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1 Introduction

In this note we compare the VMEC and Garabedian representation of toroidal surfaces. The
transformation between the coefficients of each representation is derived. A demonstration is given
that for a given physical surface shape, the coefficients in either representation are not unique.

2 VMEC representation

In the VMEC code, the cylindrical coordinates (R,Z) are parameterized as functions of a poloidal
angle θ and toroidal angle ζ using

R(θ, ζ) =
∑
m,n

Rcm,n cos(mθ − nζ) +Rsm,n sin(mθ − nζ), (1)

Z(θ, ζ) =
∑
m,n

Zcm,n cos(mθ − nζ) + Zsm,n sin(mθ − nζ),

where Rcm,n, Rsm,n, Zcm,n, and Zsm,n are coefficients that determine the surface shape.
Notice that Rcm,n and Zcm,n give identical contributions to Rc−m,−n and Zc−m,−n, and Rsm,n and

Zsm,n give (−1) times the contributions of Rs−m,−n and Zs−m,−n. Therefore it is no loss of generality
to consider only non-negative m, and for the m = 0 modes it is no loss of generality to consider
only non-negative n.

If the surface is stellarator-symmetric about (θ, ζ) = (0, 0), then flipping the sign of θ and ζ will
leave R unchanged but will flip the sign of Z. In this case Rsm,n = 0 and Zcm,n = 0 for all m and n.

3 Garabedian’s representation

The representation introduced by Paul Garabedian is

R(θ, ζ) + iZ(θ, ζ) = eiθ
∑
m,n

∆m,ne
−imθ+inζ , (2)

where the parameters ∆m,n determine the surface shape. (Here we sum over all integer values of
m and n, including negative values.) If the surface is stellarator-symmetric about (θ, ζ) = (0, 0),
then flipping the sign of θ and ζ will leave R unchanged but will flip the sign of Z. Thus:

R(θ, ζ)− iZ(θ, ζ) = e−iθ
∑
m,n

∆m,ne
imθ−inζ . (3)

The complex conjugate of this relation is identical to (2), except with ∆m,n replaced by its complex
conjugate. Equating Fourier components to (2), we find ∆m,n = ∆∗

m,n, that is, ∆m,n is real. Hence,
stellarator symmetry (about (θ, ζ) = (0, 0)) is equivalent to ∆m,n being real.
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3.1 Converting from VMEC to Garabedian coefficients

To relate the VMEC and Garabedian representations, we plug (1) into (2):∑
m,n

∆m,ne
i(1−m)θ+inζ =

∑
m,n

[
(Rcm,n + iZcm,n) cos(mθ − nζ) + (Rsm,n + iZsm,n) sin(mθ − nζ)

]
. (4)

Writing the cosine and sine functions in terms of complex exponentials,∑
m,n

∆m,ne
i(1−m)θ+inζ =

1

2

∑
m,n

{
(Rcm,n + iZcm,n)

[
eimθ−inζ + e−imθ+inζ

]
+ (−iRsm,n + Zsm,n)

[
eimθ−inζ − e−imθ+inζ

]}
. (5)

For the terms ∝ exp(imθ− inζ) on the right-hand side, we are free to replace the dummy index m
with −m, noting that the sum over all m is equivalent to a sum over all −m, and similarly we can
replace n→ −n. The result is∑

m,n

∆m,ne
i(1−m)θ+inζ =

1

2

∑
m,n

e−imθ+inζ
[
Rc−m,−n + iZc−m,−n +Rcm,n + iZcm,n

−iRs−m,−n + Zs−m,−n + iRsm,n − Zsm,n
]
. (6)

Now on the right hand side we can replace the dummy index m with m − 1, noting that the sum
over all m is identical to a sum over all m− 1. The result is∑

m,n

∆m,ne
i(1−m)θ+inζ =

1

2

∑
m,n

ei(1−m)θ+inζ
[
Rc1−m,−n + iZc1−m,−n +Rcm−1,n + iZcm−1,n

−iRs1−m,−n + Zs1−m,−n + iRsm−1,n − Zsm−1,n

]
. (7)

Each Fourier mode of the left hand side must equal the corresponding Fourier mode on the right
hand side, so

∆m,n =
1

2

[
Rc1−m,−n + iZc1−m,−n +Rcm−1,n + iZcm−1,n − iRs1−m,−n + Zs1−m,−n + iRsm−1,n − Zsm−1,n

]
.

(8)
Specializing now to stellarator symmetry, the left side is real, and the quantities multiplied by i on
the right side are each 0, leaving

∆m,n =
1

2

[
Rc1−m,−n +Rcm−1,n + Zs1−m,−n − Zsm−1,n

]
. (9)

3.2 Converting from Garabedian to VMEC coefficients

Here we work out the conversion from the Garabedian to VMEC representation for the case of
stellarator symmetry. First, we replace n→ −n and m→ 2−m in (9):

∆2−m,−n =
1

2

[
Rcm−1,n +Rc1−m,−n + Zsm−1,n − Zs1−m,−n

]
. (10)

Adding (9) to (10),
Rc1−m,−n +Rcm−1,n = ∆m,n + ∆2−m,−n. (11)

When m = 1 and n = 0, (11) gives
Rc0,0 = ∆1,0. (12)
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When m = 1 and n > 0, (11) gives

Rc0,n = ∆1,n + ∆1,−n. (13)

The same result follows if m = 1 and n < 0 in (11). If m > 1, then the first term of (11) vanishes.
We can then replace m→ m+ 1 in the remaining terms, giving

Rcm,n = ∆1−m,−n + ∆1+m,n. (14)

The same result follows if m < 1 in (11). Equations (12)-(14) give the VMEC Rcm,n coefficients in
terms of the Garabedian coefficients.

Next we derive similar relations for the Zsm,n coefficients. Subtracting (10) from (9) gives

Zs1−m,−n − Zsm−1,n = ∆m,n −∆2−m,−n. (15)

If m = 1 and n = 0, this expression reduces to 0 = 0. If m = 1 and n > 0, (15) gives

Zs0,n = ∆1,−n −∆1,n. (16)

This same result is obtained if m = 1 and n < 0 in (15). If m > 1, the first term in (15) vanishes.
Substituting m→ m+ 1 in the remaining terms, we find

Zsm,n = ∆1−m,−n −∆1+m,n. (17)

The same equation results if m < 1 in (15). Equations (16)-(17) give the VMEC Zsm,n coefficients
in terms of the Garabedian coefficients.

3.3 Counting degrees of freedom

Given a finite number of nonzero VMEC coefficients Rcm,n and Zsm,n, (9) indicates that there is
an exactly equivalent Garabedian representation with a finite number of nonzero ∆m,n coefficients.
Considering that the VMEC coefficients vanish for m < 0, (9) indicates that the ∆m,n coefficients
will need to be nonzero for negative m. The Garabedian representation requires twice as many m
values as the VMEC representation, but the Garabedian representation also requires half as many
quantities for each m and n (a single ∆m,n, compared to the two quantities Rcm,n and Zsm,n for
the VMEC representation.) Hence, the number of degrees of freedom required to represent a given
shape is (at least roughly) the same.

4 Non-uniqueness

4.1 VMEC representation

For a given surface shape, the VMEC coefficients Rcm,n and Zsm,n (and Rsm,n and Zcm,n if the shape
is not stellarator-symmetric) are not unique. For the particular case of a circular cross-section
in the poloidal plane, we now demonstrate that we can can specify an infinite family of different
{Rcm,n, Zsm,n} values that all yield the same shape. For simplicity, let us neglect the toroidal direction
and shift R by the major radius, so we can consider the circle R2 +Z2 = 1. We replace Rcm,n → Rm
and Zsm,n → Zm to simplify notation. One set of VMEC coefficients that corresponds to this shape
is

Rm = 1 if m = 1, otherwise Rm = 0, (18)

Zm = 1 if m = 1, otherwise Zm = 0.

3



However, we can obtain other VMEC coefficients for the same surface if we parameterize the circle
using a different poloidal angle ϑ related to the original angle θ by

θ = ϑ− α sinϑ, (19)

where α is some constant. The circle can then be written as

R = cos (ϑ− α sinϑ) , (20)

Z = sin (ϑ− α sinϑ) .

We now write the VMEC representation of the shape in terms of the poloidal angle ϑ, adding a
superscript α to Rm and Zm:

R =
∑
m

Rαm cos(mϑ), (21)

Z =
∑
m

Zαm sin(mϑ).

Equating (20)-(21), and expressing the cosine and sine functions as complex exponentials,∑
m

Rαm

(
eimϑ + e−imϑ

)
= ei(ϑ−α sinϑ) + e−i(ϑ−α sinϑ), (22)∑

m

Zαm

(
eimϑ − e−imϑ

)
= ei(ϑ−α sinϑ) − e−i(ϑ−α sinϑ).

We next apply the operation
1

2π

∫ 2π

0
dϑ e−iMϑ(. . .), (23)

where M is any integer. The right-hand sides can be evaluated using

Jn(α) =
1

2π

∫ 2π

0
dϑ ei(nϑ−α sinϑ), (24)

where Jn is the Bessel function. Thus,

RαM +Rα−M = J1−M (α) + J−1−M (−α), (25)

ZαM − Zα−M = J1−M (α)− J−1−M (−α).

When M = 0, (25) and the identity
Jn(−α) = J−n(α) (26)

imply
Rα0 = J1(α). (27)

(The term Zα0 multiplies sin 0 = 0 so is not used.) For M > 1, the second left-hand side term of
each equation in (25) is defined to be 0, leaving

RαM = J1−M (α) + J1+M (α), (28)

ZαM = J1−M (α)− J1+M (α).

For any value of α, equations (27)-(28) provide a different set of {Rm, Zm} coefficients for the unit
circle, demonstrating the coefficients are not unique.

The sequences Rαm and Zαm grow exponentially small with m, with |Rαm| and |Zαm| both smaller
than 10−15 for m > 15 when |α| ≤ 1.
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4.2 Garabedian representation

Similarly, the Garabedian coefficients ∆m,n are not unique, as we can demonstrate with the same
example. We apply (9) to the Rαm and Zαm coefficients derived above. We again neglect the toroidal
direction, so we write ∆m,n → ∆α

m. For m = 1,

∆α
1 = Rα0 = J1(α). (29)

For m > 1,

∆α
m =

1

2
(Rαm−1 − Zαm−1) = J−m(−α) = Jm(α), (30)

where (26) has been applied. For m < 1,

∆α
m =

1

2
(Rα1−m + Zα1−m) = Jm(α). (31)

Thus, we find ∆α
m = Jm(α) for all m. This result demonstrates an infinite set of Garabedian

coefficients that all describe the same shape, hence the Garabedian representation is not unique.
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