Math 246, Professor David Levermore Group Work Exercises for Discussion Wednesday, 9 September 2020

First Set of Group Work Exercises [3]

Find an explicit general solution for each of the following differential equations.

(1)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3x - x^2$$

(2)
$$\frac{\mathrm{d}u}{\mathrm{d}x} = e^{-3u}\cos(3x)$$

(3)
$$\frac{\mathrm{d}y}{\mathrm{d}r} = e^{-r}(4 + y^2)$$

Second Set of Group Work Exercises [3]

Find the explicit solution for each of the following initial-value problems.

(1)
$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3x - x^2$$
, $x(0) = 1$.
(2) $\frac{\mathrm{d}u}{\mathrm{d}x} = e^{-3u}\cos(3x)$, $u(0) = 0$.
(3) $\frac{\mathrm{d}y}{\mathrm{d}r} = e^{-r}(4 + y^2)$, $y(0) = 2$.

Third Set of Group Work Exercises [4]

Consider the differential equation

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{(v+5)^2(v+1)^3(7-v)}{v-3} \,.$$

Let $v_1(t)$ and $v_2(t)$ be the solutions of it that satisfy $v_1(2) = -3$ and $v_2(-1) = 5$. (You do not need to find these solutions!)

- (1) Sketch the phase-line portrait for the equation over the interval [-8, 8]. Identify points where solutions are undefined with a \circ . Identify stationary points with a \bullet . Indicate the direction that solutions move as t increases along each interval between such points with an arrow.
- (2) Classify each stationary point as being either stable, unstable, or semistable.
- (3) For each stationary point identify the set of initial-values v(0) such that the solution v(t) converges to that stationary point as $t \to -\infty$.
- (4) Evaluate $\lim_{t\to\infty} (v_2(t) v_1(t)).$