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In this note, we detail how to compute the vmec input parameters curtor and ac (or ac aux f)
from the averaged parallel current computed by neoclassical codes, 〈j ·B〉. Here, 〈. . .〉 denotes a
flux surface average, j is the current density, and B is the magnetic field. The proper result involves
a term that is neglected by the bootsj code. This term is small in β = 2µ0p/B

2, but it does not
require much work to keep, so we may as well keep it. Physically, neoclassical codes compute a
gyrophase-averaged distribution function and so the current they obtain is parallel to B, whereas
the total toroidal current also has a contribution from the diamagnetic current perpendicular to
B. The purpose of this note is to compute the proper relationship between these parallel and
perpendicular currents and the net toroidal current.

The calculation here is a more detailed version of Appendix C of [1], except that Gaussian units
were used in that paper whereas SI units are used throughout this note.

1 Overview

Bootstrap current codes like bootsj and sfincs solve the drift kinetic equation for the gyrophase-
averaged distribution function f . The parallel velocity moment of f , weighted by species charge and
summed over species, yields the parallel current j|| = j · b, where b = B/|B|. The spatial variation
of j|| over a magnetic surface can be determined analytically for any geometry and collisionality
using mass conservation, so the results of a drift-kinetic calculation can be summarized by any
weighted average of the parallel current over a flux surface. By convention, the average typically
reported is 〈j ·B〉.

The vmec code takes as an input the profile of net toroidal current inside a flux surface. There-
fore, to interface a bootstrap current code with vmec, the relationship between this net toroidal
current and the parallel current must be calculated. We now calculate this relationship.

2 Derivation

Let I(s) denote the total toroidal current inside a flux surface labelled by any flux function s, where
we require that s = 0 on the magnetic axis. This total current is the flux (area integral) of the
current density j through a surface of constant toroidal angle ζ:

I(s) =

∫
d2a · j =

∫ s

0
ds′
∫ 2π

0
dθ
√
gj · ∇ζ, (1)

where θ is a poloidal angle, the integrand is evaluated at s′ rather than s, and

√
g =

∂r

∂s
· ∂r
∂θ
× ∂r

∂ζ
=

1

∇s · ∇θ ×∇ζ
(2)
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is the Jacobian of the (s, θ, ζ) coordinates. It turns out to be convenient to write (1) in differential
rather than integral form, by applying d/ds:

dI

ds
=

∫ 2π

0
dθ
√
gj · ∇ζ. (3)

These expressions so far are all valid for any angle coordinates (θ, ζ) (vmec, Boozer, pest, Hamada,
etc.)

Next, consider that to leading order in ρ/L � 1, where ρ is a typical gyroradius and L is a
typical equilibrium scale length, the current perpendicular to B is given by the diamagnetic current:

j⊥ =
1

B2

dp

ds
B ×∇s, (4)

where p(s) is the total pressure. This result can be obtained, for example, by applying B × (. . .)
to the MHD equilibrium relation j ×B = ∇p. Therefore the total current vector is

j =
j||

B
B +

1

B2

dp

ds
B ×∇s. (5)

Substituting this result into (3),

dI

ds
=

∫ 2π

0
dθ
√
g

[
j||

B
B · ∇ζ +

Bθ
B2

dp

ds
∇θ ×∇s · ∇ζ

]
, (6)

where to get the last term we have expressed B in components

B = Bs∇s+Bθ∇θ +Bζ∇ζ. (7)

The important message from (6) is that the total toroidal current I needed for vmec consists not
only of the parallel current determined by neoclassical physics (the first right-hand-side term), but
also by the diamagnetic current ∝ dp/ds in the last term.

While the calculation so far is true for any angle coordinates (θ, ζ), for the rest of this section
it is convenient to use Boozer coordinates. The main result will turn out to be independent of the
choice of angle coordinates. In any straight-field-line coordinates such as Boozer coordinates, the
magnetic field can be written as

B =
dψ

ds
[∇s×∇θ + ι∇ζ ×∇s] , (8)

where 2πψ is the toroidal flux enclosed by surface s, and ι(s) is the rotational transform. Hence,
the geometric factor appearing in the first right-hand-side term of (6) is

B · ∇ζ =
dψ

ds
∇s×∇θ · ∇ζ =

dψ

ds

1
√
g
, (9)

and so (6) reduces to
dI

ds
=

∫ 2π

0
dθ

[
dψ

ds

j||

B
− Bθ
B2

dp

ds

]
. (10)

Furthermore, in Boozer coordinates, Bθ and Bζ in (7) are flux functions, i.e. they depend only
on s, and we can show that Bθ is related to I(s) as follows. The curl of (7) is

∇×B = ∇Bs ×∇s+
dBθ
ds
∇s×∇θ +

dBζ
ds
∇s×∇ζ. (11)
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Substituting this expression into Ampere’s Law µ0j = ∇×B, and using the result to eliminate j
in (1),

µ0I(s) =

∫ s

0
ds′
∫ 2π

0
dθ
√
g

[
∂Bs
∂θ
∇θ ×∇s · ∇ζ +

dBθ
ds
∇s×∇θ · ∇ζ

]
(12)

=

∫ s

0
ds′
∫ 2π

0
dθ

[
−∂Bs
∂θ

+
dBθ
ds

]
=

∫ s

0
ds′
∫ 2π

0
dθ
dBθ
ds

= 2π[Bθ(s)−Bθ(0)].

At the magnetic axis (s = 0), Bθ must vanish, since in (7) it multiplies ∇θ which diverges on axis,
and the product must be regular. Hence,

Bθ(s) =
µ0I(s)

2π
. (13)

Using this result in (10), and applying a toroidal average (2π)−1
∫ 2π
0 dζ(. . .),

dI

ds
=

1

2π

dψ

ds

∫ 2π

0
dθ

∫ 2π

0
dζ
j||

B
− µ0I

4π2
dp

ds

∫ 2π

0
dθ

∫ 2π

0
dζ

1

B2
. (14)

The angular averages in this last expression can be written in terms of the flux surface average,
which for any quantity Q is

〈Q〉 =

∫ 2π
0 dθ

∫ 2π
0 dζ

√
gQ∫ 2π

0 dθ
∫ 2π
0 dζ

√
g

=

∫ 2π
0 dθ

∫ 2π
0 dζ

√
g(Q/B2)∫ 2π

0 dθ
∫ 2π
0 dζ/B2

. (15)

In the last equation, we have used the fact that the Jacobian in Boozer coordinates is
√
g =

(dψ/ds)(Bζ + ιBθ)/B
2, which follows from the product of (7) and (8). From (15) we see that

〈B2〉 =
4π2∫ 2π

0 dθ
∫ 2π
0 dζ/B2

. (16)

Using (15)-(16), (14) can be written

dI

ds
+

µ0I

〈B2〉
dp

ds
= 2π

dψ

ds

〈j||B〉
〈B2〉

. (17)

This result is the key equation for relating the current density 〈j||B〉 from a neoclassical code to
the radial profile of total current in an MHD equilibrium code. While we used Boozer angles to
derive this result,it is independent of any particular choice of angles.

There are several ways to implement (17) numerically, which we will now describe. In each case,
an iteration must be performed between the MHD equilibrium code and the bootstrap current code.
We will use a subscript i to denote the iteration step.

2.1 Low β approximation

It can be seen that the dp/ds term in (17) is smaller than the dI/ds term preceding it by a factor
of β. Therefore for β � 1 it is a reasonable approximation to neglect the dp/ds term. Then the
current profile is updated according to

dIi+1

ds
= 2π

dψ

ds

〈j||B〉i
〈B2

i 〉
. (18)

This is the approach adopted in bootsj.
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2.2 Lagging the dp/ds term

A more accurate approach to solving (17) numerically is to evaluate the updated dI/ds term using
the dp/ds term from the previous iteration:

dIi+1

ds
= − µ0Ii
〈B2

i 〉
dp

ds
+ 2π

dψ

ds

〈j||B〉i
〈B2

i 〉
. (19)

For β � 1 this iteration should converge rapidly since the dp/ds term is small, and since the
factor of I in the dp/ds term is smoother than dI/ds. This is the approach that is used for the
stellopt vboot iteration using sfincs.

2.3 Integrating factor

A third approach to solving (17) is to interpret this expression as an ordinary differential equation
for I(s), introducing an integrating factor:

d

ds
(IF ) = 2πF

dψ

ds

〈j||B〉
〈B2〉

, (20)

where the integrating factor is

F (s) = exp

(
µ0

∫ s

0

ds′

〈B2〉
dp

ds

)
. (21)

(Again, the integrand is evaluated at s′ rather than s.) One can see from this definition that
F = 1 +O(β). Imposing the boundary condition I(0) = 0 (there is no enclosed toroidal current on
the magnetic axis), the solution to (20) is then

I(s) =
2π

F (s)

∫ s

0
ds′′F

dψ

ds

〈j||B〉
〈B2〉

, (22)

where the integrand is evaluated at s′′. From this expression, we obtain the iterative scheme

Ii+1(s) =
2π

Fi(s)

∫ s

0
ds′′Fi

dψ

ds

〈j||B〉i
〈B2

i 〉
, (23)

3 VMEC definitions

The current profile is provided to vmec using two quantities. The first is the number curtor, which
is the total toroidal current inside the outermost vmec magnetic surface. My understanding of
vmec’s sign convention is that curtor is positive when the current is in the ∇ζ direction, where ζ
is the toroidal angle used in vmec (also called φ or v in the code and its documentation). I also
believe vmec’s ζ always increases in the counter-clockwise direction when the plasma is viewed from
above, so (R, ζ, Z) is a right-handed system. For comparison, (1) indicates that I(s) is positive
if the current is in the direction

√
g∇ζ, which is opposite to the ∇ζ direction if

√
g < 0. In my

understanding,
√
g is always < 0 in vmec output. (The notation

√
g is confusing, since square roots

are normally defined to be positive.) Thus,

curtor = signgs I(1), (24)
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where signgs= −1 is the name for the sign of
√
g in the vmec wout*.nc output file. In (24) we

have used the vmec convention that s = 1 is the outermost magnetic surface in the code. The
particular definition of s used in vmec is that s is the toroidal flux normalized to range from 0 on
the magnetic axis to 1 at the outermost surface.

The other relevant vmec input parameters are ac or ac aux f; I’ll write just ac here to denote
whichever one is used based on the pcurr type parameter. The profile determined by ac (using
a power series, spline, or other function) corresponds to dI/ds up to an overall scale factor. The
ac profile is always scaled by vmec so the total current at the outermost surface is curtor. Hence,

dI/ds

(dI/ds)s=1
=

ac(s)

ac(1)
. (25)

We can therefore set ac equal to (18), to (19), or to the radial derivative of (22) (times any constant.)
To evaluate any of these three expressions, we need dψ/ds. Since s ∝ ψ in vmec, dψ/ds is

just the constant ψedge, the toroidal flux at the outermost magnetic surface. However, we must be

careful about the sign. Applying the operation
∫ 1
0 ds

∫ 2π
0 dθ

√
g∇ζ · (. . .) to (8) gives∫ 1

0
ds

∫ 2π

0
dθ
√
gB · ∇ζ =

∫ 1

0
ds

∫ 2π

0
dθ
√
g
dψ

ds
∇s×∇θ · ∇ζ = 2π

dψ

ds
= 2πψedge. (26)

From this equation, we see the sign convention for dψ/ds in (22) is that a positive value corresponds
to the magnetic field pointing in the direction

√
g∇ζ. In contrast, I believe vmec’s convention is

that the output toroidal flux variable phi is positive if the magnetic field points in the direction
∇ζ. Also, phi is the flux not divided by 2π, in contrast to ψ in this note. Hence, the value of
dψ/ds to use in (22) is

dψ

ds
= signgs

phi(s = 1)

2π
. (27)

Note that the output quantity phips differs from phi by a factor 2πsigngs, so we could equivalently
use dψ/ds = phips.
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