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Magnetic Fields with Precise Quasisymmetry for Plasma Confinement
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Quasisymmetry is an unusual symmetry that can be present in toroidal magnetic fields, enabling the
confinement of charged particles and plasma. Here it is shown that both quasiaxisymmetry and quasihelical
symmetry can be achieved to a much higher precision than previously thought over a significant volume,
resulting in exceptional confinement. For a 1 Tesla mean field far from axisymmetry (vacuum rotational
transform > 0.4), symmetry-breaking mode amplitudes throughout a volume of aspect ratio 6 can be made

as small as the typical ~50 4T geomagnetic field.
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Introduction.—Symmetries have far-reaching conse-
quences throughout physics, and for charged particles in
a magnetic field, a remarkable symmetry called quasisym-
metry (QS) can provide confinement [1-4]. QS is relevant
for particles with a small Larmor radius compared with
scale lengths in a steady magnetic field B, so the magnetic
moment is an adiabatic invariant. In this case, axisymmetry
(standard continuous rotation symmetry) turns out to be
unnecessary for conservation of a canonical angular
momentum; it is sufficient for B = |B| to have an invariant
direction in certain special coordinate systems [3,4],
including Boozer [5] or Hamada [6] coordinates. This
condition is QS, and when it holds, the constraint of
canonical angular momentum conservation guarantees
confinement of the collisionless trajectories up to a thresh-
old energy. This result is striking because the trajectories of
bouncing particles in a magnetic field without continuous
symmetry are otherwise typically not confined. While
axisymmetric fields have QS, confinement in axisymmetry
(e.g., tokamaks and dipoles) requires a significant electric
current inside the confinement region. This follows from
applying Ampere’s law to the poloidal magnetic field [7],
which is required to limit the cross field drifts. This electric
current is hard to drive and sustain stably, so QS without
axisymmetry is ideal. If realized in a stellarator, a non-
axisymmetric toroidal configuration of magnets, QS ena-
bles the steady-state magnetic confinement of plasma. QS
has been the basis for several approaches to magnetic
confinement fusion in stellarator devices [8—10], and it is
also being applied for confinement of pair plasmas [11,12].

However, it is unclear how accurately QS (in the absence
of axisymmetry) can be realized. It has been conjectured
(but not proven) that in the absence of axisymmetry, QS
may be possible on an isolated surface, but it cannot be
perfectly realized throughout a volume [13—15]. A number
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of nominally QS field configurations have been devised
numerically [2,9,10,16—18], and one has been realized
experimentally [8], but these fields all have substantial
deviations from symmetry, as discussed below. In these
previous studies, QS was only one of several design
objectives, which also included, e.g., magnetohydrody-
namic (MHD) stability, leaving open the fundamental
question of how closely QS can be achieved. In the present
paper, it is shown that QS can be realized to far greater
precision than in these previous examples, not only on a
single surface, but throughout a sizeable volume, yielding
exceptional trajectory confinement.

Some previous examples of nominally QS fields are
shown in Fig. 1. Here and throughout this paper, fields are
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FIG. 1. Magnetic field strength on the boundary surface of
previous magnetic field configurations designed to approximate
quasisymmetry, as functions of the Boozer angles. (a) the National
Compact Stellarator eXperiment (NCSX) [9], (b) Advanced Re-
search Innovation and Evaluation Study - Compact Stellarator
(ARIES-CS) [16], (c) a QA developed at New York University
[20,21], (d) the Chinese First Quasiaxisymmetric Stellarator
(CFQS) [10], (e) a QA developed at the Max Planck Institute for
Plasma Physics (IPP) [17], (f) a QH developed at IPP [2], (g) the
Helically Symmetric eXperiment (HSX) [8], (h) Wistell-A [18].
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considered for which B is tangent to nested toroidal
surfaces, “flux surfaces.” The figure shows B = |B| on
an outer flux surface for each configuration, as a function of
the Boozer toroidal and poloidal angles (¢,0), angles
defining the long and short way around the torus. These
coordinates are special because in this coordinate system
the Lagrangian for drift motion varies on a flux surface only
through B, rather than through all vector components of B.
QS can be expressed as the condition B = B(s, M0 — Ng)
for integers M and N, so B contours are straight in the 8-¢
plane. Here, s is the toroidal magnetic flux enclosed by a
flux surface, normalized to the flux at the boundary. QS
with M # 1 is impossible in the innermost region [19] and
so will not be considered here. QS with N = 0 is termed
quasiaxisymmetry (QA), and QS with nonzero N (and M)
is called quasihelical (QH) symmetry. Figures 1(a)-1(e) are
QA, and Figs. 1(f)-1(h) are QH. In the figure, the quantities
are periodic in ¢ with period 27/ng, where ng, is the
number of field periods. All configurations in Fig. 1 except
the Helically Symmetric eXperiment (HSX) are fixed-
boundary cases free of coil ripple.

For all the configurations shown in Fig. 1, many B
contours deviate from straight lines, and some contours do
not link the torus with the desired (M,N) helicity.
Significantly better QS has been demonstrated in a few
cases, but only in a narrow volume: in Ref [22] (Fig. 21) for
tori with aspect ratios > 78. In the present work, precise
QA and QH are demonstrated throughout significantly
larger volumes (relative to the major radius).

The new magnetic field configurations here are obtained
by optimizing the shape of a boundary flux surface. A
similar approach was used to obtain the fields in Fig. 1,
though different objective functions and algorithms were
employed, which may partially explain the different results.
For QA, a higher aspect ratio (6.0) is considered here than
in the configurations of Figs. 1(a)-1(e) (2.6-4.5), facilitat-
ing better QS. However the new QH shown here has an
aspect ratio (8.0) within the range of the previous QH
configurations in Figs. 1(f)-1(h) (6.7-11.7). It is also likely
that QS was not obtained to the same precision in previous
work because objectives besides QS were included in those
optimizations as well. Here, we focus on the fundamental
question of how closely QS can be obtained in the absence
of other constraints.

Methods.—To achieve QS, an objective function is
minimized that includes the term

fas = Z< (%[(N —IM)B x VB - Vy
—(MG+N1)B-VB]>2>, (1)

where 2y is the toroidal flux, G(w) is po/(27) times the
poloidal current outside the surface, () is uy/(27) times

the toroidal current inside the surface, : is the rotational
transform, and (...) is a flux surface average. The sum is
over a set of flux surfaces s;. The objective [Eq. (1)] is
motivated by the fact [23] that in a QS field, (BxVB-Vy)/
(B-VB)=(MG+NI)/(N—iM), so fqs =0. The 1/B?
factor makes fqos dimensionless, and hence invariant if
the field is scaled in length or magnitude. Most previous QS
fields have been obtained using a different (but related [24])
objective based on symmetry-breaking Fourier modes
of B, fQSO = Zm,ngéNm/nfp (Bm,n/BO,O)2 where B<S7 67 (ﬂ) -
> mn B (s) cos(mb — ng,ne). Unlike fos0, Eq. (1) con-
veniently does not require the calculation of Boozer
coordinates at each iteration. Discretizing the flux surface
average using uniform grids in the poloidal and toroidal
angles, fos has the form of a sum of squared residuals, so
algorithms for nonlinear least-squares minimization can be
applied. Vacuum fields are considered here, so flux surface
quality can be verified most straightforwardly. A uniform
grid 0,0.1, ..., 1 was used for s;.

Other terms must be added to Eq. (1) in the objective to
obtain interesting solutions, at least for the initial conditions
described below. For QH, we minimize foy = fos + (A —
A,)?* where A is the aspect ratio of the boundary surface (as
computed by the VMEC code, defined on page 12 of
Ref. [22]), and A, is a specified target value. Without
the aspect ratio term, fos can be decreased to zero by
increasing the aspect ratio. For QA, 1 is bounded away from
zero to avoid axisymmetric optima, using a total objective
foa = fos +(A—A,)? + (1—1,)* where 1= [} ds: and
1, 1s a specified target value. For the results here it was not
necessary to introduce weights multiplying the (A — A,),
(1—1,), or fqs terms.

The independent variables for optimization are
{Ryn+Z,,,}, which define the boundary surface via

R(e’ ¢) = ZRm,n COS(I’VM() - nfpn¢)7

Z(0.9) = Zy,sin(md — ngng), (2)

where stellarator symmetry has been assumed, ¢ is the
standard azimuthal angle, and 9 is any poloidal angle. The
mode R is excluded from the parameter space to fix
the spatial scale. As in Ref. [25], the parameter space is
expanded in a series of five steps, with modes |m|, |n| < j
optimized in step j. For optimizing QA, the initial con-
dition is axisymmetric with a circular cross section. For
optimizing QH, R, and Z | are also initialized with small
nonzero values.

The optimization is carried out using the SIMSOPT
software framework [26,27], using the default algorithm
in scipy [28] for nonlinear least-squares minimization (trust
region reflective). At each iteration, the magnetic field
inside the boundary is computed using the VMEC code [29].
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FIG. 2. The magnetic field configurations with precise (a) qua-
siaxisymmetry and (b) quasihelical symmetry, each viewed from
two angles. Black curves are field lines.

Gradients are computed using finite differences, with MPI
for concurrent function evaluations. At the end of the
optimization, the field is also computed with the SPEC code
[30,31] to confirm the field from VMEC and verify there are
no visible magnetic islands, shown by Poincare plots in the
Supplemental Material [32]. Data for the magnetic con-
figurations are available at [33].

Results.—An example of precise QA is shown in Figs. 2
and 3. For this optimization, ng =2,A, = 6,and 1, = 0.42
to ensure a large departure from axisymmetry, while
avoiding possible magnetic islands at = 2/5. In the
optimized configuration, A = 6.0, and : ranges from
0.423 on the magnetic axis to 0.416 at the edge, avoiding
low-order rationals. The contours of B on four surfaces are
shown in Fig. 3. Compared with Fig. 1, the contours are far
straighter. The small deviations from symmetry are shown
quantitatively in Fig. 4, and compared to the previous
configurations of Fig. 1. Each configuration is scaled so the
mean field B is 1 T, matching the value for the first two
QS stellarators to be built [8,10]. Fourier amplitudes B, ,,
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FIG. 3. Field strength B [Tesla] on flux surfaces of the new

QA field. The contours are straight in the 6-¢ plane (Boozer
coordinates), demonstrating quasisymmetry.
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FIG. 4. The maximum quasisymmetry-breaking mode ampli-
tude of B at each flux surface, for configurations scaled to 1 T
mean B.

that break the symmetry (those with n # 0) have ampli-
tudes < 50 uT. This value was confirmed by an indepen-
dent calculation from the SPEC solution, and is comparable
to the magnetic field of the Earth. This is the first time
intrinsic QS errors have been reduced to the level of this
extrinsic source of error field in a volume with an
experimentally relevant aspect ratio.

An example with QH symmetry is shown in Figs. 2
and 5. For this optimization, ng, = 4and A, = 8, with A =
8.0 achieved. The rotational transform is nearly constant at
1 = 1.24. Figure 5 shows that far straighter B contours are
possible at this A than in the earlier configurations of Fig. 1.
Errors in QS are somewhat larger than for quasiaxisym-
metry at the same aspect ratio. Nonetheless, Fig. 4 shows
that the B, , errors in the new QH field are smaller at all
radii than in any of the previous configurations, by over an
order of magnitude at the boundary.
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FIG. 5.

B [Tesla] on flux surfaces of the new QH field.
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FIG. 6. Measures of confinement. (a) Collisionless losses of
fusion-produced alpha particles initialized on the s = 0.25 sur-
face, in various configurations scaled to the ARIES-CS minor

radius and B. (b) Collisional transport magnitude ezf/fz.

Similar optimizations that also include a magnetic well
[34,35], an MHD stability constraint, are discussed in the
Supplemental Material [32]. These configurations are
shown in the figures as “New QA + well” and “New
QH + well.” In Fig. 4, QS imperfections increase with
the magnetic well constraint, but remain small compared
with previous configurations.

As a result of the high degree of symmetry in the new
QA and QH configurations, they all exhibit excellent
confinement. One measure of confinement is displayed
in Fig. 6(a). Here, the guiding center motion of test particles
is followed in time. The new configurations are compared
with the previous configurations of Fig. 1, and with the
largest stellarator experiment, W7-X [36]. (For the latter, a
/= 4% configuration without coil ripple is used, to give
the best possible confinement.) All configurations are
scaled to the same minor radius 1.7 m and field strength
Boo(s =0)=5.7T of the ARIES-CS reactor [16].

An ensemble of 5000 alpha particles with 3.5 MeV, as
would be produced by deuterium-tritium fusion, is initial-
ized isotropically on the s = 0.25 surface, and followed
using the code of Refs. [37,38]. Particles are followed for
0.2 s, typical for the collisional slowing down time in a
magnetic fusion reactor, or until they cross the s =1
surface and are considered lost. In perfect QS, there would
be no losses, as long as banana orbits (the shape of trapped
trajectories projected to the poloidal plane) were suffi-
ciently thin to stay within s < 1. Similar findings to
Fig. 6(a) without the new configurations were shown in
Ref. [39]. Many of the previous configurations lose ~1/4
of the particles, corresponding to those that bounce. The
new QH, QA + well, and QH + well configurations per-
form best, with no particles lost. Though the new QA
configuration without well has the best symmetry, a few
particles are still lost, which upon inspection, are standard
banana orbits that extend all the way to s > 1. The new QH
configurations do not suffer from these losses due to thinner
banana orbits, the width of which scales & 1/]1 — N|. The
low losses in Fig. 6 of Wistell-A, which included another
measure of energetic particle confinement besides QH in its
optimization [18,40], show that moderate departures from
QH can still be compatible with low test particle losses,
perhaps due to the reduced orbit width in QH. The new
QA + well has lower losses than the QA since B varies less
on each surface, so banana orbits are thinner.

Due to the precise QS of the new configurations, they
also have superb confinement as measured by collisional
transport for a thermal plasma. The magnitude of this
transport in the 1/v regime, where v is the collision

frequency, is known as ezf/fz. For perfect QS, ezfgfz would

be zero. As shown in Fig. 6(b), egf/»fz computed by the NEO
code [41] for the new configurations is smaller than for the
other configurations of Fig. 1. These values are so small
that the collisional transport will almost certainly be weaker
than the turbulent transport.

Discussion.—It has been shown here that magnetic fields
exist for which QS is realized much more precisely than in
previously published examples, throughout a torus of
typical stellarator aspect ratio. This is shown for QA and
QH in Figs. 3 and 5, where the B contours in Boozer
coordinates are far straighter on many surfaces than in
Fig. 1, and shown quantitatively in Fig. 4. Lower sym-

metry-breaking B,,, and egf/fz were obtained at a lower
aspect ratio in the QAs, but better confinement of energetic
particles was obtained in the QHs.

We cannot conclude that the new configurations here
have the lowest possible QS error of any QA or QH field. It
is possible that, by using global optimization or other
improvements in the numerical methods, configurations
with even lower QS errors could be found. Moreover, QS-
breaking errors can always be reduced further by increasing
the aspect ratio [13,14,22].
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One natural question is how accurately the fields here
can be produced by practical magnets. Recent innovations
give hope that fields like the ones here could be produced
with minimal errors from discrete field sources [42,43].

More fundamentally, while the results here do not
disprove the conjecture that QS cannot be achieved exactly
throughout a volume, they do show that one can come
surprisingly close in practice. While it did not seem
possible in this study to reduce symmetry-breaking errors
down to machine precision, the deviations from QS
intrinsic in the new QA configuration are small enough
to be subdominant to extrinsic sources of field error.
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This document provide more information about the new magnetic field optimizations for precise
quasi-axisymmetry (QA) and quasi-helical (QH) symmetry.

1 Magnetic well

While it is of fundamental interest to know how accurately quasisymmetry can be achieved without
additional constraints, it is also valuable to know the limits on quasisymmetry when other physics
requirements are included. A common constraint imposed in stellarator design is magnetic well,
related to MHD stability. For vacuum fields such as these, magnetic well is the condition d?V/dy? <
0 where V(1) is the volume enclosed by a flux surface with toroidal flux 27w). Here we present two
optimized configurations with magnetic well, one QA and one QH. These configurations are shown
as “QA+well” and “QH+well” in Figs. 4 and 6 of the main text.

To optimize for QA with magnetic well, we minimize the objective foaw = fqa + (W — W,)?
where W = [dV/ds(s = 0) — dV/ds(s = 1)]/[dV/ds(s = 0)], s is the toroidal flux normalized
to its value at the boundary surface, and W, is a small positive target value. The QA+well
configuration here was obtained using the choice W, = 0.005, with A, = 6 and 7, = 0.42 as for the
QA optimization without magnetic well. The same magnetic well objective is also effective for QH
symmetry. However in the QH case it was found that the symmetry could be slightly improved by
separately constraining the magnetic well at the core and the edge. The objective function used for
the QH+well configuration was fouw = fou + w[M(0.2,0.4) — W% + w[M(0.8,1) — W.]%, where
M (s1,s2) = 2[dV/ds(s2) — dV/ds(s1)]/((s1 — s2)[dV/ds(s1) + dV/ds(s2)]) is a normalized average
magnetic well over a radial interval (s1, s2), and we chose W, = 0.005 with weight w = 3.75. Aside
from the extra terms in the objective function, the QA and QH optimizations with magnetic well
were carried out with the identical procedure to those without well. For both the QA+well and
QH-+well optimizations, it was confirmed that at the end of the optimization, d?V/dy? < 0 at all
radii.

Three-dimensional views of the QA+well and QH-+well configurations are shown in Fig. 1. The
aspect ratios are 6.0 and 8.0 respectively, the same as for the configurations without well. The
cross-sections of the four configurations are shown in Fig. 2. It can be seen that the magnetic well
constraint leads to more elongated and concave shapes in the plane with standard toroidal angle
¢ = 0. The rotational transform for the configurations is plotted in Fig. 3. The magnetic well
constraint has little effect on ¢, and the magnetic shear remains strikingly small.

The field strength for the QA+well and QH+well configurations is displayed as a function of
the Boozer angles for several flux surfaces in Fig. 4. Comparing this figure to Figs. 1, 3, and 5 of
the main text, it can be seen that the constraint of magnetic well causes some slight curvature to
appear in the B contours, but overall the quasisymmetry remains excellent.
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Figure 1: The new magnetic configurations with (a) precise QA and magnetic well, and (b) precise
QH and magnetic well.
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Figure 2: Cross sections of the four new configurations, each  tational transform for the new
at three values of the standard toroidal angle ¢. configurations.
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Figure 4: Magnetic field strength in Tesla for the new configurations with (a) precise QA and
magnetic well, and (b) precise QH and magnetic well.

2 Flux surface quality

To confirm that good flux surfaces exist throughout the new QA and QH configurations, Poincare
plots are shown in figure 5. Colored dots show Poincare plots generated using the SPEC code. Black
curves show flux surfaces from the VMEC code, which are in good agreement with the Poincare
plots.
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Figure 5: Verification that good flux surfaces exist throughout the new QA and QH configurations.



