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Derivation of the drift-kinetic equation

Introduction

The “drift-kinetic equation” is the basis for all calculations of neoclassical transport and flows, as

well as the bootstrap current. There are several variants of the equation; one standard form is
- Ze -
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where f, is the leading-order Maxwellian distribution function, 171 is the gyroaveraged perturbed
distribution function, b=B/B, B=

:éExb+2bxx+2£Bb VB+2;bb Vxb @)
is the sum of magnetic, ExB, and parallel drifts, Q = ZeB/(mc) is the gyrofrequency, and k =b-Vb is
the field curvature. The independent variables (which are held fixed in the gradients in (1)) are the
magnetic moment ,uzui / (2B) and leading-order total energy w=v"/ 2+ Zed,, where @, is the
leading-order electrostatic potential.

Several variations of the equation are possible. Often the parallel drift in (2) is dropped.

Sometimes the £ term in (1) is written +(Ze/m)Euafy / oW .

Orderings:

The drift-kinetic equation is derived from the Fokker-Planck equation by expanding in the small
parameter px=p/L=v,/ (QL) where p is the thermal gyroradius, and L is the scale length for
variation in all quantities: B, f,, f;, and ®. This is in contrast to gyrokinetics, in which f; and ®, are
permitted to vary on a scale length comparable to . The collision frequency v is ordered as v ~ p.Q) .
The electric field is taken to be electrostatic to leading order: E=-V®, +E. where E" ~ p.E, and the
leading-order electric field —~V®, is ordered using vg, g ~ P+, . Time derivatives are taken to be small:
o/ ot~ piQy.

Derivation

Begin with the Fokker-Planck equation Df = C{f} where
D:(gj v-(Vf), +—(E+1vaj V,f . )
ot ), m c
Subscripts on partial derivatives indicate quantities that are held fixed in differentiation.
We introduce cylindrical velocity-space coordinates (U s @, ql) so that v=yb+v, where
VLzuL(elcosgoJrezsinga), 4)
e, and e, are position-dependent unit vectors orthogonal to B, and ¢ is the gyrophase. The system

(e, €5, b) is right handed. A brief calculation gives
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for any quantity O . We next introduce

pu=vi/(2B) and W=0"/2+Zedy/m (6)
where v? = uf + Lmz . A bit of algebra gives
DW =(Ze/m)E -v (7)
where E° =E+V®,,
Dyz—%V-VB—MJr%EwL, (8)
and
Dp=-Q+G ©)

where G is an ugly bunch of terms of order p.Q (arising from (V) ). Thus, the Fokker-Planck
equation can be written
%+V-Vf+(DW)%+(D,U)%+(D¢)%=C{/’}. (10)
Here, and for the rest of the calculation, partial derivatives hold «, W , and ¢ fixed.
We now introduce the gyroaveraging operation O = (27[)_1 I 02 ﬂQ d@ where position, W , and u
are held fixed in the integration. Notice

DW =(Ze/ m)Ey,. (11)

To compute D_/J , We use

2
U7 /<
vv=qub+7i(1—bb) (12)

and bb:Vb =0 to obtain D_,u =0. Introducing f = f— f, it will turn out to be convenient to write the

Fokker-Planck equation as

o of of
5tV Vf+(DW)aW (Du )a +Df = c{f+f} (13)
Applying a gyroaverage,
g—kq‘b vF+ 28 EM f+Df c{f+71}. (14)
Subtracting this result from (13) gives
— * 0 a_ ~ —= — ey = =
vl.vjmr%m:l afv (D,u)£+Df—Df:C{f+f}—C{f+f}. (15)

Let us now begin to apply the ordering assumptions given above. The leading term in (10) is
-Q 0fy/ 0p=0 from the D¢ term, so fo =0, and f ~ p«f . We henceforth drop the overbar on fo-
Next, the leading terms in (14) are the O( p*Q]_”) terms

ub-Vfy=C{fy}. (16)




At this point, a rigorous derivation can be given to show f, must be a Maxwellian. For simplicity we will

not give this derivation here. If f, is Maxwellian, then C{ fo} =0, so (16) becomes yb-Vf, =0. Also,

we may linearize the collision operator and use C, { } C, { } to simplify the right-hand side of (14) to
c{r}.
Now consider the O( Q) terms in (15):

Using
v, = (vxb) (18)
op
then (17) may be integrated to obtain
h==p-Vfy (19)
where
p=Q"bxv. (20)
We now form the drift-kinetic equation from the O ( ,0*2 Qfo) terms in (14):
- Ze « = -
ob-Vh = Ejufo+ Dh=C{A}. @0
We must evaluate
Dfy ==D[p-Vfy]=~(Dp)-Vfy—p-D(Vfy) (22)
X Y
We can drop the time derivative in D since it is high order. First consider the term Y , writing
D(Vfy)= {v V+(DW)a }Vfo =v- VVf0+—E va—VfO (23)
The E* term is higher order than the others in (22), so it can be neglected. Then Y = E -VVf,. We find
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to be antisymmetric, so since VVf,, is symmetric, ¥ =0. We can evaluate X using (3), finding
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P (Q J 2 (25)

Gyroaveraging,

Dp [w ‘—Jb V[; ij+ Ze V[é jxei—%Exb
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where kK =b-Vb . Then applying

(26)

Vxb=bb-Vxb-kxb, 27)

we obtain D_p =-v, where v, is given in (2). Thus, (21) becomes



q‘b-Vfl—%E‘Tu‘lfo+vd Vfy=C{A}. (28)

Taking b-V®, =0 so E|>‘k = E;, we obtain the desired result (1), concluding the proof.



