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1 Overview

In this note we will show the equivalence of two ways to define omnigenity: “the bounce-averaged radial drift is zero”
and “J is a flux function,” where J = 93 deé is the longitudinal adiabatic invariant. We will also show that J is indeed
conserved by the bounce-averaged motion.

To prove both of these facts, we will first derive a general result
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where v, indicates the magnetic drifts, (...) indicates a bounce averaged, and the other symbols are defined in the
next section. Therefore, if we take ¥ to be a radial coordinate and ¢ to be a field line label, we see (v;-Vy) =0 <

aJ/do =0.

2 Definitions

We take the magnetic field to be given by
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for some coordinates & and 7, which are otherwise left general. The field does not need to satisty MHD equilibrium or
any other condition, other than being divergence-free. We will use independent variables (¢, y,¢), where £ is arclength
along the field, satisfying B - V¢ = B. Note that the Jacobian of these coordinates is
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We can write the parallel velocity as
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where A = y1/W is the ratio of magnetic moment it = mv3 / (2B) to kinetic energy W = mv? /2, and m is the particle
mass. The J invariant can then be written as
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Here, £_ and £, are the bounce points, i.e. the values of £ at which v = 0. The time for a particle to complete a full

bounce is .
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The bounce average of any quantity g is

[+ qd[
. = - )
w e oyl A

3 Expression for the drifts
To proceed, we will use the following handy formula for the drifts:
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where Ze is the particle charge. We must be careful to define which velocity coordinates are considered fixed while
taking the gradient. If V is performed at fixed pt and W, we get the magnetic drifts (VB and curvature drift). If V
is performed at fixed ¢ and total energy W + Ze® for an electrostatic potential @, we get the magnetic and E x B
drifts. Let us now prove this result for the former case - throughout this note we will neglect electric fields and time
derivatives for simplicity.

To prove (9), we first write
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which is the VB drift. For the first right-hand side term of (I0)), we can use the identity
bxk=bx(b-Vb)=bx[(Vxb)xb]=(Vxb)b-b—bb-Vxb=Vxb—bb-Vxb. (13)
Therefore the first right-hand-side term of (T0) is
mvj m mj
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which is the curvature drift plus a parallel term. Thus we have demonstrated (9) for the case of fixed W. Note that the
parallel term in (9) does not affect v, - Vot or v4 - Vy since B- Vo =0 and B- Vy = 0.

4 Derivative of J

Next let us compute a derivative of J. In principle we should include contributions from the movement of the endpoints,
although these contributions end up vanishing in this case:
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The boundary terms vanish since v =0 at £ = (. and £ = {_. We are left with
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S Bounce averaged drift
Now let us compute the bounce-averaged drifts, to compare to the preceding equation.
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We apply a vector identity and write out the divergence in general coordinates:
[V (|v|b)]- Ve = V-(Jvy|bxVa)+|y|b-VxVa (18)
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The first term is an integral of a derivative:
[+ a
/L dl= (Ve|v|bx Va Vo) = [Vglv[bx Va-Vi], —[ye|vy|bxVa-Vi], =0. (23)
Therefore we are left with
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Comparing to (I6), we see
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Since we can also write the field as
B=V(—y)xVa, (26)
we can make the simultaneous replacements {a — —7,y — o }. Hence, it is also true that
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We have thus proved (I)-(2).

6 Conservation of J

Note that J = J (a, 7,1, W). Since y and W are conserved, J varies along a particle trajectory only through variation
of & and y. Therefore the total time derivative of J along a bounce-averaged particle trajectory is
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Hence J is indeed conserved under the bounce-averaged motion.

dydoa Jdody =0. (28)

7 Further reading

Derivations of the relations (I)-(2) can be found in many papers. One is Catto & Hazeltine, “Bumpy torus transport
in the low collisionality frequency limit”, Physics of Fluids 24, 290 (1981); see equations (1)-(19) and Appendix A.
Another is Calvo et al, “The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity,’
Plasma Physics and Controlled Fusion 59, 055014 (2017); see eq (34)-(36) and Appendix A.
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