 8.1J . The radial extent of the simulation domain is

forced to be large. Here, and in stellarator calculations below, we will take a to be

the effective minor radius calculated by VMEC [53]. Good estimates of heat fluxes

and other quantities of interest typically require one to resolve fluctuations with

wavenumbers extending up to k⊥ρi ∼ 1. This is expensive in a radially extended

domain. In a spectral decomposition, one has to use a correspondingly large number

of Fourier modes. In a grid-based discretization, one has to use a large number of

grid points.

4.4 The New Parallel Boundary Condition(s)

Our generalization necessarily remains consistent with stellarator symmetry,

but relaxes the explicit dependence on global magnetic shear in favor of the inte-

grated local magnetic shear.

4.4.1 Stellarator Symmetry

A flux tube demonstrating stellarator symmetry has the property that it is

unchanged when rotated by 180◦ about an appropriate point. This symmetry implies

that the magnitudes of geometric quantities are equivalent at stellarator symmetric

locations. For our purposes, stellarator symmetry can be summarized by three

identities,

|B|z+ = |B|z− |∇ψ|z+ = |∇ψ|z− |∇α|z+ = |∇α|z− , (4.12)
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where z± indicates the two ends of the flux tube at (ψ,±θ,±ζ).

As long as two stellarator symmetric locations are farther apart than a few

correlation lengths in each direction, the fluctuations at those points will thus be

indistinguishable on average. (In the absence of stellarator symmetry, the differences

in magnetic geometry would not permit this assertion.) We will assert periodicity

only at widely separated, stellarator symmetric points.

It is not generally known how to guarantee that a flux-tube domain is long

enough, even when it is long compared with the simulation’s correlation lengths. In

general, for example, there is a flux of free energy along field lines in a turbulent

plasma. In a simulation, this free energy flux is a form of dissipation when it is a

net exhaust, but a form of noise when the net flow is into the domain. Only by

simulating a full flux surface can one resolve this category of uncertainty.

4.4.2 Orthonormal Coordinates

It is convenient to construct orthonormal coordinates (u, v) to describe the

plane perpendicular to the magnetic field. By doing so, we can explicitly capture

the local shear information along a flux tube. In the traditional non-orthogonal

coordinates (∇ψ,∇α), this information manifests itself in a distortion of the per-

pendicular plane, hiding potentially useful local magnetic shear information.

We consider a Clebsch representation of the magnetic fieldB = ∇ψ×∇α, with

a field line centered on the coordinates ψ = ψ0 and α = α0. As before, we assume
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ψ is a flux surface label. Notice that the following three vectors are orthonormal:

b̂ =
B

|B|
, êu =

∇ψ
|∇ψ|

, êv =
b̂×∇ψ
|∇ψ|

. (4.13)

We denote the position vector of the central field line by r0(z), where z parameterizes

the position along the field line. Any point in the flux tube can be labeled with

coordinates (ψ = ψ0 + ∆ψ, α = α0 + ∆α, z). The position vector r for this point

in the flux tube can be written

r (ψ, α, z) ≈ r0(z) +

(
∂r

∂ψ

)
α,z

∆ψ +

(
∂r

∂α

)
ψ,z

∆α. (4.14)

At the same time, we can parameterize the perpendicular plane using alternative

coordinates (u, v) defined in terms of the orthonormal basis (4.13):

u = (r − r0) · êu, (4.15)

v = (r − r0) · êv.

Substituting (4.13) and (4.14) into (4.15), noting

(
∂r

∂ψ

)
α,z

· ∇ψ = 1,

(
∂r

∂ψ

)
α,z

· ∇α = 0, (4.16)

and using B = ∇ψ × ∇α to find (∂r/∂ψ) ·B × ∇ψ = −∇ψ · ∇α and (∂r/∂α) ·

B ×∇ψ = |∇ψ|2, we obtain a relation between the orthonormal coordinates (u, v)
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and the standard Clebsch coordinates:

u =
∆ψ

|∇ψ|
,

v =
−(∇ψ · ∇α)∆ψ + |∇ψ|2∆α

B|∇ψ|
. (4.17)

Figure 4.1 presents an example of how the two sets of coordinates parameterizing the

perpendicular plane compare at an arbitrary location along the parallel coordinate,

z, of the flux tube.

Figure 4.1: (Color Online) Vector directions in the perpendicular plane for the
orthonormal (êu, êv) and Clebsch (∇ψ,∇α) coordinates at an arbitrary z location
where ∇ψ · ∇α 6= 0.

4.4.3 Boundary Condition Derivation

Using the orthonormal coordinates of (4.17), the new parallel boundary con-

dition for flux tube simulations can be derived, assuming certain requirements are

met. The fluctuations expressed as functions of (u, v) at the two ends of the flux

tube should either be (i) at stellarator-symmetric locations or (ii) separated by an

integer number of poloidal turns in axisymmetry. This allows us to take the fluctu-

ating quantity φ of (4.4) to be equal at the two ends of a stellarator-symmetric flux

tube, and determine which values of kψ and kα are connected as in (4.7).

We start by rearranging (4.17) to get expressions for (∆ψ,∆α) as functions of
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(u, v):

∆ψ = u|∇ψ|, (4.18)

∆α =
B

|∇ψ|
v +
∇ψ · ∇α
|∇ψ|

u.

Substituting (4.18) into (4.4), we see that the fluctuations for each wavenumber

pair (kψ, kα) have the form

φ̂kψ ,kα(z, t) exp

(
i|∇ψ|

[
kψ + kα

∇ψ · ∇α
|∇ψ|2

]
u+ i

[
kα

B

|∇ψ|

]
v

)
, (4.19)

where terms depending on u have been collected. Identifying the (u, v) planes at

the two ends of the flux tube, then the coefficients multiplying u and v in (4.19)

must each match, yielding:

[
kα

B

|∇ψ|2

]
z+

=

[
kα

B

|∇ψ|2

]
z−

, (4.20)

[
kψ + kα

∇ψ · ∇α
|∇ψ|2

]
z+

=

[
kψ + kα

∇ψ · ∇α
|∇ψ|2

]
z−

. (4.21)

These relations hold for all stellarator-symmetric flux tubes, as well as in

axisymmetric geometry where the flux tube goes around an integer number of times

poloidally, such that the ends coincide in a poloidal projection. If neither (i) or

(ii) are satisfied, then the magnetic geometry at the two ends of the flux tube is

dissimilar and we do not expect the turbulence to be statistically similar at the

two ends, so the derivation breaks down. On the other hand, if either of these two
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conditions above are satisfied, we can reduce (4.20) and (4.21) using (4.12). Then

(4.20) indicates that we should link a given kα to the same kα at the other end of

the flux tube, which is consistent with Beer’s result. We can then write (4.21) as

kshiftψ ≡ [kψ]z+ − [kψ]z− = −

([
∇ψ · ∇α
|∇ψ|2

]
z+

−
[
∇ψ · ∇α
|∇ψ|2

]
z−

)
kα, (4.22)

Stellarator-symmetry allows for further reduction by noting that ∇ψ ·∇α is an odd

function along the field line, i.e. [∇ψ · ∇α]z+ = −[∇ψ · ∇α]z− :

kshiftψ = 2

(
[∇ψ · ∇α]z−
|∇ψ|2

)
kα = −2

(
[∇ψ · ∇α]z+
|∇ψ|2

)
kα (4.23)

Equation (4.23) is our new boundary condition. We note here that the quantities

∇ψ · ∇α and |∇ψ|2 determining kshiftψ are already computed in every stellarator

gyrokinetic code workflow, as they are needed to compute k2
⊥. Thus, there are no

new geometric quantities that need to be computed in order to use the new boundary

condition. It is also possible to derive the same result if the orthonormal condition

is relaxed, and (b̂, êu, êv) are taken to be orthogonal vectors.

For completeness, using the change of variables employed in (4.9) for the con-

ventional boundary condition, (4.23) can be written in terms of x and y to yield

kshiftx = 2

(
[∇x · ∇y]z−
|∇x|2

)
ky = −2

(
[∇x · ∇y]z+
|∇x|2

)
ky. (4.24)

Finally, one can directly derive a quantization condition on the aspect ratio of the
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simulation domain from (4.24) to be

Lx
Ly

=
J

2

|∇x|2

|∇x · ∇y|
, (4.25)

where J is a nonzero integer.

4.4.4 Perpendicular Wavenumber Continuity

Our formulation manifestly produces perpendicular wavenumbers

k⊥ =
(
k2
α|∇α|2 + 2kαkψ∇α · ∇ψ + k2

ψ|∇ψ|2
)1/2

, (4.26)

that are continuous when passing through the boundary. In contrast, when the

conventional “twist-and-shift” condition is used, k⊥ is continuous only in the case of

axisymmetry with an integer number of poloidal turns. For the α = 0 flux tube in

W7-X running from [−π, π], Figure 4.2 shows a plot of k⊥ over a connected domain

by linking the flux tube to itself at the boundaries ±π,±3π using the boundary

conditions in question. If the conventional boundary condition [7] is applied instead

of (4.23), then k⊥ becomes discontinuous at the boundary (as one can see in the

blue curve) which may cause undesirable numerical behavior. For Figure 4.2 and

results that follow, we have chosen to normalize wavenumbers to the ion gyroradius,

defined to be ρi ≡ vti/Ω, where vti ≡
√
Ti/mi is the ion thermal velocity, and Ω is

the ion cyclotron frequency.

This continuity might be important because k⊥ appears in the argument of
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the Bessel functions in the gyrokinetic equation, making it noteworthy that k⊥

increases faster with |θ| for the new boundary condition than for the old condition.

This behavior is expected, since in the old approach, kψ is increased by an amount

proportional to the small global shear, while in the new approach, kψ increases by an

amount related to the local shear, which is generally larger. A large rise in k⊥ with

|θ| is desirable because it leads to localization of the eigenfunctions and turbulence

within a small number of linked domains (since the Bessel functions cause the plasma

response to decrease with k⊥), leading to less expensive simulations.

Alongside the plots of k⊥ using the two boundary conditions in Figure 4.2,

we have also plotted k⊥ in what we call the ‘extended domain’, meaning a very

long flux tube with no linkages across the tube ends. (For this figure, the extended

domain represents a tube of length ≥ 10π.) While the extended domain represents

the true magnetic geometry, its length makes nonlinear simulations impractical, so

the workaround is to use shorter domains that can be connected. The behavior of

k⊥ past the first connection in a linked domain will generally be different than in

the extended domain, regardless of the boundary condition choice.

4.4.5 Axisymmetric Limit

Let us now show that (4.23) reduces to Beer’s condition in axisymmetric ge-

ometry if the flux tube extends an integer number of times poloidally around the
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Figure 4.2: (Color online) The new boundary condition ensures that k⊥ remains
continuous across linked domains, whereas the condition of [7] generally leads to
discontinuities at the boundaries in a stellarator. Shown here are five linked domains
of parallel length ∆θ = 2π, so the boundaries are at θ = ±π and ±3π. The
calculation here is for the α = 0 field line on the x/a=0.357 surface in W7-X,
considering kxρi = 0 and kyρi = 0.05 in the central domain. (For other choices of
kyρi, the curves in the figure would merely be scaled by a constant.)

torus. By using the definition of α in (4.6), we can write

∇ψ · ∇α = ∇ψ · ∇ζ − q∇ψ · ∇θ − θ dq

dψ
|∇ψ|2. (4.27)

Due to axisymmetry, ∇ψ · ∇ζ is the same at the forward and backward end of the

flux tube. The same is true of ∇ψ · ∇θ. Therefore, these terms cancel when (4.27)

is substituted into (4.22). The remaining term gives

(
kshiftψ

)
AS
≡ [kψ]+πN − [kψ]−πN =

dq

dψ
[θ(z+)− θ(z−)]kα, (4.28)(

kshiftψ

)
AS

= k′ψ = 2πN
dq

dψ
kα, (4.29)
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where N is the number of times the flux tube extends poloidally around the torus.

This is equivalent to the conventional “twist-and-shift” boundary condition in (4.7).

Continuity of k⊥ can be shown in axisymmetry by noting ∇ψ is the same at

z+ and z−, and from (4.6),

[∇α]z+ = [∇α]z− − 2πN
dq

dψ
∇ψ. (4.30)

4.5 Selecting the Flux Tube Length Using Local Magnetic Shear

In a stellarator-symmetric flux tube, ∇ψ ·∇α is an odd function of z. This can

be seen from the fact that∇ψ·∇α flips sign under the replacements (θ → −θ, ζ → −ζ),

where now θ and ζ are any straight-field-line coordinates satisfying α = ζ−qθ. This

is why all terms in (4.27) generally add and allowed for the last step in producing

(4.23). In particular, in a stellarator it is generally not valid to drop the ∇ψ · ∇ζ

and ∇ψ · ∇θ terms, even if the flux tube goes an integer number of times around

the torus poloidally.

As discussed in [46], the local magnetic shear is

S = B · ∇
(
∇ψ · ∇α
|∇ψ|2

)
. (4.31)

Therefore, the shift to kψ in (4.23) represents the integral of the local shear along

the flux tube, which makes this new boundary condition advantageous for a couple

of reasons. First, kshiftψ is no longer solely dependent on a potentially restrictive

constant global shear but rather a locally varying function. It is important to
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note, however, that while ŝ is not explicit in (4.23), the global shear information

is contained in the geometric quantities ∇ψ · ∇α and |∇ψ|2. Second, the fact that

kshiftψ depends on a function of z evaluated at flux tube ends means that the length

of the tube can be chosen such that an optimal kshiftψ is obtained.
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Figure 4.3: Color online) The angle between the two field-aligned coordinate direc-
tions∇ψ and∇α, along the same field line. The large departures from orthogonality
(π/2) indicate that the local shear is significant even though the global shear is small,
ŝ = −0.019. Here we take 2πψ to be the poloidal flux. The shaded region indicates
the length of the tube in Figure 4.6.

Figure 4.4 gives some insight into how the local shear and the simulation do-

main length are related. In Figure 4.3 we have plotted the integrated local shear,

which defines kshiftψ up to a constant. This curve shows that the local shear has an

oscillatory form in this geometry and in fact changes sign a number of times over

this domain. These frequent sign changes in the local shear, and by definition kshiftψ ,

provide the opportunity to make kshiftψ = 0 if the flux tube length is chosen such

that the ends lie where the local shear vanishes. If kshiftψ vanishes this implies that

[kψ]z+ = [kψ]z− , which in combination with (4.20) assures that the parallel bound-
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Figure 4.4: (Color online) Variation of ∇ψ · ∇α/|∇ψ|2, the quantity arising in the
new boundary condition, in the W7-X standard configuration for the surface with
normalized radius x/a=0.357 and the field line α = 0. The shaded region indicates
the length of the tube in Figure 4.6.

ary condition becomes periodic. Along with improving computational efficiency,

periodic boundary conditions remove the quantization on the aspect ratio of the

simulation domain (4.25). Now, while in principle one could decide to minimize the

length of the tube with this condition in mind by choosing flux tube ends to lie at

the first zero of the local shear (∼ π/3 in this case), this boundary condition only

allows for periodicity and does not imply correct results for an arbitrarily small flux

tube, as will be discussed in the following sections.

This type of behavior that allows for periodic boundary conditions is a result

of the low global shear, which permits the oscillations about zero to dominate the

functional form of the integrated local shear. While small, the effect of the global

shear is visible in the slight linear trend of the function. Conversely, the linear trend

for a geometry with significant global shear would dominate, and reduce (or perhaps
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eliminate) any zero crossings in the integrated local shear. The zero crossings that

remain, if any, would then be concentrated near the center and periodic boundary

conditions would be limited to shorter flux tubes. Figure 4.5 examines this effect

by comparing the curve from Figure 4.3 to the same quantity for larger global shear

devices, namely LHD [72] and NCSX [109]. These complications don’t preclude one

from using the boundary condition in high global shear geometries, but the value of

optimizing the tube length is more limited.
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Figure 4.5: (Color online) The quantity ∇ψ · ∇α/|∇ψ|2 over the domain [−3π, 3π]
for the standard equilibrium configurations of W7-X, NCSX, and LHD. Each curve
denotes the α = 0 field line at a radial position of x/a ≈ 0.36.

To get more of a sense for what is happening physically, Figures 4.6 and 4.7

illustrate how the local shear influences the overall shape of a flux tube. Figure

4.6 shows the α = 0 W7-X flux tube at x/a = 0.357 extending from the outboard

midplane at θ = 0 (bean cross section) to θ = 1.70 and is meant to coincide with

the shaded regions of Figure 4.3. The difference between high and low global shear

cases is clear as the 3-dimensional shape of the flux tube constitutes a twisting-
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and-untwisting of the domain, in contrast to the near monotonic twisting of high

global shear flux tube. Since the condition for periodic parallel boundary conditions

require ∇ψ · ∇α = 0 (implying a rectangular perpendicular cross section), this

twisting-untwisting characteristic of the flux tube is what affords many potential

lengths for which periodic boundary conditions are possible.

Figure 4.6: (Color online) 3D visualization of the α = 0 W7-X flux tube in the field-
line-following coordinates (ψ, α, z) at x/a = 0.357. The relevant field line is centered
at (ψ0, α0) in the domain (black line), with the perpendicular boundaries located at
ψ = ψ0 ±∆ψ and α = α0 ±∆α. The color scheme is as follows: ψ = ψ0 + ∆ψ (red
line); ψ = ψ0 −∆ψ (blue line); α = α0 + ∆α (green line); α = α0 −∆α (cyan line).
All cross sections are projected along the magnetic field at the given θ location. The
θ = 0, 0.73, 1.70 positions correspond to a vanishing of the integrated local shear (see
Figure 4.3), resulting in a rectangular cross section.

112



Figure 4.7: (Color online) 3D visualization of the α = 0 flux tube domain in real
space superimposed on the flux surface at x/a = 0.357. (The extent of the tube in
ψ,α was set for visualization purposes). This is the same flux tube from Figure 4.6,
but shown from θ = [−0.73, 0.73], where ∇ψ ·∇α = 0 and the ends of the tube have
a rectangular perpendicular cross section.

4.5.1 Magnetic Drift Continuity

The magnetic drift term in the gyrokinetic equation (Appendix A), vm · ∇⊥h,

is continuous in axisymmetry with the standard twist-and-shift condition, but the

term is generally discontinuous across the parallel boundary of a flux tube in a

stellarator, for both the old and new boundary conditions. It is not obvious that

continuity of this term matters, since discontinuity of coefficients in a PDE does

not necessarily cause the solution to be discontinuous or otherwise pathological. To

investigate whether it makes a difference, it is possible to make the magnetic drift

term continuous in the steps that follow. We begin by taking the ∇B-drift part

of the magnetic drift term in the gyrokinetic equation (A.1), noting that ∇⊥ =

i(kψ∇ψ + kα∇α):

vm · ∇⊥h ∝ B ×∇B · (kψ∇ψ + kα∇α)h. (4.32)
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Setting vm · ∇⊥h equal at both ends of the tube, we note that the ∇α- and ∇ψ-

components of the ∇B-drift are even and odd functions, respectively, in stellarator-

symmetric flux tubes. Applying this fact along with (4.23), the resulting condition

can be derived:

(
[kψ]z+ +

[
∇ψ · ∇α
|∇ψ|2

]
z+

kα

)
[B ×∇B · ∇ψ]z+ = 0. (4.33)

This condition can only be satisfied for all kψ and kα in the simulation when [B ×

∇B·∇ψ]z+ = 0. In other words, the only way to make the magnetic drifts continuous

across the parallel boundary is to choose the flux tube length such that the radial

component of the ∇B-drift vanishes at the ends. The argument here is identical for

the curvature drift as well, since B×∇B ·∇ψ = 0 is equivalent toB×κ·∇ψ = 0, at

any β (normalized pressure). Therefore, both the ∇B and curvature drifts become

continuous at the same tube length.

Similar to the quantity ∇ψ · ∇α discussed above, B ×∇B · ∇ψ varies signif-

icantly along a field line, and in fact has many zero-crossings regardless of the global

magnetic shear, which is clear from its form in the s-alpha model, (B ×∇B · ∇ψ)s−α ≈

(2a/R) ŝ sin(z). Unfortunately, locations where ∇ψ ·∇α and B×∇B ·∇ψ vanish do

not coincide, meaning magnetic drift continuity cannot be accompanied by appropri-

ately enforced periodic boundary conditions. However, as one can see in Figure 4.8,

there are numerous locations along a field line where the aspect ratio quantization

condition (solid blue curve) approaches unity at the same time as B×∇B ·∇ψ = 0

occurs (vertical dashed lines). The solid blue curve demonstrates how the length of
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the flux tube affects the required aspect ratio, with the vertical dashed lines repre-

senting locations where B ×∇B · ∇ψ = 0. The effects of magnetic drift continuity

in simulations are explored in the following sections.
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Figure 4.8: (Color online) The solid blue curve shows the quantized domain aspect
ratio as a function of the flux tube’s maximum θBoozer, for J = 1. (The flux tube
length is twice the maximum θBoozer.) The horizontal red line represents the ideal
Lx/Ly = 1 case. The dashed vertical lines correspond to flux tube lengths for which
B ×∇B · ∇ψ = 0, so the magnetic drift term is continuous.

4.6 Numerical Results

Many questions related to the boundary condition are generic with respect the

representation of the distribution function. The majority of simulations we present

below used the GPU-based gyrofluid code GryfX [49] (Appendix D presents some

information on techniques for testing and portability of GPU-based codes). While

GryfX has the option to employ a hybrid approach to simulate zonal flow dynamics

with a gyrokinetic model, we have chosen to use GryfX in a pure gyrofluid config-
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uration, in which all modes are evolved using the 4+2 set of gyrofluid equations

in [9]. Compared with any comprehensive gyrokinetic model, a gyrofluid model is

very inexpensive. The speedup that is achieved by using GryfX allows for simula-

tions with extremely large Nx (the number of grid points in the x direction) values

which would otherwise be computationally impractical in gyrokinetics. This in turn

facilitates a more complete survey of the boundary condition issues.

4.6.1 Linear Convergence Results

We consider linear problems first. Linear flux tube stability analyses have been

performed in W7-X geometry in the collisionless, electrostatic, adiabatic electron

limit. All simulations use α = 0 (bean cross section) flux tubes, with geometric

information calculated by applying the GIST code [106] to a VMEC equilibrium.

Each flux tube is located at the radial position x/a = 0.357, and unless otherwise

specified, references to simulated perpendicular wavenumbers are normalized to ρi.

4.6.1.1 Growth Rate Convergence

We used the gyrofluid code GryfX [49] to investigate growth rate convergence

with respect to both the number of simulated radial modes and length of the flux

tube for various boundary condition choices. We assume Ti/Te = 1 and equilibrium

scale lengths of a/LT = 3.0 and a/Ln = 0.0. One boundary condition considered

is the conventional “Twist-and-Shift” condition; in this case the flux tube length is

taken to be exactly an integer or half-integer number of poloidal turns. A second
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option is the new boundary condition, applied to a flux tube with length chosen so

[B ×∇B · ∇ψ]z± = 0 (‘Continuous Magnetic Drifts’). A third option, which we will

call ‘Exact periodicity’, is periodicity in z imposed for a flux tube with length chosen

so [∇ψ · ∇α]z± = 0, consistent with the new boundary condition. The fourth option,

which we call ‘Forced Periodicity’, is to impose periodicity in z for a tube length at

which there is no rigorous analytic justification for doing so, since [∇ψ · ∇α]z± 6= 0.

In this case we choose the flux tube length to be exactly an integer or half-integer

number of poloidal turns.

The first convergence study examines how the growth rates for each bound-

ary condition choice change as a function of Nx for two binormal wavenumbers

ky = 0.2, 0.5. Each flux tube has been chosen to be ∼1 poloidal turn in length.

The Nx we refer to in this chapter is defined to be the number of aliased radial

modes, where the actual number of simulated (dealiased) radial modes is ∼ 2/3Nx.

These simulated radial wavenumbers are integer multiples of the minimum radial

wavenumber, defined by kmin
ψ ≡ 1/Lψ, where the modes are connected via kshiftψ .

In Figure 4.9, results make clear that regardless of the chosen boundary condi-

tion, Nx has a very minimal effect on the calculated linear growth rate, and moreover,

for Nx ≥ 4 the growth rate has reasonably converged for both ky values. This leads

one to think that only a few connected domains (or in some cases only a single kx

value) are necessary to reproduce the extended domain result (i.e. the result in an

extremely long flux tube), the eigenfunction of which is displayed in Figure 4.10 for

the (kx, ky) = (0.0, 0.2) mode.

In order to better understand how changing Nx and the flux tube length affect
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Figure 4.9: (Color online) - Growth rate for ∼1 poloidal turn flux tubes as
a function of the number of simulated radial modes. The lengths of the flux
tubes for each boundary condition choice: Conventional “Twist-and-Shift”/Forced
Periodic [−π, π], Exact Periodic [−1.086π, 1.086π], Continuous Magnetic Drifts
[−1.045π, 1.045π].
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Figure 4.10: Eigenfunction for the (kx, ky) = (0.0, 0.2) mode over the extended
domain [−20π, 20π]. The shaded region indicates the extent of the plots in Figure
4.12.

our ability to reproduce the extended domain solution, we compare its eigenfunction

to the eigenfunctions generated in shorter flux tubes employing the various boundary
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condition options. To visualize this, we zoom in on the shaded region of Figure 4.10

and superimpose plots of eigenfunctions of the connected modes for flux tubes of

length ∼0.5 poloidal turns (Nx = 7) and ∼1 poloidal turn (Nx = 4) in Figures 4.11

and 4.12, respectively, for each boundary condition choice.
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Figure 4.11: (Color Online) Using the four boundary conditions from Figure 4.9 for
flux tubes of ∼0.5 poloidal turn, eigenfunctions for the connected regions (Nx = 7)
are plotted over a portion of the extended domain eigenfunction (black line). The
center region in each plot corresponds to the (kx, ky) = (0.0, 0.2) mode, where the
adjacent shaded regions have (kx, ky) = (kshiftx , 0.2), where kshiftx depends on the
boundary condition choice. The lengths of the flux tubes for each boundary con-
dition choice: Conventional “Twist-and-Shift”/Forced Periodic [−π/2, π/2], Exact
Periodic [−0.54π, 0.54π], Continuous Magnetic Drifts [−0.45π, 0.45π].

The central region of each plot in Figures 4.11 and 4.12 correspond to the mode

(kx, ky) = (0.0, 0.2), which is connected at each end (in the yellow-shaded region) to

the eigenfunctions of modes with the same ky and a different kx determined by the

kshiftx calculated from each boundary condition. As Nx increases, more modes with
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Figure 4.12: (Color online) Using the four boundary conditions from Figure 4.9 for
flux tubes of ∼1 poloidal turn, eigenfunctions for the connected regions (Nx = 4)
are plotted over a portion of the extended domain eigenfunction (black line). Exact
flux tube lengths are given in the caption of Figure 4.9.

the same ky are linked, with kx changing by integer multiples of kshiftx .

By comparing the various boundary conditions (colored lines) to the solid black

curve of the extended domain in Figure 4.11 for the ∼0.5 poloidal turn flux tube,

it is apparent that none of the boundary condition options reliably model the form

of the extended domain eigenfunction. Furthermore, the connected eigenfunction

of the Continuous Magnetic Drifts case is distinctly more narrow than the other

options. This seemingly peculiar structure is based on how the kx dependence of k⊥

changes at connection points based on kshiftx . For comparatively larger kshiftx , k⊥ will

increase accordingly at each connection (see Figure 4.2), leading to more localized

eigenfunctions. Moreover, shorter flux tubes will have more connections per unit
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length, causing this increase in k⊥ to occur more frequently, introducing further

localization. This larger kshiftx (and slightly shorter flux tube) in the Continuous

Magnetic Drifts case is the cause of its comparatively narrow eigenfunction, relative

to the smaller shift resulting from the conventional method, and kshiftx = 0 for

the two periodic boundary conditions. Such disagreement among the boundary

condition choices in addition to the poor reconstruction of the extended domain

eigenfunction might lead one to expect that growth rate results would be inaccurate,

with the continuous magnetic drift result being the biggest outlier.
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Figure 4.13: (Color online) Linear growth rates as a function of flux tube length for
the binormal wavenumbers ky = 0.2, 0.5, using the boundary conditions described
in Section 4.6.1.1. The dashed lines represent the true results, obtained from the
extended domain simulations. In each simulation, the number of θ grid points, Nz,
is scaled proportionally with flux tube length, maintaining a fixed θ resolution for
each run.

However, in Figure 4.13, which shows the growth rate as a function of flux

tube length, the relevant data points at ∼0.5 poloidal turns do not support this line

of thinking. The growth rates from each boundary condition are closely clustered
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and are within ∼ 30% of the true result.

This same comparison of connected eigenfunctions has been done for flux tubes

of ∼1 poloidal turn in Figure 4.12. Unlike ∼0.5 poloidal turn flux tubes, agreement

with the functional form of the extended domain eigenfunction is quite good, and

the boundary condition options have only minor differences between one another.

As one might expect, the growth rate is closer to the true result from Figure 4.13,

but the extreme contrast between Figures 4.11 and 4.12 make it surprising that the

growth rates with ∼0.5 poloidal turn flux tubes even come close to the true result.

An interpretation of this result is given in Appendix B.

The conclusion from the results in this section is that the parallel boundary

condition has a seemingly insignificant effect on linear growth rates, as long as the

flux tube length exceeds some minimum value. However, it remains to be shown in

Section 4.6.3 how these findings translate to nonlinear simulations when the modes

become coupled.

4.6.1.2 Linear Zonal Flow Response

Due to the importance of zonal flows in the saturation of turbulence, repre-

senting the response as accurately as possible is advantageous in simulations. For

this reason, understanding the behavior of the dynamic zonal flow response and

Rosenbluth-Hinton (RH) [85] residual values as the flux tube length is varied is de-

sirable. It is important to note here that ky = 0 modes are self-periodic for both

the conventional and generalized twist-and-shift boundary conditions. Hence, the
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choice of boundary condition affects ky = 0 modes only through the tube length,

with no effect on the linkages at the parallel boundary. For calculations in this sec-

tion, the gyrokinetic code GS2 was used in lieu of GryfX for the purpose of avoiding

the closure approximations of the gyrofluid set of equations, which have historically

had difficulties in matching zonal flow responses well [25]. The GS2 normalizations

are slightly different from GryfX, so for this section we normalize results to the GS2

ion gyroradius, ρi,GS2 =
√

2ρi, and thermal velocity, vti,GS2 =
√

2vti.

For the figures in this section, the results are produced from flux tube lengths

chosen such that the “Continuous Magnetic Drifts” (blue) and “Exact Periodic”

(red) boundary condition options are applicable, which correspond to [B×∇B · ∇ψ]z± =

0 and [∇ψ · ∇α]z± = 0, respectively. The flux tubes where [B×∇B · ∇ψ]z± = 0

are of particular interest, as linear studies [69,71] reveal a dependence on the radial

bounce-averaged magnetic drift of the zonal flow residual in stellarators, a quantity

that vanishes in axisymmetry. The bounce-average of B × ∇B · ∇ψ will thus be

performed between two points where this term vanishes, making it possible that

such flux tube lengths could result in unique zonal flow behavior compared with

other tube lengths.

Numerical studies have shown that in stellarator geometries, the dynamic re-

sponse of zonal flows has a central role in the regulation of turbulent transport [108].

In Figure 4.14, this linear response is plotted for kxρi,GS2 = 0.15, 0.4 at flux tube

lengths of ∼1 poloidal turn. For both wavenumbers in Figure 4.14, the response

is nearly identical for both flux tube types. This leads to the expectation that the

nonlinear effect of the zonal flows will likely be quite similar for both boundary
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condition options, which is confirmed by the results of Section 4.6.3.

The long-time zonal flow behavior was also studied, where the RH residual

value has been calculated for kxρi,GS2 = 0.15, 0.4 in a variety of flux tube lengths, in

Figure 4.15. For calculations done with flux tubes less than a full poloidal turn, there

is an apparent downward trend in the residual for both flux tube types as the length

is increased. For longer flux tubes the residual values have an oscillatory behavior

with an amplitude approaching some constant value as the length is increased. The

results of Figure 4.15 demonstrate that although [B×∇B · ∇ψ]z± = 0 in the blue

curve, it appears to have a minor effect relative to flux tubes where this quantity

does not vanish at the ends of the domain.
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Figure 4.14: (Color online) Gyrokinetic (GS2) simulations of the linear zonal
flow response for flux tubes lengths of ∼1 poloidal turn for radial wavenumbers
kxρi,GS2 = 0.15, 0.4, where ρi,GS2 =

√
2ρi and vti,GS2 =

√
2vti. The blue and red

curves for each radial wavenumber correspond to tube lengths satisfying the condi-
tions [B×∇B · ∇ψ]z± = 0 or [∇ψ · ∇α]z± = 0, respectively.
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Figure 4.15: (Color online) Gyrokinetic (GS2) calculations of the Rosenbluth-Hinton
residual (fit to an exponential decay model) as a function of flux tube length for
radial wavenumbers kxρi,GS2 = 0.15, 0.4, where ρi,GS2 =

√
2ρi. The blue and red

curves for each radial wavenumber correspond to tube lengths satisfying the condi-
tions [B×∇B · ∇ψ]z± = 0 or [∇ψ · ∇α]z± = 0, respectively.

4.6.2 Secondary Instability

We demonstrate in this section that there is a case, the evolution of a sec-

ondary instability, in which the discontinuity associated with an incorrectly applied

boundary condition could have an effect on results.

The nonlinear generation of zonal flows in plasmas are due in part to a

Kelvin-Helmholtz-like secondary instability [83] that develops from the primary Ion-

Temperature-Gradient (ITG)-driven radial streamers. The primary ITG instability

(characterized by kx = 0, ky 6= 0) is nonlinearly coupled to a kx 6= 0, ky = 0 mode

through a three-wave interaction with another unstable (kx 6= 0, ky 6= 0) mode,

sometimes referred to as the pump wave.

Returning to GryfX simulations, we address the behavior of the aforemen-
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tioned modes involved in the generation of the secondary instability when subjected

to flux tubes of ∼1 poloidal turn, employing the “Exact” and “Forced” periodic

boundary conditions. For the simulation performed here, we begin with a short

linear setup run to initialize the primary mode. The simulation is then nonlinearly

restarted with a primary mode amplitude so large that the nonlinear term dom-

inates the equation, allowing one to study the interactions among only the three

aforementioned modes. The resulting eigenfunctions are plotted in Figure 4.16,

using the finite wavenumbers kx = ky = 0.2.
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Figure 4.16: (Color online) Eigenfunctions for the primary mode (left), ky = 0 mode
(center), and pump wave (right) in ∼1 poloidal turn flux tubes. The larger, filled
markers denote grid points at the ends of the domain, for the “Exact” (circles) and
“Forced” (diamonds) periodic cases. Note the suppressed zeros and different vertical
axes in each figure.

One can see from the ky = 0 (center) and primary mode (left) eigenfunctions

that the particular boundary condition does not affect the continuity of these modes

across the connected domain. However, the boundary condition appears to have

a notable effect on the pump wave (right) in the form of a discontinuity in the

eigenfunction across the connections at θBoozer ≈ ±π. Such behavior arises through

the discontinuity in k⊥ between connected domains when using a boundary condition
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option that is not strictly valid, such as incorrectly enforcing periodicity as we have

done here.

This discontinuity in Figure 4.16.c can be understood by considering the dom-

inant terms in the gyrokinetic equation (Appendix A) with k corresponding to the

pump wave:

∂hk
∂t

+
∑
k′,k′′

c

B
{〈φk′〉, hk′′}+ . . . , (4.34)

where the angled brackets 〈...〉 denote a gyroaveraging operation performed at con-

stant guiding center, and {·, ·} is the Poisson bracket. For simulations using forced

periodicity, even if φk′ and hk′′ are continuous, the discontinuity in k⊥ will cause the

Bessel function J0(k⊥ρi) involved in 〈...〉 to be discontinuous, causing hk to develop a

discontinuity. Thus, incorrectly enforcing periodicity, or otherwise improperly using

conventional “twist-and-shift” in the parallel direction introduces errors. However,

the consequences resulting from introducing these discontinuities are not well un-

derstood, and further study is warranted to quantify the full effect it may have on

a given simulation.

4.6.3 Nonlinear Results

We now turn to discussion of the nonlinear behavior associated with the var-

ious boundary conditions, where unless otherwise stated, results pertain to W7-X

geometry under the conditions stated in Section 4.6.1, with all simulations performed

in the gyrofluid approximation.
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As mentioned in Section 4.2, fully resolving the dominant k-space fluctuation

region is required to correctly calculate heat flux values. The ability of a simulation

to satisfy these resolution requirements is directly tied to the radial wavenumber

shift of the parallel boundary condition. If a minimally resolved run requires simu-

lating up to some particular kψ value, having a small kshiftψ (based on the boundary

condition) clearly forces one to include a large number of simulated modes. The

reverse situation holds true for a large kshiftψ .

Figure 4.17 presents the fluctuation spectrum for a one poloidal turn flux tube

with Nx = 96 using the conventional “twist-and-shift” boundary condition alongside

the spectrum for an unoptimized case of the new boundary condition. The contrast

between the two figures shows unambiguously that a large portion of the fluctuation

region is not captured with the conventional boundary condition for this number

of radial modes. The spectrum found with the new boundary condition indicates a

localized region of larger relative amplitude in the center, suggesting the simulation

contains the most important fluctuations. On the other hand, the reduced kψ range

in the conventional case does not allow for enough modes to sufficiently capture this

region, and the fluctuation amplitudes become artificially large. Such a case requires

one to include more radial modes, and a calculation of transport coefficients at this

resolution leads to inaccurate results.

The difference in resolution capabilities between the boundary condition is

presented in Figure 4.18 by comparing the saturated heat flux as a function of the

number of simulated radial modes, for the boundary condition variations as de-

scribed in Section 4.6.1.1. Each simulation in Figure 4.18 uses a flux tube that is
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Figure 4.17: (Color online) - 2D fluctuation spectra with Nx = 96 using (top)
conventional “twist-and-shift” covering kx = [−0.38, 0.38] and (bottom) generalized
“twist-and-shift” covering kx = [−1.96, 1.96]. The increased kx range in (bottom)
permits fluctuation localization in the domain, while artificially high fluctuations
result (top) due to the lack of resolution.

∼1 poloidal turn in length, with exact lengths given in the caption of Figure 4.12.

This figure shows a stark difference in how quickly the results converge with Nx to

the correct heat flux (somewhere between 3.5-4.5), based on the chosen boundary
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Figure 4.18: (Color online) Saturated heat flux in W7-X as a function of the radial
resolution for various boundary condition choices using flux tubes of ∼1 poloidal
turn. The dashed line is calculated as the average of the heat flux for the rightmost
data point of each boundary condition.

condition. For example, heat flux convergence requires Nx ' 96 for an unoptimized

case of the new boundary condition, compared with Nx ' 512 for the conventional

boundary condition. Such a drastic decrease in required resolution leads to a reduc-

tion in computational time of ∼7x in GryfX.

It should be emphasized here that kshiftx and the domain aspect ratio are

directly related, in the sense that larger aspect ratios will produce smaller kshiftx

values. So while results converged with Nx ' 96 using the unoptimized boundary

condition, for a flux tube of one poloidal turn (Lx/Ly = 1.59), there is no guarantee

that every flux tube length will give an aspect ratio in reasonable proximity to one

(which can be seen in Figure 4.8). For a poorly chosen flux tube length with respect

to the aspect ratio, it may be that convergence with the new boundary condition is

slower with respect to Nx, than with conventional “twist-and-shift” (Lx/Ly = 8.14).
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Figure 4.19: (Color online) The same data as Figure 4.18, plotted as a function of
the maximum simulated kx value. Exact flux tube lengths are given in the caption
of Figure 4.9. The dashed line is calculated as the average of the heat flux for the
rightmost data point of each boundary condition.

However, this also suggests that the required Nx ' 192 for convergence of the

continuous magnetic drifts flux tube in Figure 4.18 is not necessarily directly related

to continuity of the magnetic drifts, but may just be a consequence of the domain

aspect ratio.

Another interesting result is the behavior of the two periodic cases (‘forced’

and ‘exact’). Surely the most noteworthy outcome pertaining to these runs is the

fact that simulations where periodicity is incorrectly enforced converge to the same

saturated heat flux as the exact periodicity runs. This behavior is consistent with the

linear calculations in Figure 4.13 in the sense that the particular choice of boundary

condition is irrelevant if the flux tube has sampled “enough” of the geometry. Fur-

ther, for both the exact and forced periodic simulations, we observe a convergence

to the correct heat flux using even fewer radial modes than boundary conditions not
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employing periodicity. This provides some evidence that simply applying periodicity

may be the optimal choice, even when the theory and continuity properties dictate

that it is not strictly valid.

Apart from the differences we find in the required Nx between the boundary

condition choices, the previous point made regarding the importance of simulating

a large enough region of k-space can be further appreciated by plotting the same

heat flux data of Figure 4.18, but instead as a function of the maximum simulated

kx value in Figure 4.6.3. In doing this, we see that the all heat flux curves nearly

overlap, demonstrating that irrespective of which boundary condition is used and

how large Nx may need to be, heat flux convergence is ultimately determined by

the range of k-space that is being simulated.
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Figure 4.20: (Color online) - Axisymmetric saturated heat flux calculations, where
the boundary conditions used in each curve follow Figure 4.18, with the following
exception: conventional and generalized “twist-and-shift”, and the flux tube pro-
ducing continuous magnetic drifts become equivalent in axisymmetry as discussed
in Section 4.4.5. The exact periodic flux tube extends from [−1.13π, 1.13π] to satisfy
[∇ψ · ∇α]z± = 0. The dashed line is calculated as the average of the heat flux for
the rightmost data point of each boundary condition.
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While results in Figure 4.18 are based on a W7-X geometry, one should expect

to see consistent behavior in axisymmetry for similar global shear values based on

the conditions discussed above that set the resolution requirements. In Figure 4.20

we present the same study as in Figure 4.18 for a flux tube in a VMEC-generated

axisymmetric geometry, designed to have a global shear value, ŝ = −0.018, close to

that of W7-X. First of all, the conventional and generalized cases overlap exactly, as

one would expect based on how the boundary condition simplifies in axisymmetry.

Beyond this, the simulations model the W7-X case of Figure 4.18 quite well in

reference to the required resolution for convergence to the correct saturated heat

flux value.
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Figure 4.21: (Color online) - Saturated heat flux in W7-X as a function of flux tube
length for the various boundary condition choices detailed in Section 4.6.1.1. The
dashed line is calculated as the average of the heat flux of the rightmost data point
for each boundary condition choice in Figure 4.18.

Finally, to tie in the linear studies of how flux tube length affects results, the

heat flux is calculated for the boundary condition options over a range of flux tube
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lengths in Figure 4.21. Within statistical fluctuations, the results appear converged

to 〈Q̄i〉 ∼ 4 for arguably all flux tube lengths> 0.5 poloidal turns, which is consistent

with the linear growth rate results of Section 4.6.1. There is then no reason to expect

any significant change in behavior in the limit of the flux tube becoming arbitrarily

long.

4.7 Conclusions

The “twist-and-shift” parallel boundary condition used for gyrokinetic sim-

ulations of turbulence in axisymmetric equilibria has been generalized for non-

axisymmetric geometries and for configurations with low global magnetic shear.

Twist and shift boundary conditions are associated with field-line-following coordi-

nates in flux tube simulations. When the variation of local magnetic shear is strong

compared with the global magnetic shear, the flux tube twists and untwists as one

moves along the field lines. Our generalization takes advantage of this phenomenon

by using the integrated local magnetic shear to determine the boundary conditions

instead of relying only on the global magnetic shear. As a result, a considerably

smaller periodic computational domain can be identified and additional opportu-

nities for optimization of the simulation domain are exposed. The conventional

boundary condition of [7] is a perfect subset of our generalized formalism.

Linear stability analyses of W7-X stellarator equilibria have been undertaken

using a variety of boundary condition options. The growth rates and frequencies

are found to be insensitive to the details of the boundary conditions as long as the
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simulation domain is sufficiently long in the direction of the magnetic field. We

observe a weak dependence of the calculated eigenvalues on the parallel extent L

of the simulation domain as long as L & 2πvi/ω. This rule of thumb is consistent

with Fourier decompositions of the eigenmodes along the field line. A flux tube that

extends at least one poloidal turn was found to be sufficiently long for the W7-X

case we examined [see Fig. (4.13)].

In general, nonlinear simulations that are used to estimate turbulent fluxes

of heat, etc., are very expensive and are the primary targets of our development

of improved boundary conditions. We have surveyed the behavior of secondary

instabilities (which can be highly elongated along the magnetic field) and zonal flows

in this context. Although we identify cases for which an incorrect (ungeneralized)

boundary condition introduces potentially significant parallel discontinuities in the

secondary pump waves, we do not observe further serious consequences (such as

numerical instability). The importance of this finding will presumably depend on

the details of any given numerical discretization. Zonal flows are strictly periodic

along the field line, and are therefore not directly affected by the generalization of the

boundary condition. Because our approach allows the use of shorter sections of field

line, however, we examined the sensitivity of key zonal flow properties to the extent

of the flux tube. We found that one poloidal turn is evidently long enough to produce

consistent short- and long-time zonal flow responses in the W7-X configuration we

examined.

The ideal computational domain for a nonlinear problem can be as small as a

few correlation lengths in each direction. When the global magnetic shear is small,
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standard “twist-and-shift” boundary conditions force one to use a flux tube that can

be considerably longer in the radial direction. Our generalization of the boundary

condition makes it possible to hew more closely to the ideal in non-axisymmetric

configurations, and we have observed approximately order-of-magnitude speed-ups

as a result. Once converged, nonlinear heat flux simulations seem to be essentially

unaffected by further details of the boundary conditions, even as one uses the flex-

ibility enabled by our formalism to satisfy additional continuity properties at the

boundaries.
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Helander, Gabe Plunk, and Ben Faber. This work was supported by the U.S.

Department of Energy, Office of Science, Office of Fusion Energy Science, under
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Chapter 5: Conclusions and Future Work

5.1 Conclusions

Stellarators are a promising concept for achieving nuclear fusion as an energy

source. They possess many advantages over the conventional tokamak that make

them a viable alternative for MCF. As with any concept, however, many challenges

must still be overcome, and the goal of this thesis has been to address two of them.

Both topics revolve around the neoclassical and turbulent transport of heat and

particles in the core of fusion devices.

5.1.1 Neoclassical Impurity Transport in Quasisymmetric Stellara-

tors

The symmetry of tokamaks leads to the beneficial property that heavy im-

purity ions are automatically expelled from the core of fusion plasmas for large

temperature gradients because the average radial motion is unaffected by the radial

electric field. This phenomena is referred to as temperature screening. In stellara-

tors, the direction of the impurity transport direction depends on the radial electric

field, which is expected to be directed inward for reactor-relevant plasmas, and will
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tend to pull impurities into the core. Therefore, stellarators are not predicted to

display temperature screening.

In Chapter 2, the behavior of impurity ions in quasisymmetric magnetic fields

has been explored. Although perfectly quasisymmetric magnetic fields have neoclas-

sical transport properties identical to tokamaks, actual quasisymmetric concepts or

experiments will have a finite amount of symmetry-breaking. In the eight quasisym-

metric devices that were studied in this thesis, results indicate that while temper-

ature screening of impurities is possible in select parameters regimes, it is unlikely

to be present over a wide range of reactor-relevant plasma parameters. However,

this is not to say that it is impossible to achieve temperature screening in future

optimized stellarator concepts.

By comparing this neoclassical result to an estimate of turbulence, the mag-

nitude of the neoclassical impurity particle flux is considerably smaller than the

turbulent counterpart. The consequences of this disparity in magnitudes are not

clear, but the relative size of the turbulence does indicate that perhaps there are

other factors beyond the neoclassical temperature screening effect that will control

the direction of impurity particle transport in stellarators.

5.1.2 Reducing the Cost of Turbulence Simulations

Turbulence simulations are computationally intensive even for axisymmetric

tokamak geometries. The added complexity of stellarators will magnify this cost

because of the larger number of grid points required. The boundary condition of
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Chapter 4 serves to reduce the cost of turbulence simulations in stellarators.

The standard parallel boundary condition in flux tube simulations of turbu-

lence was originally developed for geometries that are axisymmetric and have order

unity levels of global magnetic shear. The derivation and consequences of a mod-

ified version of this parallel boundary condition, which permits non-axisymmetric

geometries and low global shear, has been covered in Chapter 4.

The new boundary condition allows for the selection of a flux tube length based

on local magnetic shear information, which will determine the aspect ratio of the

perpendicular plane. One can then optimize the length to either allow for a periodic

parallel boundary condition or to find an aspect ratio as close to unity as possible.

Domains with aspect ratio close to one will minimize the required resolution in those

coordinates, whereas periodic boundary conditions will serve to further decrease the

computation time.

Simulations of W7-X using the GryfX code with the new parallel boundary

condition show a reduction of a factor of seven in compute time, compared with

otherwise identical simulations with the conventional boundary condition. By re-

ducing the cost, one can increase both the quantity and quality of simulations, with

the hope of furthering the understanding of turbulence in stellarators.

5.2 Future Work

There are number of natural extensions to the work in this thesis that would

be worthwhile to explore.
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Firstly, there should be further testing of the parallel boundary condition to

understand its performance impact fully. The work in Chapter 4 tests the bound-

ary condition using a hybrid gyrokinetic-gyrofluid code, and the logical next test

would be to use a fully gyrokinetic code. Further, the above results explored the

ITG instability in the electrostatic limit, and it would be enlightening to understand

the behavior when considering electromagnetic effects, or for trapped electron mode

(TEM) or kinetic ballooning mode (KBM) instabilities. Other (low-shear) stellara-

tors should be considered, in particular HSX, which has global shear values that are

similar to W7-X. Recent simulations of TEM-turbulence in HSX [30] have shown

that very long flux tubes are required to produce saturated electron heat fluxes. It

could be worthwhile to compare performance of these simulations when using the

generalized version of the parallel boundary condition. Finally, a comparison should

be done between flux tube and flux surface simulations to better understand when

full-surface simulations are necessary.

On the topic of neoclassical impurity transport, the effect of Φ1 requires fur-

ther work. As a reminder, the majority of results in Chapter 2 assume the electro-

static potential is a flux function Φ = Φ0(r), and ignore the first-order contribution

Φ1(r, θ, ζ), which includes variation within a flux surface. As mentioned in Section

2.6.2.2, Φ1 is expected to be small in quasisymmetric configurations not deviat-

ing too far from symmetry. In Figure 2.11, however, it was shown that including

Φ1 effects leads to a factor of two change in the impurity particle flux for large

values of Z in the QHS Wistell-A configuration. It is thus important to conduct a

comprehensive study to fully understand how the inclusion of Φ1 effects with highly-
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charged impurities will alter the neoclassical transport in different quasisymmetric

stellarators.

Considering the large parameter space of reactor-relevant plasmas, it could be

useful to perform further numerical work with more parameter scans. This could

include scans over quantities such as the collisionality, temperature gradient (with

fixed density gradient), Zeff value, or temperature ratio. Furthermore, having an

analytic theory around magnetic field symmetry-breaking in such a large parameter

space would prove useful as a means of providing further insight into the results of

Chapter 2.

Finally, the natural connection to the work in Chapters 2 and 4 is to run

turbulence simulations with impurities in quasisymmetric stellarators (there have

not been turbulent impurity transport simulations in quasisymmetric stellarators,

but there has been recent numerical [35] and experimental [39] work studying this

in W7-X). This will allow for a considerably more accurate ratio of neoclassical to

turbulent particle fluxes than was presented in Section 2.6.2. While turbulence simu-

lations that include impurities are commensurately more computationally intensive,

the generalized parallel boundary condition could yield a performance enhancement.
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Appendix A: Gyrokinetic Equation

In the electrostatic, collisionless limit, the gyrokinetic equation that describes

an arbitrary species is given by:

∂h

∂t
+ v‖ · ∇h+

(
〈vE〉+ vm

)
· ∇⊥h+ 〈vE〉 · ∇⊥FM =

qFM
T

∂〈φ〉
∂t

. (A.1)

The evolved quantity, h, represents the non-adiabatic part of the fluctuating dis-

tribution function. The quantity FM represents the background Maxwellian equi-

librium distribution. The angled brackets 〈...〉 denote a gyroaveraging operation

performed at constant particle guiding center, where the quantity 〈vE〉 is the gy-

roaverage of the E ×B velocity. The fluctuating electric field E is defined by the

gradient of the fluctuating electrostatic potential, φ, which is self-consistently cal-

culated under the assumption of quasineutrality. The magnetic drifts are contained

in vm = b̂×
[
v2⊥
2Ω
∇ logB+

v2‖
Ω

(b̂ ·∇b̂)
]
, where b̂ is the unit vector along the magnetic

field.
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Appendix B: Minimum Flux Tube Length

Here, we present an interpretation of the Section 4.6.1 results of linear growth

rate convergence with respect to flux tube length. In particular, we attempt to

understand the minimum flux tube length for linear convergence (which from Figures

4.11, 4.12, and 4.13 appears to be ∼1 poloidal turn) using two approaches.

First, one can consider the wave period 2π/ω of the (kx, ky) = (0.0, 0.2) mode

where the real frequency is |ω|ky=0.2 ≈ 0.1 vti/a, and estimate the distance di ≈ 35m

in which a thermal ion travels in that time. This distance can be compared with

the length of a one poloidal turn flux tube L[−π,π] =
∫ π
−π dl/(b̂ · ∇θ), whereupon

one finds that di ∼ L[−π,π]. Our numerical results are therefore consistent with the

hypothesis that the linear growth rates are converged when the flux tube length is

at least ∼ 2πvti/|ω|. Physically, this hypothesis is plausible since thermal particles

should sample the correct geometry for the relevant timescale of the mode.

A second approach for understanding the minimum flux tube length for con-

vergence is to examine the mode’s parallel structure in Fourier space. The Fourier

transform over the parallel coordinate of Φ(z) for the (kx, ky) = (0.0, 0.2) mode has

been plotted in Figure B.1 for a range of flux tubes lengths. It is apparent that the

power in |Φk| is strongly peaked around kza ≈ 0.08, which corresponds to a length
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Figure B.1: (Color online) - Fourier transform of the electrostatic potential along the
parallel coordinate for various flux tube lengths, using the Forced Periodic boundary
condition.

of ∼1 poloidal turn. Since results in Figure 4.13 show that growth rates are mostly

converged at one poloidal turn for ky = 0.2, it appears that linearly, a single data

point near kza ≈ 0.08 is enough to resolve this spike and get the correct growth rate.

Figure B.1 also provides some explanation for the ∼ 30% error in growth rates for

∼0.5 poloidal turn flux tubes, since power at kza ≈ 0.08 is binned with kza = 0 due

to lack of resolution. The growth rate trend becomes erratic and unreliable as the

flux tube length is decreased further, and at small enough lengths the growth rate

is quite inaccurate, which can be seen in Figure 4.13. Also in line with resolving the

spike at kza ≈ 0.08 is that as the flux tube is increased past one poloidal turn, the

growth rate converges to the true result. We note here that data points in Figure

4.13 using the conventional “twist-and-shift” boundary condition for flux tubes with

lengths < 0.5 poloidal turns yield nearly identical results to using the new boundary

condition at an unoptimized length.
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Appendix C: Impurity Temperature Screening in Axisymmetry and

Quasisymmetry

A number of papers [23,32,84,87] have examined neoclassical transport quanti-

ties in the axisymmetric limit and can provide a more intuitive look at the properties

of a plasma that can affect temperature screening. These results are also applicable

in perfect quasisymmetry. In [23], an expression for the bulk ion (taken to be hydro-

gen here) particle flux in the presence of electrons and a single impurity was derived,

using a momentum-conserving, pitch-angle scattering collision operator, where all

species are taken to be in the banana regime

Γi = −Ci
{
Ti
Te

[
n′i
ni
−
(

0.09 + 0.5α

0.53 + α

)
T ′i
Ti

]
− Tz
ZTe

[
n′z
nz
− 0.17

T ′z
Tz

]}
. (C.1)

Here, Ci is a positive coefficient that is independent of thermodynamic gradients,

Z is the impurity charge, and α = nzZ
2/ni = Zeff − 1 represents the effect of the

impurities on the transport coefficients. Typically, one can take Ti = Tz = T , and

we further assume the profiles of each species to be equal: T ′i/Ti = T ′z/Tz = T ′/T ,

and n′i/ni = n′z/nz = n′/n. An expression for the impurity particle flux can then
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easily be obtained by satisfying the ambipolarity condition,
∑

a ZaΓa = 0. Based

on Γe ∼
√
me/mi Γi, if we take Γe ' 0, then Γz ' −Γi/Z. The impurity particle

flux can now be shown to be

Γz =
Ci
Z

{
T

ZTe

[
La
n′

n
− Lb

T ′

T

]}
, (C.2)

where La ≡ Z − 1 and Lb ≡ {[Z(0.09 + 0.5α)/(0.53 + α)] − 0.17}. Lb is always

positive for Z > 1.

If it is assumed that both density and temperature profiles are peaked, then

achieving a positive (outward) Γz is based on two properties: Zeff , and more im-

portantly, the ratio η−1 ≡ d ln(n)/d ln(T ) . In the absence of a density gradient,

the term in square brackets in C.2 will always be positive and lead to temper-

ature screening. However, based on the α, there is some critical η−1
c (α) ∼ 0.4

where η−1 > η−1
c will always lead to impurity accumulation. This effect can be

seen in Figure C.1, where SFINCS has been used to calculate the impurity particle

flux for C6+ over a range of collisionalities for an axisymmetric geometry model

B(θ) = B0(1 + ε cos θ), with ι = 0.689 and α = 1. It is also clear that temperature

screening is only accessible up to some maximum collisionality, regardless of η−1.

However, such high collisionalities put not only impurities, but also bulk ions, into

the Pfirsch-Schlüter regime, which is generally too collisional to be relevant in the

core of reactor scenarios.
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Figure C.1: (Color online) The impurity particle flux for C6+ is plotted in an axisym-
metric geometry as a function of the normalized ion-ion collisionality νii∗ ≡ νR/vti,
where ε = rN(a/R). In this plot, rN = 0.25, and a/R=0.16. The vertical lines
signify the transitions between collisionality regimes for νii∗ (black dashed) and νzz∗
(magenta dotted). The transitions are as follows: νii∗ = 1.41·10−3 (main ion banana-
plateau), νii∗ = 0.18 (main ion plateau-Pfirsch-Schlüter), νii∗ = 3.93 · 10−5 (impurity
banana-plateau), and νii∗ = 5.03 · 10−3 (impurity plateau-Pfirsch-Schlüter). The
upper, green-shaded region denotes positive Γz (impurity screening). The lower,
red-shaded region corresponds to negative Γz (impurity accumulation).
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Appendix D: Testing and Portability of GPU-based Codes

In recent years, it has become increasingly more common to use graphics pro-

cessing units (GPUs) for the purpose of scientific computing. GPUs enable the

acceleration of scientific codes by using single instruction, multiple data (SIMD)

commands to parallelize parts of the code. Utilizing GPUs for code sections that

perform arithmetic operations on large amounts of data can result in a significant

reduction in computing time. The presence of more than one kind of processor

(i.e. CPU + GPU/FPGA/etc.) does, however, require additional steps to create

production-level code that can be tested, and used across multiple different archi-

tectures.

Central to the writing of GPU-based codes is handling the communication be-

tween the host (CPU) and device (GPU). On pure CPU architectures, it is straight-

forward to allocate and deallocate memory, create functions, and perform operations

without having to specify anything about where these processes are executed. Since

the principal advantage to GPUs is executing a set of instructions in parallel, the

device must have knowledge of these functions, and these functions will need to

access arrays, which are allocated somewhere. An important point in host-device

communication is that the transfer from host-to-device or device-to-host is an ex-
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pensive action, and should be minimized. The solution to this is two-fold. First,

memory should be allocated on the device to provide quick access to array elements.

Second, the instructions to be performed must be able to be interpreted by the de-

vice, requiring what are known as kernels and device functions, which are compiled

specifically for the GPU.

There is a subtle difference between kernels and device functions that is central

to this chapter. Device functions can simply be thought of as a regular function

that is compiled to be executed within kernels, on the GPU. Kernels are initializers.

When called, they provide instructions for how to parallelize a set of instructions

through the use of a coordinate-based grid of threads, where a thread is the parallel

execution unit. The following bit of code gives an example for how a kernel is called

in CUDA C syntax

dim3 block = dim3(4, 4, 4);

dim3 grid = dim3(1, 1, 512);

kernel<<<grid, block>>>(input_array);

The variables block and grid are arrays that can be 1-D, 2-D, or 3-D, which describe

the layout of threads within a kernel, where a grid is a collection of blocks (along

the z coordinate in this example). Threads within a block are limited (1024 threads

for NVIDIA Volta architecture) since they are expected to reside within a single

processor core, while grid dimensions can be considerably larger. In the above code,

a block is a cube with sides of length four threads, and the grid has 512 of these

blocks. The body of a kernel executes for each thread, which has a unique identifier
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that depends on the values of block and grid. This identifier can be found, for

example, via

// ----------------------------------------

int index = threadIdx.x + blockIdx.x*blockDim.x;

// ----------------------------------------

The variables threadIdx, blockIdx, and blockDim are automatically-generated

CUDA variables for use within kernels. In principle, a kernel could execute identi-

cally to a device function, but there is reason to avoid this for the benefit of testing,

and if necessary, code portability.

The ability to test functions, conditional statements, and other sections of

the code becomes increasingly important as the size and complexity of the code

increases. There are numerous testing packages that one might want to import in

order to ensure these parts of the code are functioning properly. However, these

packages cannot interpret device-based code, which includes any type of kernel.

This is where the importance of device functions comes in. Device functions can

be called from within the body of the kernel just as a regular host-based function

would be called within a CPU code. This similarity leads to the option of creating

“host-device” functions, which are compiled separately for the host and device so

that the function can be interpreted on both. The ability to create these host-device

functions presents an advantageous design paradigm for kernels.

Without the use of host-device functions, it would be difficult to test the

behavior of a kernel. If one were to instead fill the body of a kernel with small host-
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device function calls (which could be inlined), then each part of the kernel could be

tested without a decrease in performance. For example, consider a kernel call that

initializes a grid of threads with the objective of manipulating an array with three

separate sets of instructions (syntax for each of the examples is specific to CUDA

C)

// ----------------------------------------

__global__ void kernel(double *array) {

int index = threadIdx.x + blockIdx.x*blockDim.x;

array[index] = array[index] + 5;

array[index] = array[index] * 10;

array[index] = array[index] - 3;

}

// ----------------------------------------

Within the body of the kernel above, we have the three sets of instructions

performed serially on each thread (which is done in parallel with the other threads).

There is nothing wrong with how this kernel executes, and assuming there is nothing

incorrect in the instructions, it will produce the desired result. However, if something

is wrong in the instructions, there is no easy way of finding out the cause based on

the output, since that bit of code cannot be tested. If we were to instead make these

three sets of instructions into host-device functions, this would give one the ability

to test each function separately without altering the functionality of the kernel. The

altered version of this kernel where three host-device functions are defined, can be
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seen below

// ----------------------------------------

__host__ __device__ void add_5(double arr_element)

{

arr_element += 5;

}

__host__ __device__ void multiply_10(double arr_element)

{

arr_element *= 10;

}

__host__ __device__ void subtract_3(double arr_element)

{

arr_element -= 3;

}

__global__ void kernel(double *array) {

int index = threadIdx.x + blockIdx.x*blockDim.x;

add_5(array[index]);

multiply_10(array[index]);

subtract_3(array[index]);

}

// ----------------------------------------

For a more practical example, the calculation of the quantity Γ0(b) ≡ I0(b)e−b,
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which appears in gyrokinetic/gyrofluid turbulence simulations, will be adapted slightly

to allow for unit testing. Here, I0(b) = J0(ib), where J0 is the zeroth-order Bessel

function, and i represents the imaginary unit. The kernel, host-device function, and

Catch2 unit tests (https://github.com/catchorg/Catch2) can be seen below. For

simplicity, only the line that calls the Γ0 function in the kernel is shown.

// ----------------------------------------

__host__ __device__ float g0(float b) {

float tol = 1.e-7;

float tk, b2, b2sq;

float g, x, xi, err;

if (b < tol) {return 1.0;}

b2 = 0.5 * b;

b2sq = b2 * b2;

#ifdef __CUDA_ARCH__

tk = __expf(-b);

#else

tk = exp(-b);

#endif}

g = tk;

x = 1.;

153



err = 1.;

while (err > tol) {

xi = 1./x;

tk = tk * b2sq * xi * xi;

g += tk;

x += 1.;

err = abs(tk/g);

}

if(g<tol) {g=tol;}

return g;

}

// ----------------------------------------

__global__ void calc_phiavgdenom(float* PhiAvgDenom,

float* kperp2, float* jacobian, specie* species,

float ti_ov_te) {

...

pfilter2 += s.dens*s.z*s.zt

*(1. - g0(kperp2[(idx + i*nx)*nyc]*s.rho2));

...

}
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// ----------------------------------------

// Unit Testing for the function g0(float b)

// g0( b < tol ) should return 1

CHECK( g0(1.e-8) == 1 );

// g0( b < 0 ) should return 1

CHECK( g0(-0.1) == 1 );

// Verify that result are accurate to within 1%

CHECK( g0(0.001) == Approx(0.999001).epsilon(0.01) );

CHECK( g0(0.01) == Approx(0.990075).epsilon(0.01) );

CHECK( g0(0.1) == Approx(0.907101).epsilon(0.01) );

CHECK( g0(0.5) == Approx(0.645035).epsilon(0.01) );

CHECK( g0(1.0) == Approx(0.465760).epsilon(0.01) );

CHECK( g0(10.0) == Approx(0.127833).epsilon(0.01) );

// ----------------------------------------

In the above bits of code, the kernel calc phiavgdenom uses the host-device func-

tion g0 (equivalent to Γ0) to calculate a quantity pfilter2. The function g0 has

the qualifier host device along with an #ifdef macro, which enables the

function to be compiled separately for the host and device with processor-specific

lines of code. In this case, the exponential function is evaluated with the built-in

CUDA function expf on the device, and with the exp function from the <cmath>
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header library on the host. Including the #ifdef macro does not change how g0 is

evaluated when called from the kernel. It does, however, allow g0 to be tested to

ensure that it works properly when any routine calls it. The final section of code

uses CHECK statements from Catch2 to ensure that the function returns the correct

value based on the argument that is passed. To provide thorough testing, a similar

process should be repeated for any function that is called within a kernel.

Another benefit to using host-device functions within kernels is for portability

of codes across different platforms. For example, if one wanted to run a GPU-

based code on a CPU-based architecture, the kernels would need to be completely

rewritten for the instructions to be readable to a CPU. By filling the kernels with

consecutive calls to device-host functions, all of the instructions are already in a

format that can be understood. The only change that would need to be made is

how the body of the kernel is called.

Today, access to supercomputers is becoming increasingly more common, lead-

ing many codes to be developed to run on these platforms. However, each of these

systems comes with their own hardware, packages, and sometimes languages, re-

quiring very specific builds to be able to run on them. This forces developers to

rewrite large portions of code in order to utilize the parallelism of a specific system.

To address this problem, there has been an effort to develop portable programming

ecosystems like Kokkos [28], RAJA [6], and oneAPI. The purpose is to provide gen-

eral commands that can access the parallelism of any system, so that rewriting is

minimized. Such portability will allow any code to benefit from different types of

parallelism with relatively minor modifications.
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