Math 246, Professor David Levermore Group Work Exercises for Discussion Wednesday, 18 November 2020

Set A of Group Work Exercises [4]

Find a general solution for each of the following systems.

A.1.
$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$
 where $\mathbf{A} = \begin{pmatrix} 7 & -1 \\ -5 & 3 \end{pmatrix}$.
A.2. $\mathbf{y}' = \mathbf{B}\mathbf{y}$ where $\mathbf{B} = \begin{pmatrix} 7 & -2 \\ 2 & 3 \end{pmatrix}$.
A.3. $\mathbf{z}' = \mathbf{C}\mathbf{z}$ where $\mathbf{C} = \begin{pmatrix} 7 & -2 \\ 4 & 3 \end{pmatrix}$.
A.4. $\mathbf{x}' = \mathbf{A}\mathbf{x}$ where $\mathbf{A} = \begin{pmatrix} 0 & -8 & 1 \\ 8 & 0 & 4 \\ -1 & -4 & 0 \end{pmatrix}$.

Set B of Group Work Exercises [3]

Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 7 & -2 \\ 4 & 3 \end{pmatrix} \,.$$

- B.1. Find all the eigenvalues of \mathbf{A} .
- B.2. For each eigenvalue of A find all of its eigenvectors.
- B.3. Diagonalize A.

Set C of Group Work Exercises [3]

A 4×4 matrix **B** has the eigenpairs

$$\left(-3, \begin{pmatrix}1\\1\\1\\1\end{pmatrix}\right), \quad \left(-1, \begin{pmatrix}1\\1\\-1\\-1\\-1\end{pmatrix}\right), \quad \left(2, \begin{pmatrix}1\\-1\\-1\\1\end{pmatrix}\right), \quad \left(4, \begin{pmatrix}1\\-1\\1\\-1\\-1\end{pmatrix}\right)\right)$$

- C.1. Give an invertible matrix V and a diagonal matrix D such that $\mathbf{B} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$. (You do not have to compute \mathbf{V}^{-1} .
- C.2. Give a fundamental matrix for the system $\mathbf{x}' = \mathbf{B}\mathbf{x}$.
- C.3. Compute det(**B**). Hint: Use the fact that $\mathbf{B} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$ along with the fact from Chapter 3 that for any square matrices **A** and **C** we have det($\mathbf{A}\mathbf{C}$) = det(\mathbf{A}) det(\mathbf{C}).