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1 Overview
In this note we will show the equivalence of two ways to define omnigenity: “the bounce-averaged radial drift is zero”
and “J is a flux function,” where J =

¸
v||dℓ is the longitudinal adiabatic invariant. We will also show that J is indeed

conserved by the bounce-averaged motion.
To prove both of these facts, we will first derive a general result

⟨vd ·∇α⟩= m
Zeτb

∂J
∂γ

, (1)

⟨vd ·∇γ⟩=− m
Zeτb

∂J
∂α

, (2)

where vd indicates the magnetic drifts, ⟨. . .⟩ indicates a bounce averaged, and the other symbols are defined in the
next section. Therefore, if we take γ to be a radial coordinate and α to be a field line label, we see ⟨vd ·∇γ⟩ = 0 ⇔
∂J/∂α = 0.

2 Definitions
We take the magnetic field to be given by

B = ∇α ×∇γ (3)

for some coordinates α and γ , which are otherwise left general. The field does not need to satisfy MHD equilibrium or
any other condition, other than being divergence-free. We will use independent variables (α,γ, ℓ), where ℓ is arclength
along the field, satisfying B ·∇ℓ= B. Note that the Jacobian of these coordinates is

√
g =

1
∇α ×∇γ ·∇ℓ

=
1

B ·∇ℓ
=

1
B
. (4)

We can write the parallel velocity as

∣∣v||∣∣=√
v2
|| =

√
v2 − v2

⊥ = v

√
1−

v2
⊥

v2 = v

√
1−

mv2
⊥

2B
2

mv2 B = v
√

1− µ

W
B = v

√
1−λB, (5)

where λ = µ/W is the ratio of magnetic moment µ = mv2
⊥/(2B) to kinetic energy W = mv2/2, and m is the particle

mass. The J invariant can then be written as

J = 2
ˆ ℓ+

ℓ−

∣∣v||∣∣dℓ= 2v
ˆ ℓ+

ℓ−

√
1−λBdℓ. (6)
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Here, ℓ− and ℓ+ are the bounce points, i.e. the values of ℓ at which v|| = 0. The time for a particle to complete a full
bounce is

τb =

ˆ
dt = 2

ˆ ℓ+

ℓ−

dℓ∣∣v||∣∣ . (7)

The bounce average of any quantity q is

⟨q⟩= 2
τb

ˆ ℓ+

ℓ−

q dℓ∣∣v||∣∣ =
´ ℓ+
ℓ−

q dℓ
|v|||´ ℓ+

ℓ−
dℓ
|v|||

. (8)

3 Expression for the drifts
To proceed, we will use the following handy formula for the drifts:

vd =
mv||
ZeB

∇×
(
v||b

)
+(small term || to B) , (9)

where Ze is the particle charge. We must be careful to define which velocity coordinates are considered fixed while
taking the gradient. If ∇ is performed at fixed µ and W , we get the magnetic drifts (∇B and curvature drift). If ∇

is performed at fixed µ and total energy W + ZeΦ for an electrostatic potential Φ, we get the magnetic and E×B
drifts. Let us now prove this result for the former case - throughout this note we will neglect electric fields and time
derivatives for simplicity.

To prove (9), we first write

mv||
ZeB

∇×
(
v||b

)
=

mv2
||

ZeB
∇×b+

mv||
ZeB

(
∇v||

)
×b. (10)

In the second term,

∇v|| = ∇

(
v
√

1−λB
)
=

v
2
√

1−λB
(−λ∇B) =−v2λ∇B

2v||
(11)

so we get a term
mv||
ZeB

(
∇v||

)
×b =−mv2λ

2ZeB
∇B×b =

mv2
⊥

2ZeB2 b×∇B, (12)

which is the ∇B drift. For the first right-hand side term of (10), we can use the identity

b×κ = b× (b ·∇b) = b× [(∇×b)×b] = (∇×b)b ·b−bb ·∇×b = ∇×b−bb ·∇×b. (13)

Therefore the first right-hand-side term of (10) is

mv2
||

ZeB
∇×b =

mv2
||

ZeB
b×κ +

mv2
||

ZeB
bb ·∇×b, (14)

which is the curvature drift plus a parallel term. Thus we have demonstrated (9) for the case of fixed W . Note that the
parallel term in (9) does not affect vd ·∇α or vd ·∇γ since B ·∇α = 0 and B ·∇γ = 0.

4 Derivative of J
Next let us compute a derivative of J. In principle we should include contributions from the movement of the endpoints,
although these contributions end up vanishing in this case:

∂J
∂γ

= v
ˆ ℓ+

ℓ−

dℓ√
1−λB

(
−λ

∂B
∂γ

)
+

[
2
∣∣v||∣∣ ∂ℓ+

∂γ

]
ℓ+

−
[

2
∣∣v||∣∣ ∂ℓ−

∂γ

]
ℓ−

. (15)

The boundary terms vanish since v|| = 0 at ℓ= ℓ+ and ℓ= ℓ−. We are left with

∂J
∂γ

= v
ˆ ℓ+

ℓ−

dℓ√
1−λB

(
−λ

∂B
∂γ

)
. (16)
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5 Bounce averaged drift
Now let us compute the bounce-averaged drifts, to compare to the preceding equation.

⟨vd ·∇α⟩= m
Ze

2
τb

ˆ ℓ+

ℓ−

dℓ∣∣v||∣∣
∣∣v||∣∣
B

[
∇×

(∣∣v||∣∣b
)]

·∇α (17)

We apply a vector identity and write out the divergence in general coordinates:[
∇×

(∣∣v||∣∣b
)]

·∇α = ∇ ·
(∣∣v||∣∣b×∇α

)
+
∣∣v||∣∣b ·∇×∇α (18)

= ∇ ·
(∣∣v||∣∣b×∇α

)
(19)

=
1
√

g

[
∂

∂ℓ

(√
g
∣∣v||∣∣b×∇α ·∇ℓ

)
+

∂

∂γ

(√
g
∣∣v||∣∣b×∇α ·∇γ

)]
(20)

= B
∂

∂ℓ

(√
g
∣∣v||∣∣b×∇α ·∇ℓ

)
+B

∂

∂γ

(∣∣v||∣∣) (21)

Thus we have

⟨vd ·∇α⟩= m
Ze

2
τb

ˆ ℓ+

ℓ−

dℓ
B

[
B

∂

∂ℓ

(√
g
∣∣v||∣∣b×∇α ·∇ℓ

)
+B

∂

∂γ

(∣∣v||∣∣)] . (22)

The first term is an integral of a derivative:
ˆ ℓ+

ℓ−
dℓ

∂

∂ℓ

(√
g
∣∣v||∣∣b×∇α ·∇ℓ

)
=
[√

g
∣∣v||∣∣b×∇α ·∇ℓ

]
ℓ+

−
[√

g
∣∣v||∣∣b×∇α ·∇ℓ

]
ℓ−

= 0. (23)

Therefore we are left with

⟨vd ·∇α⟩= m
Ze

2
τb

ˆ ℓ+

ℓ−
dℓ

∂

∂γ

(∣∣v||∣∣)= mv
Zeτb

ˆ ℓ+

ℓ−

dℓ√
1−λB

(
−λ

∂B
∂γ

)
(24)

Comparing to (16), we see

⟨vd ·∇α⟩= m
Zeτb

∂J
∂γ

. (25)

Since we can also write the field as
B = ∇(−γ)×∇α, (26)

we can make the simultaneous replacements {α →−γ,γ → α}. Hence, it is also true that

⟨vd ·∇γ⟩=− m
Zeτb

∂J
∂α

. (27)

We have thus proved (1)-(2).

6 Conservation of J

Note that J = J (α,γ,µ,W ). Since µ and W are conserved, J varies along a particle trajectory only through variation
of α and γ . Therefore the total time derivative of J along a bounce-averaged particle trajectory is

dJ
dt

=
dα

dt
∂J
∂α

+
dγ

dt
∂J
∂γ

= ⟨vd ·∇α⟩ ∂J
∂α

+ ⟨vd ·∇γ⟩ ∂J
∂γ

=
m

Zeτb

(
∂J
∂γ

∂J
∂α

− ∂J
∂α

∂J
∂γ

)
= 0. (28)

Hence J is indeed conserved under the bounce-averaged motion.

7 Further reading
Derivations of the relations (1)-(2) can be found in many papers. One is Catto & Hazeltine, “Bumpy torus transport
in the low collisionality frequency limit”, Physics of Fluids 24, 290 (1981); see equations (1)-(19) and Appendix A.
Another is Calvo et al, “The effect of tangential drifts on neoclassical transport in stellarators close to omnigeneity,”
Plasma Physics and Controlled Fusion 59, 055014 (2017); see eq (34)-(36) and Appendix A.
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