
Solutions to Final Exam Sample Problems, Math 246, Fall 2020

(1) Consider the differential equation
dy

dt
= (9− y2)y2.

(a) Find all of its stationary points and classify their stability.
(b) Sketch its phase-line portrait in the interval −5 ≤ y ≤ 5.
(c) If y1(0) = −1, how does the solution y1(t) behave as t→∞?
(d) If y2(0) = 4, how does the solution y2(t) behave as t→∞?
(e) Evaluate

lim
t→∞

(
y2(t)− y1(t)

)
.

Solution (a,b). The right-hand side factors as (3 + y)(3 − y)y2. The stationary
solutions are y = −3, y = 0, and y = 3. Therefore a sign analysis of (3 + y)(3− y)y2

shows that the phase-line portrait for this equation is

− + + −
←←←← • →→→→ • →→→→ • ←←←← y

−3 0 3
unstable semistable stable

Solution (c). The phase-line shows that if y1(0) = −1 then y1(t)→ 0 as t→∞.

Solution (d). The phase-line shows that if y2(0) = 4 then y2(t)→ 3 as t→∞.

Solution (e). The answers to parts (c) and (d) show that

lim
t→∞

(
y2(t)− y1(t)

)
= lim

t→∞
y2(t)− lim

t→∞
y1(t) = 3− 0 = 3 .

(2) Solve each of the following initial-value problems and give the interval of definition
of each solution.

(a) x′ =
t

(t2 + 1)x
, x(0) = −3 .

(b)
dy

dt
+

2ty

1 + t2
= t2 , y(0) = 1 .

(c)
dy

dx
+
exy + 2x

2y + ex
= 0 , y(0) = 0 .

Solution (a). This is a nonautonomous, separable equation. It is undefined when
x = 0. Its separated form is

x dx =
t

t2 + 1
dt .

Integrate this to obtain

1
2
x2 = 1

2
log(t2 + 1) + c .

The initial condition x(0) = −3 gives 1
2
(−3)2 = 1

2
log(1)+c, which implies that c = 9

2
.

Therefore the solution is governed implicitly by

x2 = log(t2 + 1) + 9 .
1
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Hence, because x(0) = −3 < 0, the explicit solution of the initial-value problem is

x = −
√

log(t2 + 1) + 9 .

Because log(t2 + 1) > 0 for every t, the interval of definition for this solution is
(−∞,∞).

Solution (b). This is a nonhomogeneous, linear equation that is already in normal
form. An integrating factor is

exp

(∫ t

0

2s

1 + s2
ds

)
= exp

(
log(1 + t2)

)
= 1 + t2 ,

so that the integrating factor form is

d

dt

(
(1 + t2)y

)
= (1 + t2)t2 = t2 + t4 .

Integrate this to obtain

(1 + t2)y = 1
3
t3 + 1

5
t5 + c .

The initial condition y(0) = 1 implies that c = (1 + 02) · 1− 1
3
03− 1

5
05 = 1. Therefore

y =
1 + 1

3
t3 + 1

5
t5

1 + t2
.

This solution exists for every t, so its interval of definition is (−∞,∞).

Remark. Because this equation is linear, we can see that the interval of definition
of its solution is (−∞,∞) without solving it because both its coefficient and forcing
are continuous over (−∞,∞).

Solution (c). The initial-value problem is

dy

dx
+
exy + 2x

2y + ex
= 0 , y(0) = 0 .

Express this equation in the differential form

(exy + 2x) dx+ (2y + ex) dy = 0 .

This differential form is exact because

∂y(e
xy + 2x) = ex = ∂x(2y + ex) = ex .

Therefore we can find H(x, y) such that

∂xH(x, y) = exy + 2x , ∂yH(x, y) = 2y + ex .

The first equation implies H(x, y) = exy + x2 + h(y). Plugging this into the second
equation gives

ex + h′(y) = 2y + ex ,

which yields h′(y) = 2y. Taking h(y) = y2, yields H(x, y) = exy+ x2 + y2. Therefore
a general solution is

exy + x2 + y2 = c .

The initial condition y(0) = 0 implies that c = e0 · 0 + 02 + 02 = 0. Therefore

y2 + exy + x2 = 0 .
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The quadratic formula then yields the explicit solution

y =
−ex +

√
e2x − 4x2

2
.

Here the positive square root is taken because that solution satisfies the initial con-
dition. Its interval of definition is the largest interval (xL, xR) containing the initial
time 0 over which e2x > 4x2. We cannot find the endpoints of this interval explicitly.

(3) Determine constants a and b such that the following differential equation is exact.
Then find a general solution in implicit form.(

yex + y3
)

dx+
(
aex + bxy2

)
dy = 0 .

Solution. This equation will be exact whenever

∂y
(
yex + y3

)
= ∂x

(
aex + bxy2

)
.

Because
∂y
(
yex + y3

)
= ex + 3y2 ,

∂x
(
aex + bxy2

)
= aex + by2 ,

the equation will be exact whenever a = 1 and b = 3.

When a = 1 and b = 3 there exists H(x, y) such that

∂xH(x, y) = yex + y3 , ∂yH(x, y) = ex + 3xy2 .

The second equation implies H(x, y) = exy + xy3 + h(x). Plugging this into the first
equation gives

exy + y3 + h′(x) = yex + y3 ,

which yields h′(x) = 0. Taking h(x) = 0 yields H(x, y) = exy + xy3. Therefore a
general solution is

exy + xy3 = c .

(4) Consider the following Matlab function m-file.

function [t,y] = solveit(ti, yi, tf, n)
t = zeros(n + 1, 1); y = zeros(n + 1, 1);
t(1) = ti; y(1) = yi; h = (tf - ti)/n;
for i = 1:n
t(i + 1) = t(i) + h; y(i + 1) = y(i) + h*((t(i))̂ 4 + (y(i))̂ 2);
end

Suppose that the input values are ti = 1, yi = 1, tf = 5, and n = 40.
(a) What initial-value problem is being approximated numerically?
(b) What numerical method is being used?
(c) What is the step size?
(d) What are the output values of t(2), y(2), t(3), and y(3)?
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Solution (a). The initial-value problem being approximated numerically is

dy

dt
= t4 + y2 , y(1) = 1 .

Solution (b). The explicit Euler (forward Euler) method is being used.

Solution (c). The step size is

h =
tF− tI

n
=

5− 1

40
=

4

40
=

1

10
= .1 .

Solution (d). By carrying out the “for” loop in the Matlab code for i = 1 and i = 2
we obtain the output values

t(2) = t(1) + h = 1 + .1 = 1.1 ,

y(2) = y(1) + h*((t(1))̂ 4 + (y(1))̂ 2) = 1 + .1(14 + 12) = 1 + .1 · 2 = 1.2 .

t(3) = t(2) + h = 1.1 + .1 = 1.2 ,

y(3) = y(2) + h*((t(2))̂ 4 + (y(2))̂ 2) = 1.2 + .1
(
(1.1)4 + (1.2)2

)
.

You DO NOT have to work out the arithmetic to compute y(3)! If you did then you
would obtain y(3) = 1.49041.

Remark. You should be able to answer similar questions that employ either the
Runge-trapeziodal or Runge-midpoint method.

(5) Let y(t) be the solution of the initial-value problem

y′ = 4t(y + y2) , y(0) = 1 .

(a) Use two steps of the explicit Euler method to approximate y(1).
(b) Use one step of the Runge-trapeziodal method to approximate y(1).
(c) Use one step of the Runge-midpoint method to approximate y(1).

Solution (a). The explicit (forward) Euler method is

fn = f(yn, tn) , yn+1 = yn + hfn , tn+1 = tn + h ,

where h is the time step, t0 is the initial time, and y0 is the initial value.

When the explicit Euler method is applied with h = 0.5, t0 = 0, y0 = 1, and
f(y, t) = 4t(y + y2) for two steps

f0 = f(y0, t0) = f(1, 0) = 4 · 0 · (1 + 12) = 0 ,

y1 = y0 + hf0 = 1 + 0.5 · 0 = 1 ,

t1 = t0 + h = 0 + 0.5 = 0.5 ,

f1 = f(y1, t1) = f(1, 0.5) = 4 · 0.5 · (1 + 12) = 4 ,

y2 = y1 + hf1 = 1 + 0.5 · 4 = 3 .

Therefore the approximation is

y(1) ≈ y2 = 3 .
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Solution (b). The Runge-trapeziodal method is

fn = f(yn, tn) , ỹn+1 = yn + hfn , tn+1 = tn + h ,

f̃n+1 = f(ỹn+1, tn+1) , yn+1 = yn + h
2
(fn + f̃n+1) .

where h is the time step, t0 is the initial time, and y0 is the initial value.

When the Runge-trapezoidal method is applied with h = 1, t0 = 0, y0 = 1, and
f(y, t) = 4t(y + y2) for one step

f0 = f(y0, t0) = f(1, 0) = 4 · 0 · (1 + 12) = 0 ,

ỹ1 = y0 + hf0 = 1 + 1 · 0 = 1 ,

t1 = t0 + h = 0 + 1 = 1 ,

f̃1 = f(y1, t1) = f(1, 1) = 4 · 1 · (1 + 12) = 8 ,

y1 = y0 + h
2
(f0 + f̃1) = 1 + 0.5 · (0 + 8) = 5 .

Therefore the approximation is

y(1) ≈ y1 = 5 .

Solution (c). The Runge-midpoint method is

fn = f(yn, tn) , yn+ 1
2

= yn + h
2
fn , tn+ 1

2
= tn + h

2
,

fn+ 1
2

= f(yn+ 1
2
, tn+ 1

2
) , yn+1 = yn + hfn+ 1

2
, tn+1 = tn + h .

where h is the time step, t0 is the initial time, and y0 is the initial value.

When the Runge-midpoint method is applied with h = 1, t0 = 0, y0 = 1, and
f(y, t) = 4t(y + y2) for one step

f0 = f(y0, t0) = f(1, 0) = 4 · 0 · (1 + 12) = 0 ,

y 1
2

= y0 + h
2
f0 = 1 + .5 · 0 = 1 ,

t 1
2

= t0 + h
2

= 0 + 0.5 = 0.5 ,

f 1
2

= f(y 1
2
, t 1

2
) = f(1, 0.5) = 4 · 0.5 · (1 + 12) = 4 ,

y1 = y0 + hf 1
2

= 1 + 1 · 4 = 5 .

Therefore the approximation is

y(1) ≈ y1 = 5 .

(6) Consider the following Matlab commands.

[t,y] = ode45(@(t,y) y.*(y−1).*(2−y), [0,3], -0.5:0.5:2.5);
plot(t,y)

The following questions need not be answered in Matlab format!
(a) What is the differential equation being solved numerically?
(b) Give the initial condition for each solution being approximated?
(c) Over what time interval are the solutions being approximated?
(d) Sketch each of these solutions over this time interval on a single graph.

Label the initial value of each solution clearly.
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(e) What is the limiting behavior of each solution as t→∞?

Solution (a). The differential equation being solved numerically is

y′ = y(y − 1)(2− y) .

Solution (b). There are seven solutions being approximated numerically. Their
initial conditions are

y(0) = −0.5 , y(0) = 0.0 , y(0) = 0.5 , y(0) = 1.0 ,

y(0) = 1.5 , y(0) = 2.0 , y(0) = 2.5 .

Solution (c). These solutions are being approximated over the time interval [0, 3].

Solutions (d) and (e). A sign analysis of y(y− 1)(2− y) shows that the phase-line
portrait for this equation is

+ − + −
→→→→ • ←←←← • →→→→ • ←←←← y

0 1 2
stable unstable stable

This shows that:
for the initial condition y(0) = −0.5 y(t) increases to 0 as t→∞ ;

for the initial condition y(0) = 0.0 y(t) = 0 for every t > 0 ;

for the initial condition y(0) = 0.5 y(t) decreases to 0 as t→∞ ;

for the initial condition y(0) = 1.0 y(t) = 1 for every t > 0 ;

for the initial condition y(0) = 1.5 y(t) increases to 2 as t→∞ ;

for the initial condition y(0) = 2.0 y(t) = 2 for every t > 0 ;

for the initial condition y(0) = 2.5 y(t) decreases to 2 as t→∞ .

If someone asks for it, the sketch for part (d) will be given during the review session.
It should be fairly evident from the above analysis.

(7) Suppose we are using the Runge-midpoint method to numerically approximate the
solution of an initial-value problem over the time interval [1, 9]. By what factor would
we expect the error to decrease when we increase the number of time steps taken from
400 to 2000?

Solution. The Runge-midpoint method is second order, which means its (global)
error scales like h2 where h is the step size. When the number of time steps taken
increases from 400 to 2000, the step size h decreases by a factor of 1

5
. Therefore the

error will decrease (like h2) by a factor of (1
5
)2 = 1

25
.

Remark. You should be able to answer similar questions about the explicit Euler,
Runge-trapezoidal, and Runge-Kutta methods.
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(8) A NASA engineer has used the Runge-Kutta method to approximate the solution of
an initial-value problem over the time interval [2, 10] with 800 uniform time steps.
(a) How many uniform time steps are needed to reduce the global error by a factor

of 1
256

?
(b) What is the order of a numerical method that reduces the global error by a

factor of 1
256

when the step size is halved?

Solution (a). The Runge-Kutta method is fourth order. Because

1
256

=
(
1
4

)4
,

we see that 4 · 800 = 3200 time steps are needed.

Solution (b). When the time step is halved the global error of an nth order method
is reduced by a factor of (

1
2

)n
.

Because
1

256
=
(
1
2

)8
,

we see that the method must be eighth order.

(9) Give an explicit real-valued general solution of the following equations.
(a) y′′ − 2y′ + 5y = t et + cos(2t)

(b) ü− 3u̇− 10u = t e−2t

(c) v′′ + 9v = cos(3t)

(d) w′′′′ + 13w′′ + 36w = 9 sin(t)

Solution (a). This is a constant coefficient, nonhomogeneous, linear equation. Its
characteristic polynomial is

p(z) = z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

This has the conjugate pair of roots 1 ± i2, which yields a general solution of the
associated homogeneous problem

yH(t) = c1e
t cos(2t) + c2e

t sin(2t) .

The forcing t et + cos(2t) has composite characteristic form because it is the sum of
two terms, each of which has characteristic form. The forcing term tet has degree
d = 1, characteristic µ + iν = 1, and multiplicity m = 0. The forcing term cos(2t)
has degree d = 0, characteristic µ + iν = i2 and multiplicity m = 0. Because their
characteristics are different, these terms must be treated separately. A particular
solution yP (t) can be found by either the method of Key Identity Evaluations or the
method of Undetermined Coefficients.

Key Indentity Evaluations. The forcing term t et has degree d = 1, characteristic
µ+ iν = 1, and multiplicity m = 0. Because m = 0 and m+ d = 1, we need the Key
Identity and its first derivative

L(ezt) = (z2 − 2z + 5)ezt ,

L(t ezt) = (z2 − 2z + 5)t ezt + (2z − 2) ezt .
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Evaluate these at z = 1 to find L(et) = 4et and L(t et) = 4t et. Dividing the second
of these equations by 4 yields L(1

4
t et) = t et, which implies yP1(t) = 1

4
t et.

The forcing term cos(2t) has degree d = 0, characteristic µ + iν = i2, and multi-
plicity m = 0. Because m = m+ d = 0, we only need the Key Identity,

L(ezt) = (z2 − 2z + 5)ezt .

Evaluating this at z = i2 to find L(ei2t) = (1− i4)ei2t and dividing by 1− i4 yeilds

L

(
ei2t

1− i4

)
= ei2t .

Because cos(2t) = Re(ei2t), the above equation implies

yP2(t) = Re

(
ei2t

1− i4

)
= Re

(
(1 + i4)ei2t

12 + 42

)
= 1

17
Re
(
(1 + i4)ei2t

)
= 1

17

(
cos(2t)− 4 sin(2t)

)
.

Upon combining these two particular solutions with the general solution of the
associated homogeneous problem found earlier we obtain the general solution

y = yH(t) + yP1(t) + yP2(t)

= c1e
t cos(2t) + c2e

t sin(2t) + 1
4
t et + 1

17
cos(2t)− 4

17
sin(2t) .

Undetermined Coefficients. The forcing term t et has degree d = 1, characteristic
µ + iν = 1, and multiplicity m = 0. Because m = 0 and m + d = 1, we seek a
particular solution of the form

yP1(t) = A0t e
t + A1e

t .

Because

y′P1(t) = A0t e
t + (A0 + A1)e

t , y′′P1(t) = A0t e
t + (2A0 + A1)e

t ,

we see that

LyP1(t) = y′′P1(t)− 2y′P1(t) + 5yP1(t)

=
(
A0t e

t + (2A0 + A1)e
t
)
− 2
(
A0t e

t + (A0 + A1)e
t
)

+ 5
(
A0t e

t + A1e
t
)

= 4A0t e
t + 4A1e

t .

Setting 4A0t e
t + 4A1e

t = t et, we see that 4A0 = 1 and 4A1 = 0, whereby A0 = 1
4

and A1 = 0. Hence, a particular solution is yP1(t) = 1
4
t et.

The forcing term cos(2t) has degree d = 0, characteristic µ + iν = i2, and multi-
plicity m = 0. Because m = 0 and m + d = 0, we seek a particular solution of the
form

yP2(t) = A cos(2t) +B sin(2t) .

Because
y′P2(t) = −2A sin(2t) + 2B cos(2t) ,

y′′P2(t) = −4A cos(2t)− 4B sin(2t) ,
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we see that

LyP2(t) = y′′P2(t)− 2y′P2(t) + 5yP2(t)

=
(
− 4A cos(2t)− 4B sin(2t)

)
− 2
(
− 2A sin(2t) + 2B cos(2t)

)
+ 5
(
A cos(2t) +B sin(2t)

)
= (A− 4B) cos(2t) + (B + 4A) sin(2t) .

Setting (A− 4B) cos(2t) + (B + 4A) sin(2t) = cos(2t), we see that

A− 4B = 1 , B + 4A = 0 .

This system can be solved by any method you choose to find A = 1
17

and B = − 4
17

,
whereby a particular solution is

yP2(t) = 1
17

cos(2t)− 4
17

sin(2t) .

Upon combining these two particular solutions with the general solution of the
associated homogeneous problem found earlier we obtain the general solution

y = yH(t) + yP1(t) + yP2(t)

= c1e
t cos(2t) + c2e

t sin(2t) + 1
4
t et + 1

17
cos(2t)− 4

17
sin(2t) .

Solution (b). The equation is

ü− 3u̇− 10u = te−2t .

This is a constant coefficient, nonhomogeneous, linear equation. Its characteristic
polynomial is

p(z) = z2 − 3z − 10 = (z − 5)(z + 2) .

This has the two real roots 5 and −2, which yields a general solution of the associated
homogeneous problem

uH(t) = c1e
5t + c2e

−2t .

The forcing t e−2t has characteristic form with degree d = 1, characteristic µ + iν =
−2, and multiplicity m = 1. Therefore a particular solution uP (t) can be found
by either the method of Key Identity Evaluations or the method of Undetermined
Coefficients.

Key Indentity Evaluations. Because m = 1 and m+ d = 2, we will need the first
and second derivative of the Key Identity, which are computed from the Key Identity
as

L(ezt) = (z2 − 3z − 10) ezt ,

L(t ezt) = (z2 − 3z − 10) t ezt + (2z − 3) ezt ,

L(t2ezt) = (z2 − 3z − 10) t2ezt + 2(2z − 3) t ezt + 2 ezt .

Evaluate the last two of these at z = −2 to find

L(t e−2t) = −7e−2t , L(t2e−2t) = −14t e−2t + 2e−2t .

By adding 2
7

of the first to the second we get

L
(
t2e−2t + 2

7
t e−2t

)
= −14t e−2t .
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Upon dividing this by −14 we obtain

L
(
− 1

14
t2e−2t − 2

98
t e−2t

)
= t e−2t ,

whereby a particular solution is

uP (t) = − 1
14
t2e−2t − 2

98
t e−2t .

Therefore a general solution is

u(t) = uH(t) + uP (t) = c1e
5t + c2e

−2t − 1
14
t2e−2t − 2

98
t e−2t .

Undetermined Coefficients. Because µ + iν = −2 while m = 1 and m + d = 2,
we seek a particular solution of the form

uP (t) = A0t
2e−2t + A1t e

−2t .

Because

u̇P (t) = −2A0t
2e−2t + (2A0 − 2A1)t e

−2t + A1e
−2t ,

üP (t) = 4A0t
2e−2t + (−8A0 + 4A1)t e

−2t + (2A0 − 4A1)e
−2t ,

we see that

LuP (t) = üP (t)− 3u̇P (t)− 10uP (t)

=
(
4A0t

2e−2t + (−8A0 + 4A1)t e
−2t + (2A0 − 4A1)e

−2t)
− 3
(
− 2A0t

2e−2t + (2A0 − 2A1)t e
−2t + A1e

−2t)
− 10

(
A0t

2e−2t + A1t e
−2t)

= −14A0t e
−2t + (2A0 − 7A1)e

−2t .

By setting −14A0t e
−2t + (2A0 − 7A1)e

−2t = t e−2t we see that

−14A0 = 1 , 2A0 − 7A1 = 0 .

This system can be solved by any method you choose to find A0 = − 1
14

and A1 = − 2
98

,
whereby a particular solution is

uP (t) = − 1
14
t2e−2t − 2

98
t e−2t .

Therefore a general solution is

u(t) = uH(t) + uP (t) = c1e
5t + c2e

−2t − 1
14
t2e−2t − 2

98
t e−2t .

Solution (c). The equation is

v′′ + 9v = cos(3t) .

This is a constant coefficient, nonhomogeneous, linear equation. Its characteristic
polynomial is

p(z) = z2 + 9 = z2 + 32 .

This has the conjugate pair of roots ±i3, which yields a general solution of the
associated homogeneous problem

vH(t) = c1 cos(3t) + c2 sin(3t) .

The forcing cos(3t) has characteristic form with degree d = 0, characteristic µ+ iν =
i3, and multiplicity m = 1. Therefore a particular solution vP (t) can be found by
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either the method of Key Identity Evaluations, the Zero-Degree Formula, or the
method of Undetermined Coefficients.

Key Indentity Evaluations. Because m = 1 and m + d = 1, we need the first
derivative of the Key Identity, which is found as

L(ezt) = (z2 + 9) ezt ,

L(t ezt) = (z2 + 9) t ezt + 2z ezt .

Evaluate the first derivative of the Key Identity at z = i3 to find that

L(t ei3t) = i6 ei3t .

Because cos(3t) = Re(ei3t), upon dividing by i6 and taking the real part we see that
a particular solution is

vP (t) = Re
(

1
i6
t ei3t

)
= Re

(
1
i6
t (cos(3t) + i sin(3t))

)
= 1

6
t sin(3t) .

Therefore a general solution is

v(t) = vH(t) + vP (t) = c1 cos(3t) + c2 sin(3t) + 1
6
t sin(3t) .

Zero-Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

vP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = cos(3t) = Re(ei3t) and p(z) = z2 + 9, so that µ + iν = i3,
α− iβ = 1, m = 1, and p′(z) = 2z. whereby

vP (t) = t Re

(
ei3t

p′(i3)

)
= t Re

(
cos(3t) + i sin(3t)

i6

)
= 1

6
t Re(sin(3t)− i cos(3t)) = 1

6
t sin(3t) .

Therefore a general solution is

v(t) = vH(t) + vP (t) = c1 cos(3t) + c2 sin(3t) + 1
6
t sin(3t) .

Undetermined Coefficients. Because µ + iν = i3 and m = m + d = 1, we seek a
particular solution in the form

vP (t) = At cos(3t) +Bt sin(3t) .

Because

v′P (t) = −3At sin(3t) + 3Bt cos(3t)A cos(3t) +B sin(3t) ,

v′′P (t) = −9At cos(3t)− 9Bt sin(3t)− 6A sin(3t) + 6B cos(3t) ,
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we see that

LvP (t) = v′′P (t) + 9vP (t)

=
(
− 9At cos(3t)− 9Bt sin(3t)− 6A sin(3t) + 6B cos(3t)

)
+ 9
(
At cos(3t) +Bt sin(3t)

)
= −6A sin(3t) + 6B cos(3t) .

By setting −6A sin(3t)+6B cos(3t) = cos(3t) we see that A = 0 and B = 1
6
, whereby

a particular solution is

vP (t) = 1
6
t sin(3t) .

Therefore a general solution is

v(t) = vH(t) + vP (t) = c1 cos(3t) + c2 sin(3t) + 1
6
t sin(3t) .

Remark. Because of the simple form of this equation, if we had tried to solve it
by either the Green Function or Variation of Parameters method then integrals that
arise are not too difficult. However, it is not generally a good idea to use these
methods for such problems because evaluating the integrals that arise often involve
much more work that the methods shown above.

Solution (d). The equation is

w′′′′ + 13w′′ + 36w = 9 sin(t) .

This is a constant coefficient, nonhomogeneous, linear equation. Its characteristic
polynomial is

p(z) = z4 + 13z2 + 36 = (z2 + 4)(z2 + 9) = (z2 + 22)(z2 + 32) .

This has the two conjugate pair of roots ±i2 and ±i3, which yields a general solution
of the associated homogeneous problem

wH(t) = c1 cos(2t) + c2 sin(2t) + c3 cos(3t) + c4 sin(3t) .

The forcing 9 sin(t) has characteristic form with degree d = 0, characteristic µ+iν = i,
and multiplicity m = 0. Therefore a particular solution wP (t) can be found by either
the method of Key Identity Evaluations, the Zero-Degree Formula, or the method of
Undetermined Coefficients.

Key Identity Evaluations. Because m = 0 and m+ d = 0, we need only the Key
Identity, which is

L(ezt) = (z4 + 13z2 + 36) ezt .

Evaluate this at z = i to obtain

L(eit) = (i4 + 13 · i2 + 36)eit = 24eit .

Because 9 sin(t) = Re(−i9eit), upon multiplying by −i9/24 and taking the real part
we see that a particular solution is

wP (t) = Re

(
−i9
24

eit
)

= 3
8

Re(sin(t)− i cos(t)) = 3
8

sin(t) .
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Therefore a general solution is

w(t) = wH(t) + wP (t)

= c1 cos(2t) + c2 sin(2t) + c3 cos(3t) + c4 sin(3t) + 3
8

sin(t) .

Zero-Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

wP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = 9 sin(t) and p(z) = z4 + 13z2 + 36, so that µ + iν = i,
α− iβ = −i9, and m = 0, whereby

wP (t) = Re

(
−i9
p(i)

eit
)

= Re

(
−i9

i4 + 13 · i2 + 36
eit
)

= Re

(
−i9
24

(
cos(t) + i sin(t)

))
= 3

8
Re(sin(t)− i cos(t)) = 3

8
sin(t) .

Therefore a general solution is

w(t) = wH(t) + wP (t)

= c1 cos(2t) + c2 sin(2t) + c3 cos(3t) + c4 sin(3t) + 3
8

sin(t) .

Undetermined Coefficients. Because µ + iν = i and m = m + d = 0, we seek a
particular solution in the form

wP (t) = A cos(t) +B sin(t) .

Because
w′P (t) = −A sin(t) +B cos(t) ,

w′′P (t) = −A cos(t)−B sin(t) ,

w′′′P (t) = A sin(t)−B cos(t) ,

w′′′′P (t) = A cos(t) +B sin(t) ,

we see that

LwP (t) = w′′′′P (t) + 13w′′P (t) + 36wP (t)

=
(
A cos(t) +B sin(t)

)
+ 13

(
− A cos(t)−B sin(t)

)
+ 36

(
A cos(t) +B sin(t)

)
= 24A cos(t) + 24B sin(t) .

By setting 24A cos(t)+24B sin(t) = 9 sin(t) we see that A = 0 and 24B = 9, whereby
a particular solution is

wP (t) = 3
8

sin(t) .

Therefore a general solution is

w(t) = wH(t) + wP (t)

= c1 cos(2t) + c2 sin(2t) + c3 cos(3t) + c4 sin(3t) + 3
8

sin(t) .
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(10) Solve the following initial-value problems.
(a) w′′ + 4w′ + 20w = 5e2t, w(0) = 3 , w′(0) = −7.

(b) y′′ − 4y′ + 4y =
e2t

3 + t
, y(0) = 0 , y′(0) = 5.

Evaluate any definite integrals that arise.

Solution (a). This is a constant coefficient, nonhomogeneous, linear equation. Its
characteristic polynomial is

p(z) = z2 + 4z + 20 = (z + 2)2 + 16 = (z + 2)2 + 42 .

This has the conjugate pair of roots −2 ± i4, which yields a general solution of the
associated homogeneous problem

wH(t) = c1e
−2t cos(4t) + c2e

−2t sin(4t) .

The forcing 5e2t has characteristic form with degree d = 0, characteristic µ+ iν = 2,
and multiplicity m = 0. Therefore a particular solution wP (t) can be found by either
the method of Key Identity Evaluations, the Zero-Degree Formula, or the method of
Undetermined Coefficients.

Key Indentity Evaluations. Because m = 0 and m+d = 0, we only need the Key
Identity,

L(ezt) = (z2 + 4z + 20) ezt .

Evaluate this at z = 2 to find that

L(e2t) = (4 + 8 + 20)e2t = 32e2t .

Upon multiplying this by 5
32

we see that a particular solution is

wP (t) = 5
32
e2t .

Zero-Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

wP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem f(t) = 5e2t and p(z) = z2 + 4z+ 20, so that µ+ iν = 2, α− iβ = 5,
and m = 0, whereby

wP (t) = e2t
5

p(2)
= 5

32
e2t .

Undetermined Coefficients. Because µ + iν = 2 and m = m + d = 0, we seek a
particular solution in the form

wP (t) = Ae2t .

Because
w′P (t) = 2Ae2t , w′′P (t) = 4Ae2t ,
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we see that

LwP (t) = w′′P (t) + 4w′P (t) + 20wP (t)

= 4Ae2t + 4(2Ae2t) + 20Ae2t = 32Ae2t .

By setting 32Ae2t = 5e2t, we see that A = 5
32

, whereby a particular solution is

wP (t) = 5
32
e2t .

Solving the Initial-Value Problem. By either method we find that a general
solution is

w(t) = wH(t) + wP (t) = c1e
−2t cos(4t) + c2e

−2t sin(4t) + 5
32
e2t .

Because

w′(t) = −2c1e
−2t cos(4t)− 4c1e

−2t sin(4t)

− 2c2e
−2t sin(4t) + 4c2e

−2t cos(4t) + 5
16
e2t ,

the initial conditions yield

3 = w(0) = c1 + 5
32
, −7 = w′(0) = −2c1 + 4c2 + 5

16
.

Upon solving this system we find that c1 = 91
32

and c2 = −13
32

, whereby the solution
of the initial-value problem is

w(t) = 91
32
e−2t cos(4t)− 13

32
e−2t sin(4t) + 5

32
e2t .

Solution (b). The initial-value problem is

y′′ − 4y′ + 4y =
e2t

3 + t
, y(0) = 0 , y′(0) = 5 .

This is a constant coefficient, nonhomogeneous, linear equation in normal form. Its
characteristic polynomial is

p(z) = z2 − 4z + 4 = (z − 2)2 .

This has the double real root 2, which yields a general solution of the associated
homogeneous problem

yH(t) = c1e
2t + c2t e

2t .

The forcing e2t/(3 + t) does not have characteristic form. Therefore a particular
solution yP (t) cannot be found by either the method of Key Identity Evaluations
or the method of Undetermined Coefficients. Moreover, the forcing does not have
a form found in the table of Laplace transforms, so that method cannot be used
either. Rather, we must use either the Green Function or the Variation of Parameters
method.

Green Function. The associated Green function g(t) satisfies

g′′ − 4g′ + 4g = 0 , g(0) = 0 , g′(0) = 1 .

Because its characteristic polynomial is p(z) = z2 − 4z + 4 = (z − 2)2, a general
solution of this equation is

g(t) = c1e
2t + c2t e

2t .
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Because 0 = g(0) = c1, we see that g(t) = c2t e
2t. Then

g′(t) = c2e
2t + 2c2t e

2t .

Because 1 = g′(0) = c2, the Green function is g(t) = t e2t.

Alternatively, because its characteristic polynomial is p(z) = z2−4z+4 = (z−2)2,
its Green function is given by

g(t) = L−1
[

1

p(s)

]
(t) = L−1

[
1

(s− 2)2

]
(t) = t e2t .

Referring to the Table of Laplace Transforms on the last page, here we have used
item 1 with n = 1 and a = 2.

The particular solution yP (t) that satisfies yP (0) = y′P (0) = 0 is given by

yP (t) =

∫ t

0

g(t− s) e2s

3 + s
ds =

∫ t

0

(t− s)e2t−2s e2s

3 + s
ds

= e2t
∫ t

0

t− s
3 + s

ds = e2tt

∫ t

0

1

3 + s
ds− e2t

∫ t

0

s

3 + s
ds .

Because ∫ t

0

1

3 + s
ds = log(3 + s)

∣∣∣t
0

= log(3 + t)− log(3) = log

(
3 + t

3

)
,∫ t

0

s

3 + s
ds =

∫ t

0

1− 3

3 + s
ds = t− 3 log

(
3 + t

3

)
,

we find that

yP (t) = e2tt log(1 + 1
3
t)− e2t

(
t− 3 log(1 + 1

3
t)
)
.

Therefore a general solution of the equation is

y(t) = c1e
2t + c2t e

2t + yP (t) .

Because

y′(t) = 2c1e
2t + 2c2t e

2t + c2e
2t + y′P (t) ,

and because yP (0) = y′P (0) = 0, the initial conditions imply

0 = y(0) = c1 , 5 = y′(0) = 2c1 + c2 .

We find that c1 = 0 and c2 = 5, whereby the solution of the initial-value problem is

y(t) = 5t e2t + e2tt log(1 + 1
3
t)− e2t

(
t− 3 log(1 + 1

3
t)
)
.

Variation of Parameters. The equation is already in normal form. Therefore we
seek a particular solution of the form

yP (t) = e2tu1(t) + t e2tu2(t) ,

such that
e2tu′1(t) + t e2tu′2(t) = 0 ,

2e2tu′1(t) + (2t e2t + e2t)u′2(t) =
e2t

3 + t
.
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This system can be solved to find that

u′1(t) = − t

3 + t
, u′2(t) =

1

3 + t
.

These can be integrated to obtain

u1(t) = −
∫

t

3 + t
dt = −

∫
1− 3

3 + t
dt = −t+ 3 log(3 + t) + c1 ,

u2(t) =

∫
1

3 + t
dt = log(3 + t) + c2 ,

whereby a general solution is

y(t) = c1e
2t − e2t

(
t− 3 log(3 + t)

)
+ c2t e

2t + t e2t log(3 + t) .

Because

y′(t) = 2c1e
2t − 2e2t

(
t− 3 log(3 + t)

)
− e2t

(
1− 3

3 + t

)
+ 2c2t e

2t + c2e
2t + 2t e2t log(3 + t) + e2t log(3 + t) + t e2t

1

3 + t
,

the initial conditions imply that

0 = y(0) = c1 + 3 log(3) ,

5 = y′(0) = 2c1 + 6 log(3) + c2 + log(3) .

We can solve this system to find that c1 = −3 log(3) and c2 = 5− log(3). Therefore
the solution of the initial-value problem is

y(t) = −3 log(3)e2t − e2t
(
t− 3 log(3 + t)

)
+
(
5− log(3)

)
t e2t + t e2t log(3 + t) .

(11) Given that y1(t) = t and y2(t) = t−2 solve the associated homogeneous equation, find
a general solution of

t2y′′ + 2t y′ − 2y =
3

t2
+ 5t , for t > 0 .

Solution. This is a variable coefficient, nonhomogeneous, linear equation. We are
given that y1(t) = t and y2(t) = t−2 are solutions of the associated homogeneous
equation. Their Wronskian is

Wr[t, t−2] = det

(
t t−2

1 −2t−3

)
= −2t−2 − t−2 = −3t−2 .

Because Wr[t, t−2] 6= 0 for t > 0, y1(t) = t and y2(t) = t−2 are a fundamental set
of solutions for the associated homogeneous equation, and a general solution of that
equation is

yH(t) = c1t+ c2t
−2 .
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To find a general solution of the given nonhomogeneous equation we need to find a
particular solution yP (t) of that equation. Because this equation has variable coeffi-
cients, we will use either the General Green Function or the Variation of Parameters
method. To use either method we must put the equation into its normal form

y′′ +
2

t
y′ − 2

t2
y =

3

t4
+

5

t
, for t > 0 .

General Green Function. The Green function is given

G(t, s) =
1

Wr[s, s−2]
det

(
s s−2

t t−2

)
= −1

3
s2
(
t−2s− t s−2

)
= 1

3

(
t− t−2s3

)
.

Then the particular solution that satisfies y(1) = y′(1) = 0 is given by

yP (t) =

∫ t

1

G(t, s) f(s) ds = 1
3

∫ t

1

(
t− t−2s3

)( 3

s4
+

5

s

)
ds

= t

∫ t

1

1

s4
ds− t−2

∫ t

1

1

s
ds+ 5

3
t

∫ t

1

1

s
ds− 5

3
t−2
∫ t

1

s2 ds

= 1
3
t
(
1− t−3

)
− t−2 log(t) + 5

3
t log(t)− 5

9
t−2(t3 − 1) .

Because the first and last terms above are solutions of the associated homogeneous
equation, a general solution can be expressed as

y(t) = c1t+ c2t
−2 − t−2 log(t) + 5

3
t log(t) .

Variation of Parameters. Seek a general solution in the form

y(t) = t u1(t) + t−2u2(t) ,

where u′1(t) and u′2(t) satisfy the linear algebraic system

t u′1(t) + t−2u′2(t) = 0 ,

1u′1(t)− 2t−3u′2(t) = 3t−4 + 5t−1 .

The solution of this system is

u′1(t) = 1
3

(
3t−4 + 5t−1

)
, u′2(t) = −1

3
t3
(
3t−4 + 5t−1

)
.

Upon integrating these equations we find that

u1(t) = c1 − 1
3
t−3 + 5

3
log(t) , u2(t) = c2 − log(t)− 5

9
t3 .

Therefore a general solution of the nonhomogeneous linear equation is

y(t) = c1t+ c2t
−2 − 1

3
t−2 + 5

3
t log(t)− t−2 log(t)− 5

9
t .

(12) Given that t2 and t2 log(t) solve the associated homogeneous differential equation,
consider the initial-value problem

t2x′′ − 3t x′ + 4x = t2 log(t) , x(1) = 0 , x′(1) = 0 .

(a) Give the interval of definition of its solution.
(b) Compute Wr[t2, t2 log(t)].
(c) Find x(t). Evaluate any definite integrals that arise.
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Solution (a). This is a nonhomogeneous, linear, second-order initial-value problem
with variable coefficients. Its normal form is

x′′ − 3

t
x′ +

4

t2
x = log(t) , x(1) = 0 , x′(1) = 0 .

We see that
• the coefficients of x′ and x are undefined at t = 0 and are continuous elsewhere,
• the forcing is undefined for t ≤ 0 and is continuous elsewhere.

Because the initial time is t = 1 we conclude that the interval of definition for the
solution will by (0,∞) because
• the initial time t = 1 is in (0,∞);
• the forcing and bothof the coefficients are continuous over (0,∞);
• the forcing and each of the coefficients is undefined at t = 0.

Solution (b). We know that t2 and t2 log(t) solve the associated homogeneous
equation. Their Wronskian is

Wr[t2, t2 log(t)] = det

(
t2 t2 log(t)
2t 2t log(t) + t

)
= t2 ·

(
2t log(t) + t

)
− 2t · t2 log(t) = t3 .

Because Wr[t2, t3] 6= 0 for t > 0, we see that t2 and t2 log(t) are a fundamental set of
solutions for the associated homogeneous equation.

Solution (c). Because this is an initial-value problem, the General Green Function
method is the quickest route to the answer. However, the problem can also be solved
by the Variation of Parameters method. To use either method we must put the
initial-value problem into its normal form

x′′ − 3

t
x′ +

4

t2
x = log(t) , x(1) = 0 , x′(1) = 0 .

General Green Function. The Green function is given

G(t, s) =
1

Wr[s2, s2 log(s)]
det

(
s2 s2 log(s)
t2 t2 log(t)

)
=

1

s3
(
t2 log(t)s2 − t2s2 log(s)

)
= t2 log(t)

1

s
− t2 log(s)

s
.

Then the solution that satisfies x(1) = x′(1) = 0 is given by

x(t) =

∫ t

1

G(t, s) f(s) ds =

∫ t

1

(
t2 log(t)

1

s
− t2 log(s)

s

)
log(s) ds

= t2 log(t)

∫ t

1

log(s)

s
ds− t2

∫ t

1

(
log(s)

)2
s

ds

= t2 log(t) · 1
2

(
log(t)

)2 − t2 · 1
2

(
log(t)

)2
= 1

6
t2
(

log(t)
)3
.

This is the solution of the initial-value problem.

Variation of Parameters. Because t2 and t2 log(t) are a fundamental set of solu-
tions for the associated homogeneous equation, a general solution of that equation
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is
xH(t) = c1t

2 + c2t
2 log(t) .

Therefore we seek a general solution of the nonhomogeneous equation in the form

x(t) = t2u1(t) + t2 log(t)u2(t) ,

where u′1(t) and u′2(t) satisfy the linear algebraic system

t2u′1(t) + t2 log(t)u′2(t) = 0 ,

2t u′1(t) +
(
2t log(t) + t

)
u′2(t) = log(t) .

The solution of this system is

u′1(t) = −
(

log(t)
)2

t
, u′2(t) =

log(t)

t
.

Upon integrating these equations we obtain

u1(t) = −1
3

(
log(t)

)3
+ c1 , u2(t) = 1

2

(
log(t)

)2
+ c2 .

Therefore a general solution of the nonhomogeneous linear equation is

x(t) = c1t
2 + c2t

2 log(t) + 1
6
t2
(

log(t)
)3
.

We must find the values of c1 and c2 for which this general solution satisfies the
initial conditions. Because

x(1) = c11
2 + c21

2 log(1) + 1
6
12
(

log(1)
)3

= c1 ,

the initial condition x(1) = 0 implies that c1 = 0. Because

x′(t) = c2
(
2t log(t) + t

)
+ 1

3
t
(

log(t)
)3

+ 1
2
t
(

log(t)
)2
,

we have

x′(1) = c2
(
2 log(1) + 1

)
+ 1

3

(
log(1)

)3
+ 1

2

(
log(1)

)2
= c2 ,

whereby the initial condition x′(1) = 0 implies that c2 = 0. Therefore the solution of
the intial-value problem is

x(t) = 1
6
t2
(

log(t)
)3
.

(13) Give an explicit general solution of the equation

ḧ+ 2ḣ+ 5h = 0 .

Sketch a typical solution for t ≥ 0. If this equation governs a spring-mass system,
is the system undamped, under damped, critically damped, or over damped? (Give
your reasoning!)

Solution. This is a constant coefficient, homogeneous, linear equation. Its charac-
teristic polynomial is

p(z) = z2 + 2z + 5 = (z + 1)2 + 22 .

This has the conjugate pair of roots −1± i2, which yields a general solution

h(t) = c1e
−t cos(2t) + c2e

−t sin(2t) .
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When c 21 + c 22 > 0 this can be put into the amplitute-phase form

h(t) = Ae−t cos(2t− δ) ,
where A > 0 and 0 ≤ δ < 2π are determined from c1 and c2 by

A =
√
c 21 + c 22 , cos(δ) =

c1
A
, sin(δ) =

c2
A
.

In other words, (A, δ) are the polar coordinates for the point in the plane whose
Cartesian coordinates are (c1, c2). The sketch should show a decaying oscillation
with amplitude Ae−t and damped period 2π

2
= π. A sketch might be given during the

review session. The equation governs an under damped spring-mass system because
its characteristic polynomial has a conjugate pair of roots with negative real part.

(14) When a mass of 2 kilograms is hung vertically from a spring, it stretches the spring
0.5 meters. (Gravitational acceleration is 9.8 m/sec2.) At t = 0 the mass is set in
motion from 0.3 meters below its rest (equilibrium) position with a upward velocity
of 2 m/sec. It is acted upon by an external force of 2 cos(5t). Neglect damping
and assume that the spring force is proportional to its displacement. Formulate an
initial-value problem that governs the motion of the mass for t > 0. (Do not solve
this initial-value problem; just write it down!)

Solution. Let h(t) be the displacement (in meters) of the mass from its equilibrium
(rest) position at time t (in seconds), with upward displacements being positive. The
governing initial-value problem then has the form

mḧ+ kh = 2 cos(5t) , h(0) = −.3 , h′(0) = 2 ,

where m is the mass and k is the spring constant. The problem says that m = 2
kilograms. The spring constant is obtained by balancing the weight of the mass (mg
= 2 · 9.8 Newtons) with the force applied by the spring when it is stetched .5 m.
This gives k .5 = 2 · 9.8, or

k =
2 · 9.8
.5

= 4 · 9.8 Newtons/m .

Therefore the governing initial-value problem is

2ḧ+ 4 · 9.8h = 2 cos(5t) , h(0) = −.3 , h′(0) = 2 .

Had you chosen downward displacements to be positive then the sign of the initial
data would change! You should make your convention clear!

(15) Find the Laplace transform Y (s) of the solution y(t) to the initial-value problem

y′′ + 4y′ + 8y = f(t) , y(0) = 2 , y′(0) = 4 .

where

f(t) =

{
4 for 0 ≤ t < 2 ,

t2 for 2 ≤ t .

You may refer to the table of Laplace transforms on the last page. (Do not take the
inverse Laplace transform to find y(t); just solve for Y (s)!)
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Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y′](s) + 8L[y](s) = L[f ](s) ,

where
L[y](s) = Y (s) ,

L[y′](s) = sL[y](s)− y(0) = sY (s)− 2 ,

L[y′′](s) = sL[y′](s)− y′(0) = s2Y (s)− 2s− 4 .

To compute L[f ](s), first write f as

f(t) =
(
1− u(t− 2)

)
4 + u(t− 2)t2 = 4− u(t− 2)4 + u(t− 2)t2

= 4 + u(t− 2)(t2 − 4) = 4 + u(t− 2)j(t− 2) ,

where by the shifty step method

j(t) = (t+ 2)2 − 4 = t2 + 4t .

Referring to the table of Laplace transforms, item 9 with c = 2 and j(t) = t2 + 4t,
and item 1 with a = 0 and n = 1, and with a = 0 and n = 2 then show that

L[f ](s) = 4L[1](s) + L
[
u(t− 2)j(t− 2)

]
(s)

= 4L[1](s) + e−2sL
[
j(t)
]
(s)

= 4L[1](s) + e−2sL[4t+ t2](s)

= 4L[1](s) + 4e−2sL[t](s) + e−2sL[t2](s)

= 4
1

s
+ 4e−2s

1

s2
+ e−2s

2

s3
.

The Laplace transform of the initial-value problem then becomes(
s2Y (s)− 2s− 4

)
+ 4
(
sY (s)− 2

)
+ 8Y (s) =

4

s
+ e−2s

4

s2
+ e−2s

2

s3
,

which becomes

(s2 + 4s+ 8)Y (s)− 2s− 12 =
4

s
+ e−2s

4

s2
+ e−2s

2

s3
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 4s+ 8

(
2s+ 12 +

4

s
+ e−2s

4

s2
+ e−2s

2

s3

)
.

(16) Let x(t) be the solution of the initial-value problem

x′′ + 10x′ + 29x = f(t) , x(0) = 3 , x′(0) = −7 ,

where the forcing f(t) is given by

f(t) =

{
t2 for 0 ≤ t < 1 ,

e1−t for 1 ≤ t <∞ .

(a) Find the Laplace transform F (s) of the forcing f(t).
(b) Find the Laplace transform X(s) of the solution x(t).

(DO NOT take the inverse Laplace transform to find x(t); just solve for X(s)!)
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You may refer to the table of Laplace transforms on the last page.

Solution (a). First write f(t) as

f(t) = t2 + u(t− 1)
(
e1−t − t2

)
= t2 + u(t− 1)j(t− 1) ,

where by the Shifty Step Method

j(t) = e1−(t+1) − (t+ 1)2 = e−t − t2 − 2t− 1 .

Referring to the Table of Laplace Transforms, item 1 with n = 0 and a = −1, with
n = 2 and a = 0, with n = 1 and a = 0, and with n = 0 and a = 0 gives

J(s) = L[j](s) = L[e−t](s)− L[t2](s)− 2L[t](s)− L[1](s)

=
1

s+ 1
− 2

s3
− 2

s2
− 1

s
.

Then item 1 with n = 2 and a = 0 and item 9 with c = 1 gives

F (s) = L[f ](s) = L[t2](s) + L[u(t− 1)j(t− 1)](s) =
2

s3
+ e−sJ(s)

=
2

s3
+ e−s

[
1

s+ 1
− 2

s3
− 2

s2
− 1

s

]
.

Solution (b). The initial-value problem

x′′ + 10x′ + 29x = f(t) , x(0) = 3 , x′(0) = −7 ,

has Laplace transform

L[x′′](s) + 10L[x′](s) + 29L[x](s) = F (s) ,

where F (s) = L[f ](s) was computed in part (a) and

L[x](s) = X(s) ,

L[x′](s) = sL[x](s)− x(0) = sX(s)− 3 ,

L[x′′](s) = sL[x′](s)− x′(0) = s2X(s)− 3s+ 7 .

The Laplace transform of the initial-value problem then becomes(
s2X(s)− 3s+ 7

)
+ 10

(
sX(s)− 3

)
+ 29X(s) = F (s) ,

which becomes

(s2 + 10s+ 29)X(s)− 3s− 23 = F (s) .

Therefore X(s) is

X(s) =
1

s2 + 10s+ 29

(
2

s3
+ e−s

[
1

s+ 1
− 2

s3
− 2

s2
− 1

s

]
+ 3s+ 23

)
.
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(17) Find the function y(t) whose Laplace transform Y (s) is given by

(a) Y (s) =
e−3s4

s2 − 6s+ 5
, (b) Y (s) =

e−2ss

s2 + 4s+ 8
.

You may refer to the table of Laplace transforms on the last page.

Solution (a). The denominator factors as (s − 5)(s − 1), so we have the partial
fraction identity

4

s2 − 6s+ 5
=

4

(s− 5)(s− 1)
=

1

s− 5
− 1

s− 1
.

Referring to the table of Laplace transforms, item 1 with a = 5 and n = 0 and with
a = 1 and n = 0 gives

L−1
[

1

s− 5

]
(t) = e5t , L−1

[
1

s− 1

]
(t) = et ,

whereby

L−1
[

4

s2 − 6s+ 5

]
(t) = L−1

[
1

s− 5
− 1

s− 1

]
= e5t − et .

It follows from line 9 with c = 3 and j(t) = e5t − et that

y(t) = L−1[Y (s)](t) = L−1
[

e−3s4

s2 − 6s+ 5

]
(t)

= u(t− 3)L−1
[

4

s2 − 6s+ 5

]
(t− 3) = u(t− 3)

(
e5(t−3) − et−3

)
.

Solution (b). The denominator does not have real factors. The partial fraction
identity is

s

s2 + 4s+ 8
=

s

(s+ 2)2 + 4
=

s+ 2

(s+ 2)2 + 22
− 2

(s+ 2)2 + 22
.

Referring to the table of Laplace transforms, items 2 and 3 with a = −2 and b = 2
give

L−1
[

s+ 2

(s+ 2)2 + 22

]
(t) = e−2t cos(2t) , L−1

[
2

(s+ 2)2 + 22

]
(t) = e−2t sin(2t) ,

whereby

L−1
[

s

s2 + 4s+ 8

]
(t) = L−1

[
s+ 2

(s+ 2)2 + 22

]
(t)− L−1

[
2

(s+ 2)2 + 22

]
(t)

= e−2t
(

cos(2t)− sin(2t)
)
.

It follows from line 9 with c = 2 and j(t) = e−2t
(

cos(2t)− sin(2t)
)

that

y(t) = L−1[Y (s)](t) = L−1
[

e−2ss

s2 + 4s+ 8

]
(t) = u(t− 2)L−1

[
s

s2 + 4s+ 8

]
(t− 2)

= u(t− 2)e−2(t−2)
(

cos(2(t− 2))− sin(2(t− 2))
)
.
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(18) Consider the real vector-valued functions x1(t) =

(
1
t

)
, x2(t) =

(
t3

3 + t4

)
.

(a) Compute the Wronskian Wr[x1,x2](t).
(b) Find A(t) such that x1, x2 is a fundamental set of solutions to the linear system

x′ = A(t)x.
(c) Give a general solution to the system you found in part (b).

Solution (a). The Wronskian is given by

Wr[x1,x2](t) = det

(
1 t3

t 3 + t4

)
= 1 · (3 + t4)− t · t3 = 3 + t4 − t4 = 3 .

Solution (b). Set

Ψ(t) =
(
x1(t) x2(t)

)
=

(
1 t3

t 3 + t4

)
.

If x1(t) and x2(t) each satisfy x′ = A(t)x then Ψ(t) must satisfy

Ψ′(t) = A(t)Ψ(t) .

Because det(Ψ(t)) = Wr[x1,x2](t) = 3 6= 0, we see that Ψ(t) is a fundamental matrix
of the linear system with A(t) given by

A(t) = Ψ′(t) Ψ(t)−1 =

(
0 3t2

1 4t3

)
1

3

(
3 + t4 −t3
−t 1

)
=

1

3

(
−3t3 3t2

3− 3t4 3t3

)
=

(
−t3 t2

1− t4 t3

)
.

Therefore x1(t), x2(t) is a fundamental set of solutions for the linear system whose
coefficient matrix is this A(t).

Solution (c). Because x1(t), x2(t) is a fundamental set of solutions for the linear
system whose coefficient matrix is A(t), a general solution is given by

x(t) = c1x1(t) + c2x2(t) = c1

(
1
t

)
+ c2

(
t3

3 + t4

)
.

(19) Two interconnected tanks, each with a capacity of 60 liters, contain brine (salt water).
At t = 0 the first tank contains 22 liters and the second contains 17 liters. Brine with
a salt concentration of 6 grams per liter flows into the first tank at 7 liters per hour.
Well-stirred brine flows from the first tank into the second at 8 liters per hour, from
the second into the first at 5 liters per hour, from the first into a drain at 2 liter per
hour, and from the second into a drain at 4 liters per hour. At t = 0 there are 31
grams of salt in the first tank and 43 grams in the second.
(a) Determine the volume of brine in each tank as a function of time.
(b) Give an initial-value problem that governs the amount of salt in each tank as a

function of time. (Do not solve the IVP.)
(c) Give the interval of definition for the solution of this initial-value problem.
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Remark. Let V1(t) and V2(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let S1(t) and S2(t) be the mass (gr) of salt in the first and
second tank at time t hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time t are C1(t) = S1(t)/V1(t) and
C2(t) = S2(t)/V2(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

6 gr/lit
7 lit/hr

→

C1(t) gr/lit
2 lit/hr

←

V1(t) lit
S1(t) gr

→ C1(t) gr/lit
8 lit/hr

→

← C2(t) gr/lit
5 lit/hr

←

V2(t) lit
S2(t) gr

→ C2(t) gr/lit
4 lit/hr

V1(0) = 22 lit
S1(0) = 31 gr

V2(0) = 17 lit
S2(0) = 43 gr

Solution (a). You are asked to determine V1(t) and V2(t). The rates work out so
that

V1(t) = 22 + 2t liters , V2(t) = 17− t liters .

Remark. Because the tanks each have a capacity of 60 liters, we have the restrictions

0 ≤ V1(t) = 22 + 2t ≤ 60 , 0 ≤ V2(t) = 17− t ≤ 60 .

These restrictions are

−11 ≤ t ≤ 19 , −53 ≤ t ≤ 17 ,

which combine to give the restrictions

−11 ≤ t ≤ 17 .

Notice that each of these restrictions happen when one of the tanks is empty. If the
numbers had been different restriction then one or both of these restrictions could
happen when one of the tanks is full. For example, if the tanks each had a capacity
of 50 liters then the restrictions would be

−11 ≤ t ≤ 14 .

Solution (b). You are asked to give an initial-value problem that governs S1(t) and
S2(t). These are governed by the initial-value problem

dS1

dt
= 6·7 +

S2

17− t
5− S1

22 + 2t
8− S1

22 + 2t
2 , S1(0) = 31 ,

dS2

dt
=

S1

22 + 2t
8− S2

17− t
5− S2

17− t
4 , S2(0) = 43 .

You could leave the answer in the above form. It can however be simplified to

dS1

dt
= 42 +

5

17− t
S2 −

5

11 + t
S1 , S1(0) = 31 ,

dS2

dt
=

4

11 + t
S1 −

9

17− t
S2 , S2(0) = 43 .

Solution (c). You are asked to give the interval of definition for the solution of this
initial-value problem. This can be done because the differential equation is linear. Its



27

coefficients are undefined either at t = −11 or at t = 17 and are continuous elsewhere.
Its forcing is constant, so is continuous everywhere. Therefore the natural interval of
definition of this initial-value problem is (−11, 17) because:
• the initial time t = 0 is in (−11, 17);
• all the coefficients and the forcing are continuous over (−11, 17);
• two coefficients are undefined at t = −11;
• two coefficients are undefined at t = 17.

This interval is consistent with the restictions given earlier. However, it could also
be argued that the interval of definition for the solution of this initial-value problem
is [0, 17) because the word problem starts at t = 0.

(20) Give a real, vector-valued general solution of the linear planar system x′ = Ax for

(a) A =

(
6 4
4 0

)
, (b) A =

(
1 2
−2 1

)
.

Solution (a) by Eigen Methods. The characteristic polynomial of A =

(
6 4
4 0

)
is

p(z) = z2 − tr(A)z + det(A)

= z2 − 6z − 16 = (z + 2)(z − 8) .

The eigenvalues of A are the roots of this polynomial, which are −2 and 8. We can
see from the nonzero columns of the matrices

A + 2I =

(
8 4
4 2

)
, A− 8I =

(
−2 4
4 −8

)
,

that A has the eigenpairs(
−2 ,

(
1
−2

))
,

(
8 ,

(
2
1

))
.

Form these eigenpairs we construct the solutions

x1(t) = e−2t
(

1
−2

)
, x2(t) = e8t

(
2
1

)
,

Therefore a general solution is

x(t) = c1x1(t) + c2x2(t) = c1e
−2t
(

1
−2

)
+ c2e

8t

(
2
1

)
.

Solution (a) by Formula. The characteristic polynomial of A =

(
6 4
4 0

)
is

p(z) = z2 − tr(A)z + det(A)

= z2 − 6z − 16 = (z − 3)2 − 25 = (z − 3)2 − 52 .
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This is a difference of squares with µ = 3 and ν = 5. Therefore we have

etA = e3t
[

cosh(5t)I +
sinh(5t)

5
(A− 3I)

]
= e3t

[
cosh(5t)

(
1 0
0 1

)
+

sinh(5t)

5

(
3 4
4 −3

)]
= e3t

(
cosh(5t) + 3

5
sinh(5t) 4

5
sinh(5t)

4
5

sinh(5t) cosh(5t)− 3
5

sinh(5t)

)
.

Therefore a general solution is given by

x(t) = etA
(
c1
c2

)
= c1e

3t

(
cosh(5t) + 3

5
sinh(5t)

4
5

sinh(5t)

)
+ c2e

3t

(
4
5

sinh(5t)
cosh(5t)− 3

5
sinh(5t)

)
.

Solution (b) by Formula. The characteristic polynomial of A =

(
1 2
−2 1

)
is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

This is a sum of squares with µ = 1 and ν = 2. Therefore we have

etA = et
[

cos(2t)I +
sin(2t)

2
(A− I)

]
= et

[
cos(2t)

(
1 0
0 1

)
+

sin(2t)

2

(
0 2
−2 0

)]
= et

(
cos(2t) sin(2t)
− sin(2t) cos(2t)

)
.

Therefore a general solution is given by

x(t) = etA
(
c1
c2

)
= c1e

t

(
cos(2t)
− sin(2t)

)
+ c2e

t

(
sin(2t)
cos(2t)

)
.

Solution (b) by Eigen Methods. The characteristic polynomial of A =

(
1 2
−2 1

)
is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1± i2. We can see
from the nonzero columns of the matrices

A− (1 + i2)I =

(
−i2 2
−2 −i2

)
, A− (1− i2)I =

(
i2 2
−2 i2

)
,

that A has the eigenpairs(
1 + i2 ,

(
1
i

))
,

(
1− i2 ,

(
−i
1

))
.

Because

e(1+i2)t
(

1
i

)
= et

(
cos(2t) + i sin(2t)
− sin(2t) + i cos(2t)

)
,
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two real solutions of the system are

x1(t) = et
(

cos(2t)
− sin(2t)

)
, x2(t) = et

(
sin(2t)
cos(2t)

)
.

Therefore a general solution is

x(t) = c1x1(t) + c2x2(t) = c1e
t

(
cos(2t)
− sin(2t)

)
+ c2e

t

(
sin(2t)
cos(2t)

)
.

(21) Sketch the phase-plane portrait of the linear planar system x′ = Ax for

(a) A =

(
6 4
4 0

)
, (b) A =

(
1 2
−2 1

)
.

Solution (a). The characteristic polynomial of A =

(
6 4
4 0

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z − 16 = (z + 2)(z − 8) .

The eigenvalues of A are the roots of this polynomial, which are −2 and 8. Because
A has real eigenvalues of opposite signs, the phase-plane portrait is a saddle, which
is thereby unstable. To sketch the phase-plane portrait we need the eigenpairs of A.
We can see from the nonzero columns of the matrices

A + 2I =

(
8 4
4 2

)
, A− 8I =

(
−2 4
4 −8

)
,

that A has the eigenpairs(
−2 ,

(
1
−2

))
,

(
8 ,

(
2
1

))
.

These show that one orbit moves away from (0, 0) along each half of the line x = 1
2
y,

and one orbit moves towards (0, 0) along each half of the line y = −2x. (These are
the lines of eigenvectors.) Every other orbit sweeps away from the line y = −2x and
towards the line x = 1

2
y. A sketch of the phase-plane portrait will be given during

the review session provided someone asks for it.

Solution (b). The characteristic polynomial of A =

(
1 2
−2 1

)
is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1± i2. Because A
has a conjugate pair of eigenvalues with positive real part, and because a21 = −2 < 0,
the phase-plane portrait is a clockwise spiral source, which is thereby repelling. A
sketch of the phase-plane portrait will be given during the review session provided
someone asks for it.
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(22) What answer will be produced by the following Matlab command?

>> A = [1 4; 3 2]; [vect, val] = eig(sym(A))

You do not have to give the answer in Matlab format.

Solution. The Matlab command will produce the eigenpairs of A =

(
1 4
3 2

)
. The

characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 − 3z − 10 = (z − 5)(z + 2) ,

so its eigenvalues are 5 and −2. We can see from the nonzero columns of the matrices

A− 5I =

(
−4 4
3 −3

)
, A + 2I =

(
3 4
3 4

)
,

that A has eigenpairs (
5 ,

(
1
1

))
,

(
−2 ,

(
−4
3

))
.

(23) A real 2×2 matrix B has the eigenpairs(
2 ,

(
3
1

))
and

(
−1 ,

(
−1
2

))
.

(a) Give a general solution to the linear planar system x′ = Bx.
(b) Give an invertible matrix V and a diagonal matrix D that diagonalize B.
(c) Compute etB.
(d) Sketch a phase-plane portrait for this system and identify its type. Classify the

stability of the origin. Carefully mark all sketched orbits with arrows!

Solution (a). Use the given eigenpairs to construct the solutions

x1(t) = e2t
(

3
1

)
, x2(t) = e−t

(
−1
2

)
.

Therefore a general solution is

x(t) = c1x1(t) + c2x2(t) = c1e
2t

(
3
1

)
+ c2e

−t
(
−1
2

)
.

Solution (b). The matrix B can be diagonalized by

V =

(
3 −1
1 2

)
, D =

(
2 0
0 −1

)
.

Solution (c). By part (b) we have B = VDV−1 where

V =

(
3 −1
1 2

)
, D =

(
2 0
0 −1

)
, V−1 =

1

7

(
2 1
−1 3

)
.
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Then

etB = VetDV−1 =
1

7

(
3 −1
1 2

)(
e2t 0
0 e−t

)(
2 1
−1 3

)
=

1

7

(
3e2t −e−t
e2t 2e−t

)(
2 1
−1 3

)
=

1

7

(
6e2t + e−t 3e2t − 3e−t

2e2t − 2e−t e2t + 6e−t

)
.

Alternative Solution (c). By part (a) a fundamental matrix is

Ψ(t) =
(
x1(t) x2(t)

)
=

(
3e2t −e−t
e2t 2e−t

)
.

Then

etB = Ψ(t)Ψ(0)−1 =

(
3e2t −e−t
e2t 2e−t

)(
3 −1
1 2

)−1
=

1

7

(
3e2t −e−t
e2t 2e−t

)(
2 1
−1 3

)
=

1

7

(
6e2t + e−t 3e2t − 3e−t

2e2t − 2e−t e2t + 6e−t

)
.

Solution (d). The matrix B has two real eigenvalues of opposite sign. Therefore
the origin is a saddle and is thereby unstable. There is one orbit moves away from
(0, 0) along each half of the line x = 3y, and one orbit moves towards (0, 0) along
each half of the line y = −2x. (These are the lines of eigenvectors.) Every other
orbit sweeps away from the line y = −2x and towards the line x = 3y. A phase-plane
portrait might be sketched during the review session.

(24) Solve the initial-value problem x′ = Ax, x(0) = xI for the following A and xI.

(a) A =

(
3 10
−5 −7

)
, xI =

(
−3
2

)
.

(b) A =

(
8 −5
5 −2

)
, xI =

(
3
−1

)
.

(c) A =

(
−2 1
−1 −4

)
, xI =

(
3
1

)
.

Solution (a) by Formula. The characteristic polynomial of A =

(
3 10
−5 −7

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 4z + 29 = (z + 2)2 + 52 .

This is a sum of squares with µ = −2 and ν = 5. Therefore we have

etA = e−2t
[
cos(5t)I +

sin(5t)

5
(A + 2I)

]
= e−2t

[
cos(5t)

(
1 0
0 1

)
+

sin(5t)

5

(
5 10
−5 −5

)]
= e−2t

(
cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

)
.
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Therefore the solution of the initial-value problem is

x(t) = etAxI = e−2t
(

cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

)(
−3
2

)
= e−2t

(
−3 cos(5t) + sin(5t)
2 cos(5t) + sin(5t)

)
.

Solution (a) by Eigen Methods. The characteristic polynomial of A =

(
3 10
−5 −7

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 4z + 29 = (z + 2)2 + 52 .

Therefore the eigenvlues of A are −2± i5. We can see from the nonzero columns of
the matrix

A− (−2 + i5)I =

(
5− i5 10
−5 −5− i5

)
,

that A has the conjugate eigenpairs(
−2 + i5 ,

(
1 + i
−1

))
,

(
−2− i5 ,

(
1− i
−1

))
.

Because

e−2t+i5t
(

1 + i
−1

)
= e−2t

(
cos(5t) + i sin(5t)

)(1 + i
−1

)
= e−2t

(
cos(5t)− sin(5t) + i cos(5t) + i sin(5t)

− cos(5t)− i sin(5t)

)
,

a fundamental set of real solutions is

x1(t) = e−2t
(

cos(5t)− sin(5t)
− cos(5t)

)
, x2(t) = e−2t

(
cos(5t) + sin(5t)
− sin(5t)

)
.

Then a fundamental matrix Ψ(t) is given by

Ψ(t) =
(
x1(t) x2(t)

)
= e−2t

(
cos(5t)− sin(5t) cos(5t) + sin(5t)
− cos(5t) − sin(5t)

)
.

Because

Ψ(0)−1 =

(
1 1
−1 0

)−1
=

1

1

(
0 −1
1 1

)
=

(
0 −1
1 1

)
,

we see that

etA = Ψ(t)Ψ(0)−1 = e−2t
(

cos(5t)− sin(5t) cos(5t) + sin(5t)
− cos(5t) − sin(5t)

)(
0 −1
1 1

)
= e−2t

(
cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

)
.
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Therefore the solution of the initial-value problem is

x(t) = etAxI = e−2t
(

cos(5t) + sin(5t) 2 sin(5t)
− sin(5t) cos(5t)− sin(5t)

)(
−3
2

)
= e−2t

(
−3 cos(5t) + sin(5t)
2 cos(5t) + sin(5t)

)
.

Remark. After we have constructed the fundmental set of solutions x1(t) and x2(t),
we could also have solved the initial-value problem by finding constants c1 and c2 such
that x(t) = c1x1(t) + c2x2(t) satisfies the initial condition. Had we done this using
the x1(t) and x2(t) constructed above, we would find that c1 = −2 and c2 = −1.

Solution (b) by Formula. The characteristic polynomial of A =

(
8 −5
5 −2

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z + 9 = (z − 3)2 .

This is a perfect square with µ = 3. Therefore we have

etA = e3t
[
I + t (A− 3I)

]
= e3t

[(
1 0
0 1

)
+ t

(
5 −5
5 −5

)]
= e3t

(
1 + 5t −5t

5t 1− 5t

)
.

Therefore the solution of the initial-value problem is

x(t) = etAxI = e3t
(

1 + 5t −5t
5t 1− 5t

)(
3
−1

)
= e3t

(
3 + 20t
−1 + 20t

)
.

This solution grows like 20t e3t as t→∞.

Solution (b) by Eigen Methods. The characteristic polynomial of A =

(
8 −5
5 −2

)
is

p(z) = z2 − tr(A)z + det(A) = z2 − 6z + 9 = (z − 3)2 .

The only eigenvalue of A is 3. We can see from the nonzero columns of the matrix

A− 3I =

(
5 −5
5 −5

)
,

that A has the eigenpair (
3 ,

(
1
1

))
.

We can use this eigenpair to construct the solution

x1(t) = e3t
(

1
1

)
.

A second solution can be constructed by

x2(t) = e3tw + t e3t(A− 3I)w ,

where w is any nonzero vector that is not an eigenvector associated with 3. For

example, taking w =
(
1 0

)T
yields

x2(t) = e3t
(

1
0

)
+ t e3t

(
5 −5
5 −5

)(
1
0

)
= e3t

(
1 + 5t

5t

)
.
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Then a fundamental matrix Ψ(t) is given by

Ψ(t) =
(
x1(t) x2(t)

)
= e3t

(
1 1 + 5t
1 5t

)
.

Because

Ψ(0)−1 =

(
1 1
1 0

)−1
=

1

−1

(
0 −1
−1 1

)
=

(
0 1
1 −1

)
,

we see that

etA = Ψ(t)Ψ(0)−1 =

(
1 1 + 5t
1 5t

)(
0 1
1 −1

)
=

(
1 + 5t −5t

5t 1− 5t

)
.

Therefore the solution of the initial-value problem is

x(t) = etAxI = e3t
(

1 + 5t −5t
5t 1− 5t

)(
3
−1

)
= e3t

(
3 + 20t
−1 + 20t

)
.

This solution grows like 20t e3t as t→∞.

Remark. After we have constructed the fundmental set of solutions x1(t) and x2(t),
we could also have solved the initial-value problem by finding constants c1 and c2
such that x(t) = c1x1(t) + c2x2(t) satisfies the initial condition. Had we done this
using the x1(t) and x2(t) constructed above, we would find that c1 = −1 and c2 = 4.

Solution (c) by Formula. The characteristic polynomial of A =

(
−2 1
−1 −4

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 6z + 9 = (z + 3)2 .

This is a perfect square with µ = −3. Therefore we have

etA = e−3t
[
I + t (A + 3I)

]
= e−3t

[(
1 0
0 1

)
+ t

(
1 1
−1 −1

)]
= e−3t

(
1 + t t
−t 1− t

)
.

Therefore the solution of the initial-value problem is

x(t) = etAxI = e−3t
(

1 + t t
−t 1− t

)(
3
1

)
= e−3t

(
3 + 4t
1− 4t

)
.

(25) Consider the system

ẋ = 2xy , ẏ = 9− 9x− y2 .

(a) Find all of its stationary points.
(b) Find all of its semistationary orbits.
(c) Find a nonconstant function H(x, y) such that every orbit of the system satisfies

H(x, y) = c for some constant c.
(d) Classify the type and stability of each stationary point.
(e) Sketch the stationary points plus the level set H(x, y) = c for each value of c that

corresponds to a stationary point that is a saddle. Carefully mark all sketched
orbits with arrows!
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Solution (a). Stationary points satisfy

0 = 2xy ,

0 = 9− 9x− y2 .
The top equation shows that x = 0 or y = 0. If x = 0 then the bottom equation
becomes 0 = 9 − y2 = (3 − y)(3 + y), which shows that either y = 3 or y = −3. If
y = 0 then the bottom equation becomes 0 = 9 − 9x = 9(1 − x), which shows that
x = 1. Therefore the stationary points of the system are

(0, 3) , (0,−3) , (1, 0) .

Solution (b). When x = 0 the right-hand side of the ẋ equation is zero for every
y. So the system has semistationary solutions of the form (0, Y (t)) when Y (t) is any
nonstationary solution of

ẏ = 9− y2 .
The orbits of these solutions all lie on the line x = 0, which is the y-axis.

There is no value of y that makes the right-hand side of the ẏ equation is zero for
every x. So the system has no semistationary solutions of the form (X(t), b).

Therefore the semistationary orbits are the three open line segments of the y-axis
that are separated by the stationary points (0,−3) and (0, 3).

Solution (c). The associated first-order orbit equation is

dy

dx
=

9− 9x− y2

2xy
.

This equation is not linear or separable. It has the differential form

(y2 + 9x− 9) dx+ 2xy dy = 0 ,

which is exact because

∂y(y
2 + 9x− 9) = 2y = ∂x(2xy) = 2y .

Therefore there exists H(x, y) such that

∂xH(x, y) = y2 + 9x− 9 , ∂yH(x, y) = 2xy .

By integrating the second equation we see that

H(x, y) = xy2 + h(x) .

When this is substituted into the first equation we find

∂xH(x, y) = y2 + h′(x) = y2 + 9x− 9 ,

which implies that h′(x) = 9x− 9. By taking h(x) = 9
2
x2 − 9x we obtain

H(x, y) = xy2 + 9
2
x2 − 9x .

Alternative Solution (c). Notice that

∂xf(x, y) + ∂yg(x, y) = ∂x(2xy) + ∂y(9− 9x− y2) = 2y − 2y = 0 .

Therefore the system has Hamiltonian form with Hamiltonian H(x, y) that satisfies

∂yH(x, y) = 2xy , −∂xH(x, y) = 9− 9x− y2 .
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By integrating the first equation we see that

H(x, y) = xy2 + h(x) .

When this is substituted into the second equation we find

−∂xH(x, y) = −y2 − h′(x) = 9− 9x− y2 ,

which implies that h′(x) = 9x− 9. By taking h(x) = 9
2
x2 − 9x we obtain

H(x, y) = xy2 + 9
2
x2 − 9x .

Solution (d). Because

f(x, y) =

(
f(x, y)
g(x, y)

)
=

(
2xy

9− 9x− y2
)
,

the Jacobian matrix ∂f(x, y) of partial derivatives is

∂f(x, y) =

(
∂xf(x, y) ∂yf(x, y)
∂xg(x, y) ∂yg(x, y)

)
=

(
2y 2x
−9 −2y

)
.

Evaluating this matrix at each stationary point yields

∂f(0, 3) =

(
6 0
−9 −6

)
, ∂f(0,−3) =

(
−6 0
−9 6

)
, ∂f(1, 0) =

(
0 2
−9 0

)
.

• Because the matrix ∂f(0, 3) is lower triangular, we can read off that its eigen-
values are 6 and −6. Because these are real with opposite signs, the stationary
point (0, 3) is a saddle and thereby is unstable.

• Because the matrix ∂f(0,−3) is lower triangular, we can read off that its eigen-
values are −6 and 6. Because these are real with opposite signs, the stationary
point (0,−3) is a saddle and thereby is unstable.

• The characteristic polynomial of the matrix ∂f(1, 0) is

p(z) = z2 + 18 ,

so the matrix ∂f(1, 0) has eigenvalues ±i
√

18. Because these are immaginary
and the system has an integral while the lower left entry of ∂f(1, 0) is negative,
the stationary point (1, 0) is a clockwise center and thereby is stable.

Alternative Solution (b). If you saw that the system has Hamiltonian form with
Hamiltonian H(x, y) from part (b) then you can take this approach. The Hessian
matrix ∂2H(x, y) of second partial derivatives of the Hamiltonian H(x, y) is

∂2H(x, y) =

(
∂xxH(x, y) ∂xyH(x, y)
∂yxH(x, y) ∂yyH(x, y)

)
=

(
9 2y
2y 2x

)
.

Evaluating this at the stationary points yields

∂2H(0, 3) =

(
9 6
6 0

)
, ∂2H(0,−3) =

(
9 −6
−6 0

)
, ∂2H(1, 0) =

(
9 0
0 2

)
.
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• The characteristic polynomial of the matrix ∂2H(0, 3) is

p(z) = z2 − 9z − 36 = (z − 12)(z + 3) .

Therefore the matrix ∂2H(0, 3) has eigenvalues 12 and −3. Because these have
different signs, the stationary point (0, 3) is a saddle and thereby is unstable.

• The characteristic polynomial of the matrix ∂2H(0,−3) is

p(z) = z2 − 9z − 36 = (z − 12)(z + 3) .

Therefore the matrix ∂2H(0,−3) has eigenvalues 12 and −3. Because these have
different signs, the stationary point (0,−3) is a saddle and thereby is unstable.

• Because the matrix ∂2H(1, 0) is diagonal, we can read off that its eigenvalues
are 9 and 2. Because these are both positive, the stationary point (1, 0) is a
clockwise center and thereby is stable.

Solution (e). The saddle points are (0, 3) and (0,−3). Because

H(0, 3) = H(0,−3) = 0 · (±3)2 + 9
2
· 02 − 9 · 0 = 0 .

Hence, the level set corresponding to these saddle points is

0 = xy2 + 9
2
x2 − 9x = (y2 + 9

2
x− 9)x .

The points on this set must satisfy either y2 + 9
2
x − 9 = 0 or x = 0. Therefore the

level set is the union of the parabola x = 2− 2
9
y2 and the y-axis.

Along the y-axis (x = 0) the ẏ equation reduces to ẏ = 9 − y2 = (3 − y)(3 + y),
whereby the arrows point towards (0, 3) and away from (0,−3). Along the parabola
x = 2− 2

9
y2 the arrows point away from (0, 3) and towards (0,−3) because they are

saddle points.

(26) Consider the system

ṗ = −9p+ 3q , q̇ = 4p− 8q + 10p2 .

(a) This system has two stationary points. Find them.
(b) Find the Jacobian matrix at each stationary point.
(c) Classify the type and stability of each stationary point.
(d) Sketch a phase-plane portrait of the system that shows its behavior near each

stationary point. Carefully mark all sketched orbits with arrows!

Solution (a). Stationary points satisfy

0 = −9p+ 3q , 0 = 4p− 8q + 10p2 .

The first equation implies q = 3p, whereby the second equation becomes 0 = −20p+
10p2 = 10p(p− 2), which implies either p = 0 or p = 2. Therefore all the stationary
points of the system are

(0, 0) , (2, 6) .

Solution (b). Because

f(p, q) =

(
f(p, q)
g(p, q)

)
=

(
−9p+ 3q

4p− 8q + 10p2

)
,
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the Jacobian matrix of partial derivatives is

∂f(u, v) =

(
∂pf(p, q) ∂qf(p, q)
∂pg(p, q) ∂qg(p, q)

)
=

(
−9 3

4 + 20p −8

)
.

Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(
−9 3
4 −8

)
at (0, 0) , B =

(
−9 3
44 −8

)
at (2, 6) .

Solution (c). The coefficient matrix A at (0, 0) has eigenvalues that satisfy

0 = det(zI−B) = z2 − tr(B)z + det(B) = z2 + 17z + 60 = (z + 5)(z + 12) .

The eigenvalues are −5 and −12, whereby the stationary point (0, 0) is a nodal sink,
which is attracting. This describes the phase-plane portrait of the nonlinear system
near (0, 0).

The coefficient matrix B at (2, 6) has eigenvalues that satisfy

0 = det(zI−A) = z2 − tr(A)z + det(A) = z2 + 17z − 60 = (z − 3)(z + 20) .

The eigenvalues are −20 and 3, whereby the stationary point (0, 0) is a saddle, which
is unstable. This describes the phase-plane portrait of the nonlinear system near
(2, 6).

Solution (d). The stationary point (0, 0) is a nodal sink. The coefficient matrix A
has eigenvalues −5 and −12. We can see from the nonzero columns of the matrices

A + 5I =

(
−4 3
4 −3

)
, A + 12I =

(
3 3
4 4

)
,

that A has the eigenpairs(
−5 ,

(
3
4

))
,

(
−12 ,

(
−1
1

))
Near (2, 6) there is one orbit that approaches (0, 0) tangent to each side of the line
q = −p. Every other orbit near (0, 0) approaches (0, 0) tangent to one side of the line
q = 4

3
p.

The stationary point (2, 6) is a saddle. The coefficient matrix B has eigenvalues
−20 and 3. We can see from the nonzero columns of the matrices

B + 20I =

(
11 3
44 12

)
, B− 3I =

(
−12 3
44 −11

)
,

that B has the eigenpairs(
−20 ,

(
3
−11

))
,

(
3 ,

(
1
4

))
Near (2, 6) there is one orbit that emerges from (2, 6) tangent to each side of the line
q − 6 = 4(p− 2). There is also one orbit that approaches (2, 6) tangent to each side
of the line q− 6 = −11

3
(p− 2). These orbits are separatrices. A phase-plane portrait

might be sketched during the review session.
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(27) Consider the system

u′ = −5v , v′ = u− 4v − u2 .

(a) Find all of its stationary points.
(b) Compute the Jacobian matrix at each stationary point.
(c) Classify the type and stability of each stationary point.
(d) Sketch a phase-plane portrait of the system that shows its behavior near each

stationary point. Carefully mark all sketched orbits with arrows!

Solution (a). Stationary points satisfy

0 = −5v , 0 = u− 4v − u2 .

The first equation implies v = 0, whereby the second equation becomes 0 = u−u2 =
u(1− u), which implies either u = 0 or u = 1. Therefore all the stationary points of
the system are

(0, 0) , (1, 0) .

Solution (b). Because

f(u, v) =

(
f(u, v)
g(u, v)

)
=

(
−5v

u− 4v − u2
)
,

the Jacobian matrix of partial derivatives is

∂f(u, v) =

(
∂uf(u, v) ∂vf(u, v)
∂ug(u, v) ∂vg(u, v)

)
=

(
0 −5

1− 2u −4

)
.

Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(
0 −5
1 −4

)
at (0, 0) , B =

(
0 −5
−1 −4

)
at (1, 0) .

Solution (c). The coefficient matrix A at (0, 0) has eigenvalues that satisfy

0 = det(zI−A) = z2 − tr(A)z + det(A) = z2 + 4z + 5 = (z + 2)2 + 12 .

The eigenvalues are thereby −2± i. Because a21 = 1 > 0, the stationary point (0, 0)
is a counterclockwise spiral sink, which is attracting. This describes the phase-plane
portrait of the nonlinear system near (0, 0).

The coefficient matrix B at (1, 0) has eigenvalues that satisfy

0 = det(zI−B) = z2 − tr(B)z + det(B) = z2 + 4z − 5 = (z + 2)2 − 32 .

The eigenvalues are thereby −2± 3, or simply −5 and 1. The stationary point (1, 0)
is thereby a saddle, which is unstable. This describes the phase-plane portrait of the
nonlinear system near (1, 0).

Solution (d). The stationary point (0, 0) is a counterclockwise spiral sink.

The stationary point (1, 0) is a saddle. The coefficient matrix B has eigenvalues
−5 and 1. We can see from the nonzero columns of the matrices

B + 5I =

(
5 −5
−1 1

)
, B− I =

(
−1 −5
−1 −5

)
,
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that B has the eigenpairs(
−5 ,

(
1
1

))
,

(
1 ,

(
−5
1

))
Near (1, 0) there is one orbit that emerges from (1, 0) tangent to each side of the line
u = 1 − 5v. There is also one orbit that approaches (1, 0) tangent to each side of
the line v = u − 1. These orbits are separatrices. A phase-plane portrait might be
sketched during the review session.

Remark. The global phase-plane portrait becomes clearer if we had seen that
H(u, v) = 1

2
u2 + 5

2
v2 − 1

3
u3 satisfies

d

dt
H(u, v) = ∂uH(u, v)u′ + ∂vH(u, v) v′

= (u− u2)(−5v) + 5v(u− 4v − u2) = −20v2 ≤ 0 .

The orbits of the system are thereby seen to cross the level sets of H(u, v) so as to
decrease H(x, y). You would not be expected to see this on the Final Exam.

(28) Consider the system

ṗ = p(3− 3p+ 2q) , q̇ = q(6− p− q) .

(a) Find all of its stationary points.
(b) Compute the Jacobian matrix at each stationary point.
(c) Classify the type and stability of each stationary point.
(d) Sketch a phase-plane portrait of the system that shows its behavior near each

stationary point. Carefully mark all sketched orbits with arrows!
(e) Add the orbits of all semistationary solutions to the phase-plane portrait sketched

for part (d). Carefully mark these sketched orbits with arrows!
(f) Why do solutions that start in the first quadrant stay in the first quadrant?

Solution (a). Stationary points satisfy

0 = p(3− 3p+ 2q) , 0 = q(6− p− q) .

The first equation implies either p = 0 or 3− 3p+ 2q = 0, while the second equation
implies either q = 0 or 6− p− q = 0.
• If p = 0 and q = 0 then (0, 0) is a stationary point.
• If p = 0 and 6− p− q = 0 then (0, 6) is a stationary point.
• If 3− 3p+ 2q = 0 and q = 0 then (1, 0) is a stationary point.
• If 3− 3p+ 2q = 0 and 6− p− q = 0 then upon solving these equations we find

that (3, 3) is a stationary point.
Therefore all the stationary points of the system are

(0, 0) , (0, 6) , (1, 0) , (3, 3) .

Solution (b). Because

f(p, q) =

(
f(p, q)
g(p, q)

)
=

(
3p− 3p2 + 2pq
6q − pq − q2

)
,



41

the Jacobian matrix of partial derivatives is

∂f(p, q) =

(
∂pf(p, q) ∂qf(p, q)
∂pg(p, q) ∂qg(p, q)

)
=

(
3− 6p+ 2q 2p
−q 6− p− 2q

)
.

Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(
3 0
0 6

)
at (0, 0) ,

A =

(
−3 2
0 5

)
at (1, 0) ,

A =

(
15 0
−6 −6

)
at (0, 6) ,

A =

(
−9 6
−3 −3

)
at (3, 3) .

Solution (c). The coefficient matrix A at (0, 0) is diagonal, so we can read-off its
eigenvalues as 3 and 6. The stationary point (0, 0) is thereby a nodal source, which is
repelling. This describes the phase-plane portrait of the nonlinear system near (0, 0).

The coefficient matrix A at (0, 6) is triangular, so we can read-off its eigenvalues
as −6 and 15. The stationary point (0, 6) is thereby a saddle, which is unstable. This
describes the phase-plane portrait of the nonlinear system near (0, 6).

The coefficient matrix A at (1, 0) is triangular, so we can read-off its eigenvalues
as −3 and 5. The stationary point (1, 0) is thereby a saddle, which is unstable. This
describes the phase-plane portrait of the nonlinear system near (1, 0).

The coefficient matrix A at (3, 3) has eigenvalues that satisfy

0 = det(zI−A) = z2 − tr(A)z + det(A) = z2 + 12z + 45 = (z + 6)2 + 32 .

Its eigenvalues are thereby −6± i3. Because a21 = −3 < 0, the stationary point (3, 3)
is a clockwise spiral sink, which is attracting. This describes the phase-plane portrait
of the nonlinear system near (3, 3).

Solution (d). The stationary point (0, 0) is a nodal source. The coefficient matrix
A has eigenvalues 3 and 6. We can see from the nonzero columns of the matrices

A− 3I =

(
0 0
0 3

)
, A− 6I =

(
−3 0
0 0

)
,

that A has the eigenpairs(
3 ,

(
1
0

))
,

(
6 ,

(
0
1

))
.

Near (0, 0) there is one orbit that emerges from (0, 0) along each side of the p-axis
and the q-axis. Every other orbit emerges from (0, 0) tangent to the p-axis, which is
the line corresponding to the eigenvalue with the smaller absolute value.

The stationary point (0, 6) is a saddle. The coefficient matrix A has eigenvalues
−6 and 15. We can see from the nonzero columns of the matrices

A + 6I =

(
21 0
−6 0

)
, A− 15I =

(
0 0
−6 −21

)
,

that A has the eigenpairs(
−6 ,

(
0
1

))
,

(
15 ,

(
7
−2

))
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Near (0, 6) there is one orbit that approaches (0, 6) along each side of the q-axis.
There is also one orbit that emerges from (0, 6) tangent to each side of the line
q = 6− 2

7
p. These orbits are separatrices.

The stationary point (1, 0) is a saddle. The coefficient matrix A has eigenvalues
−3 and 5. We can see from the nonzero columns of the matrices

A + 3I =

(
0 2
0 8

)
, A− 5I =

(
−8 2
0 0

)
,

that A has the eigenpairs(
−3 ,

(
1
0

))
,

(
5 ,

(
1
4

))
Near (1, 0) there is one orbit that emerges from (1, 0) along each side of the p-
axis. There is also one orbit that approaches (1, 0) tangent to each side of the line
q = 4(p− 1). These orbits are also separatrices.

Finally, the stationary point (3, 3) is a clockwise spiral sink. All orbits in the
positive quadrant will spiral into it. A phase-plane portrait might be sketched during
the review session.

Solution (e). The lines p = 0 and q = 0 correspond to semistationary solutions.
Along the line p = 0 (the q-axis) the system reduces to

q̇ = q(6− q) .
Along the line q = 0 (the p-axis) the system reduces to

ṗ = 3p(1− p) .
The arrows along these lines can be determined from a phase-line portrait of these
reduced systems. A phase-plane portrait might be sketched during the review session.

Solution (f). Because the p-axis and the q-axis are comprised of semistationary
orbits, the uniqueness theorem implies that no other orbits can cross them.
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Table of Laplace Transforms

h(t) = L−1[H](t) H(s) = L[h](s)

1. tneat for n ≥ 0
n!

(s− a)n+1
for s > a

2. eat cos(bt)
s− a

(s− a)2 + b2
for s > a

3. eat sin(bt)
b

(s− a)2 + b2
for s > a

4. eat cosh(bt)
s− a

(s− a)2 − b2
for s > a+ |b|

5. eat sinh(bt)
b

(s− a)2 − b2
for s > a+ |b|

6. tnj(t) for n ≥ 0 (−1)nJ (n)(s) where J(s) = L[j](s)

7. j′(t) s J(s)− j(0) where J(s) = L[j](s)

8. eatj(t) J(s− a) where J(s) = L[j](s)

9. u(t− c)j(t− c) for c ≥ 0 e−csJ(s) where J(s) = L[j](s)

10. δ(t− c)j(t) for c ≥ 0 e−csj(c)

Here a, b, and c are real numbers; n is an integer; j(t) is any function that is nice enough;
u(t) is the unit step (Heaviside) function; δ(t) is the unit impulse (Dirac delta).


