Math 246, Professor David Levermore Group Work Exercises for Discussion Wednesday, 7 October 2020

Set A of Group Work Exercises [3]

Consider the differential equation

$$u'' + 6u' + 9u = 0.$$

It has solutions $u = e^{-3t}$ and $u = t e^{-3t}$.

- A.1. Compute the Wronskian $Wr[e^{-3t}, t e^{-3t}](t)$. How can we know that $Wr[e^{-3t}, t e^{-3t}](t)$ is proportional to e^{-6t} before we compute it? (Hint: Abel.)
- A.2. Why are e^{-3t} and $t e^{-3t}$ linearly independent functions?
- A.3. Find the natural fundamental set of solutions to the equation associated with t = 0.

Set B of Group Work Exercises [3]

Consider the differential equation

$$(t^2 + 4)v'' - 2tv' + 2v = 0.$$

It has solution v = t.

- B.1. Find a general solution of its associated Abel equation.
- B.2. Find a general solution to it.
- B.3. Find the natural fundamental set of solutions to it associated with t = 2.

Set C of Group Work Exercises [4]

C.1. Give a real general solution to the equation

$$u'''' - 5u''' - 6u'' = 0.$$

C.2. Give a real general solution to the equation

$$(D^2 + 8D + 41)^3 (D + 7)^2 w = 0.$$

C.3. Give a real general solution to the equation

$$y'' - 36y = 8e^{2t}$$

given that $-\frac{1}{4}e^{2t}$ is a solution to it.

C.4. Give a real general solution to the equation

$$v'''' + 13v'' + 36v = 10e^t,$$

given that $\frac{1}{5}e^t$ is a solution to it.