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Derivation of the drift-kinetic equation 

Introduction 

The “drift-kinetic equation” is the basis for all calculations of neoclassical transport and flows, as 

well as the bootstrap current. There are several variants of the equation; one standard form is 
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where 0f  is the leading-order Maxwellian distribution function, 1f  is the gyroaveraged perturbed 

distribution function, / Bb B , B  B ,  
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is the sum of magnetic, E B , and parallel drifts,  /ZeB mc   is the gyrofrequency, and  κ b b  is 

the field curvature. The independent variables (which are held fixed in the gradients in (1)) are the 

magnetic moment  2 / 2B   and leading-order total energy 2
0/ 2W Ze   , where 0  is the 

leading-order electrostatic potential.  

 Several variations of the equation are possible. Often the parallel drift in (2) is dropped. 

Sometimes the ||E  term in (1) is written   || || 0/ /Ze m E f W   . 

Orderings: 

 The drift-kinetic equation is derived from the Fokker-Planck equation by expanding in the small 

parameter  * / /thL L      where   is the thermal gyroradius, and L  is the scale length for 

variation in all quantities: B , 0f , 1f , and  . This is in contrast to gyrokinetics, in which 1f  and 1  are 

permitted to vary on a scale length comparable to  . The collision frequency   is ordered as *~   . 

The electric field is taken to be electrostatic to leading order: 0 *  E E  where *
*~ E E , and the 

leading-order electric field 0  is ordered using *~ th  E B . Time derivatives are taken to be small: 
2
*/ ~t    . 

Derivation 

Begin with the Fokker-Planck equation  Df C f  where 
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Subscripts on partial derivatives indicate quantities that are held fixed in differentiation.  

We introduce cylindrical velocity-space coordinates  ||,  ,      so that ||  v b v  where 

  1 2cos sin    v e e , (4) 

1e  and 2e  are position-dependent unit vectors orthogonal to B , and   is the gyrophase. The system 

 1 2,  , e e b  is right handed. A brief calculation gives 
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for any quantity Q . We next introduce  

  2 / 2B     and   2
0/ 2 /W Ze m    (6) 

where 2 2 2
||    . A bit of algebra gives 

   */DW Ze m E v  (7) 

where *
0 E E , 

 
 || : Ze

D B
B B mB

 


     
vv b

v E v , (8) 

and 
 D G     (9) 

where G  is an ugly bunch of terms of order *   (arising from   v
). Thus, the Fokker-Planck 

equation can be written 
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Here, and for the rest of the calculation, partial derivatives hold  , W , and   fixed. 

We now introduce the gyroaveraging operation   21

0
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
    where position, W , and   

are held fixed in the integration. Notice  
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To compute D , we use 
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and : 0 bb b  to obtain 0D  . Introducing f f f  , it will turn out to be convenient to write the 

Fokker-Planck equation as 
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Applying a gyroaverage, 
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Subtracting this result from (13) gives 
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Let us now begin to apply the ordering assumptions given above. The leading term in (10) is 

0 / 0f      from the D  term, so 0 0f  , and *~f f . We henceforth drop the overbar on 0f . 

Next, the leading terms in (14) are the  *O f   terms 

  || 0 0f C f  b . (16) 



At this point, a rigorous derivation can be given to show 0f  must be a Maxwellian. For simplicity we will 

not give this derivation here. If 0f  is Maxwellian, then  0 0C f  , so (16) becomes || 0 0f  b . Also, 

we may linearize the collision operator and use    C g C g   to simplify the right-hand side of (14) to 

 C f . 

 Now consider the  * 0O f   terms in (15): 
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Using  
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then (17) may be integrated to obtain 

 1 0f f  ρ  (19) 

where  

 1  ρ b v . (20) 

We now form the drift-kinetic equation from the  2
* 0O f   terms in (14): 
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We must evaluate  

      1 0 0 0
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We can drop the time derivative in D  since it is high order. First consider the term Y , writing 
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The *E  term is higher order than the others in (22), so it can be neglected. Then 0Y f ρv . We find 
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to be antisymmetric, so since 0f  is symmetric, 0Y  . We can evaluate X  using (3), finding 
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Gyroaveraging, 
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where  κ b b . Then applying  
     b bb b κ b , (27) 

we obtain dD  ρ v  where dv  is given in (2). Thus, (21) becomes 
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Taking 0 0 b  so *
|| ||E E , we obtain the desired result (1), concluding the proof. 


