Solutions of the Sample Problems for the Third Exam
Math 246, Fall 2020, Professor David Levermore

(1) Compute the Laplace transform of f(t) = t e3u(t — 2) from its definition.

Solution. The definition of the Laplace transform gives

T T
L[f](s) = lim [ e *teMu(t—2)dt= lim [ te "V'de.

T—oo J T—oo [o

This limit diverges to +oo for s < 3 because in that case for every T > 2 we have

T T T2
/te<83)tdt2/ tdt = — —2,
2 2 2

which clearly diverges to +oo as T" — oo.

For s > 3 an integration by parts shows that

T —(s=3)t|T T —(s=3)t
e e
/ te AL = —¢ + / dt
9 s—3 |, 5 §—3
T

. e—(s—3)t e—(s—3)t
S\ s—3  (s—3)2/],
—(s=3)T —(s=3)T —(s—3)2 —(s—3)2
e e e e
=(-T — 2 .
(- ) e )
Hence, for s > 3 we have that
67(573)T 67(573)T 67(373)2 67(373)2
L = li -T — 2
o =i (-5~ o) 0w )

—(s—3)2 —(s—3)2 —(s=3)T —(s=3)T
- +2° — lim (T c + 7 )
+2

(5—32 s—3 T—o0

)
e (s—3)2 e—(s—3)2
)

(s —3)2 s—3

(2) Consider the following MATLAB commands.

>>syms t y(t) s Y
>> f = heaviside(t)*t"2 + heaviside(t — 3)*(3*t — t"2);
>> diffeqn = diff(y, 2) — 6*diff(y, 1) + 10*y(t) == {;
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, ...

[laplace(y(t), t, s), y(0), subs(diff(y(t), t), t, 0)], [Y, 2, 3]);
>> ytrans = simplify(solve(algeqn, Y));
>> y = ilaplace(ytrans, s, t)

(a) Give the initial-value problem for y(t) that is being solved.

(b) Find the Laplace transform Y'(s) of the solution y(¢).
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DO NOT take the inverse Laplace transform of Y (s) to find y(t), just solve for Y (s)!
You may refer to the table on the last page.

Solution (a). The initial-value problem for y(t) that is being solved is
y' =6y +10y = f(t),  y(0)=2, y(0)=3,
where the forcing f(t) can be expressed either as

2 for0<t<3
t — — b
U {Bt for 3 <t,

or in terms of the unit step function as f(t) = t* + u(t — 3)(3t — t?).

Solution (b). The Laplace transform of the initial-value problem is

Ly")(s) — 6L[y1(s) + 10L]y|(s) = Lf](s),

where

L[y (s) = s L[y](s) — y(0) = s Y(s) - 2,
Lly")(s) = s Lly)(s) — y'(0) = s"Y (s) — 25 — 3.
To compute L[f](s), we first write f(¢) as
f@) =t +u(t—3)3t —t*) = > +u(t — 3)j(t — 3),
where by setting j(t — 3) = 3t — t? we see by the shifty step method that
jt)=3t+3)—(t+3)*=3t+9—t*—6t—9=—t>—3t.

Referring to the table on the last page, item 1 with a = 0 and n = 2 and with a =0
and n = 1 shows that

L)) =5, L) =

whereby item 6 with ¢ = 3 and j(t) = —t* — 3t shows that

Llu(t - 3)j(t - 3)](5) = e L)(s) = —e P L[2 + 3] (5) = —e* (3 ; i) .
Therefore
L[f](s) = E[tZ +u(t — 3)j(t — 3)} (s) = 52_3 —e 3 (5—23 + %) )

The Laplace transform of the initial-value problem then becomes
2 a2 3
(s°Y(s) — 2s — 3) — 6(sY(s) — 2) + 10Y(s) = il 3 (g + 3_2) ,
which becomes

2 2 3
(82—68+10)Y(8)—28+9:——6_38(—+—).

g3

Therefore Y (s) is given by



(3) Find Y(s) = L[y|(s) where y(t) solves the initial-value problem
y' Ay + 13y = f(t), y(0)=4, y(0)=1,

where
cos(t) for0<t<2m,

f(t) = {t—27r for t > 2m.

DO NOT take the inverse Laplace transform of Y (s) to find y(¢), just solve for Y (s)!
You may refer to the table on the last page.

Solution. The Laplace transform of the initial-value problem is

Lly"|(s) + 4L (s) + 13L[yl(s) = L[f1(s) ,

where
Lly](s) =Y (s),
LIy)(s) = s LIyl(s) = y(0) = s Y (s) — 4,
Lly")(s) = s L[y'](s) = y'(0) = s°Y (s) —4s — 1.

To compute L[f](s), first write f as
f(t) = (1 —u(t —2m)) cos(t) + u(t — 2m)(t — 2)
= cos(t) + u(t — 2m)(t — 2w — cos(t))
= cos(t) + u(t — 2m)j(t — 2m),
where by setting j(t — 2m) =t — 2w — cos(t) we see by the shifty step method that
Jj(t) = (t+ 2m) — 2w — cos(t + 2m) =t — cos(t) .

Here we have used the fact that cos(t) is 2m-periodic. Referring to the table on the
last page, item 6 with ¢ = 27 shows that

L[f](s) = Lleos(t)](s) + L[u(t — 2m);(t — 2m)](s)
= Lcos(t)](s) + e L[5 (1)](s)
= L[cos(t)](s) + e *™ L[t — cos(t)](s) .
Then item 2 with a =0 and b = 1, and item 1 with n = 1 and a = 1 imply that

1
L[f](s) = 3211 +e (8_2_ 5211) :

The Laplace transform of the initial-value problem then becomes

2 - o o _ _ —27s S —27rsi
(s°Y(s) —4s — 1) +4(sY(s) —4) + 13Y(s) = (1 — ¢ )52 1 +te

which becomes

1
(s°+4s+13)Y(s) —4s—1—16 = (1 — e’zﬂs)ﬁ + 672#39 :

Hence, Y'(s) is given by

1 S 1
Y — 4 1 1— —27s —2ms — '
() —32+43—i—13(8+ T+ (1—e )—82+1+e 32)



(4) Find X (s) = L]x](s) where x(t) solves the initial-value problem
" +4x=0(t—3), z(0) =5, 2/(0)=0.
DO NOT take the inverse Laplace transform of X (s) to find x(t), just solve for X (s)!
You may refer to the table on the last page.

Solution. The Laplace transform of the initial-value problem is

L[z")(s) + 4L[x](s) = L[o(t = 3)](s) ,

where
Llz](s) = X(s),
Llz'](s) = s L[z](s) — z(0) = s X(s) — 5,
Lla")(s) = s L[)(s) — 2'(0) = $*X (s) = 55 — 0.

Referring to the table on the last page, item 7 with ¢ = 3 and h(¢) = 1 shows that
L[5t —3)](s) =e .
The Laplace transform of the initial-value problem then becomes
(s +4)X(s) —5s =e .
Hence, X (s) is given by

5s 4+ e 738

X(s) = s2+4

Remark. You should be able to take the inverse Laplace transform to obtain

5s + e~ 3%

z(t) = LX) = ﬁ‘l{ o

] (t) = 5cos(2t) + su(t — 3)sin(2(¢ — 3)) .

(5) Find the inverse Laplace transforms of the following functions.

2
@) F) =
(b) F(s) = 5,
© PO = Ty

You may refer to the table on the last page.

Solution (a). Referring to the table on the last page, item 1 with n = 1 and a = —5
gives

Therefore we conclude that

£ [ﬁ} (1) = 201 [ 5 +1 5)2] () = 2t et
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Solution (b). Because the denominator factors as (s —3)(s+2), we have the partial
fraction identity

9 6
3s 3s E E

$2—5—6 (s—3)(s+2) $—3+5+2'
Referring to the table on the last page, item 1 with n = 0 and a = 3, and with n =0
and a = —2 gives

Lle™](s) =

Therefore we conclude that
3s

Solution (c¢). Complete the square in the denominator to get (s —2)?+ 1. Referring
to the table on the last page, item 2 with a =2 and b = 1 gives

of B s—2
L[e* cos(t)](s) = GoErl
Item 6 with ¢ = 3 and j(t) = e€* cos(t) then gives
gy, 2(t—3) _ _ 3 ST 2
Llu(t — 3)e cos(t — 3)](s) =e GoEel

Therefore we conclude that

E_l |:€—3s s—2

m} (t) = U(t — 3)62(t_3) COS(t — 3) .

For each of the following differential operators compute its Green function g(t) and
its natural fundamental set for ¢t = 0.

(a) L=D*'+8D% -9,
(b) L= (D —2)3.
You may refer to the table on the last page.

Solution (a). The characteristic polynomial of L = D*+8D?*—9 is p(s) = s+8s*—9.
Therefore its Green function g(t) is given by

o) = £ 0 = 67| g0,

Because p(s) factors as p(s) = (s> — 1)(s* + 9) we have the partial fraction identity

1 1 T N —15
s448s2—-9  (s2—1)(s24+9) s2—1 s2+9°




Because s? — 1 factors as s> — 1 = (s — 1)(s + 1) we have the partial fraction identity

1 1 Lo
s2—1 (s=1)(s+1) s—1 s+1
By combining the above partial fraction identities we obtain
N S W S B S T
st4+8s2—-9 2051 205471 W0g249°
Referring to the table on the last page, item 1 with @ = 1 and n = 0 and with a = —1
and n = 0 gives

s—1 s+1
while item 3 with a = 0 and b = 3 gives
3
-1 .
L {52 n 9} (t) = sin(3t) .
Therefore the Green function g(t) is given by

o) = £ | ©

s Lo se ffo-se {2

cl{ ! 1@):@2 El{ ! }(t):et,

Then because we see the characteristic polynomial as
p(s) = 5" +0s® + 85 +0s — 9,
the natrual fundamental set for ¢ = 0 is found by
Ns(t) = g(t) = 55¢" — 35€ " — 35 sin(3¢),
No(t) = Ni(t) + 0g(t) = 55€" + gpe " — 15 cos(3t),
Ni(t) = Ny(t) + 8g(1)

= el — e '+ 2 sin(3t) + Sef — Zet — S sin(3t),

20 20 10 20 20 30
= oe' — ke + & sin(3t),
No(t) = Ni(t) +0g(t) = s5€" 4+ g€ " + 15 cos(3t) .

Remark. The calculation of the natural fundamental set is a bit simpler if the Green
function is expressed in terms of hyperbolic functions. It becomes

Ns(t) = g(t) = 75 sinh(t) — 5 sin(3¢),

No(t) = Nj(t) + 0g(t) = 15 cosh(t) — 15 cos(3t)
Ni(t) = Ny(t) + 8g(t)

= 1—10 sjnh(t) + 1% Sin(?)t) + % Sinh(t) - % sin(St) )

= sinh(t) + 55 sin(3t),

No(t) = Ni(t) + 0g(t) = &5 cosh(t) + 15 cos(3t) .
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Solution (b). The characteristic polynomial of L = (D — 2)3 is p(s) = (s — 2)3.
Therefore its Green function g(t) is given by

- Jo-e o

Referring to the table on the last page, item 1 with a = 2 and n = 2 gives

g(t) = %E_l{(s——QQ)i‘} () = L2

Then because by the binomial expansion we see the characteristic polynomial as
p(s) = (s —2)° = s* +3(—-2)s> + 3(—2)*s + (—2)°
=55 — 65>+ 125 — 8,
the natrual fundamental set for ¢ = 0 is found by
Na(t) = g(t) = 5t%e™,
Ni(t) = Na(t) — 69(t)
_ (t . t262t) _ gt2€2t — pet — 22
No(t) = Ny(t) + 129(t)
= (62t —2te?t — 4t262t) + %t%% = % — 2t e? 4 222
Recast the equation u” + t*u’ — 3u = sinh(2t) as a first-order system of ordinary
differential equations.

Solution. Because the equation is third order, the first-order system must have
dimension three. The simplest such first-order system is

d T To I u
T Ty | = T3 ,  where Ty | = | o
T3 sinh(2t) + 3z — 2z, T3 u”

Two interconnected tanks are filled with brine (salt water). At ¢ = 0 the first tank
contains 45 liters and the second contains 30 liters. Brine with a salt concentration
of 5 grams per liter flows into the first tank at 6 liters per hour. Well-stirred brine
flows from the first tank into the second at 8 liters per hour, from the second into
the first at 7 liters per hour, from the first into a drain at 4 liter per hour, and from
the second into a drain at 3 liters per hour. At ¢t = 0 there are 27 grams of salt in
the first tank and 18 grams in the second.

(a) Give an initial-value problem that governs the amount of salt in each tank as a

function of time.
(b) Give the interval of definition for the solution of this initial-value problem.



Solution (a). Let Vi(t) and V5(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let Sy(t) and Sa(t) be the mass (gr) of salt in the first and
second tank at time ¢ hours. Because mixtures are assumed to be well-stirred, the
salt concentration of the brine in the tanks at time ¢ are Cy(t) = S1(¢)/Vi(t) and
Cy(t) = So(t)/Va(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. We have the following picture.

5 gr/lit o Ci(t) gr/lit
6 lit/hr Vi(#) lit 8 lit/hr Va(t) lit
a@eme | TOE o e | POE 00 g
4 it /hr 7 lit/hr 3 lit/hr
V1(0) = 45 lit V5(0) = 30 it
S1(0) =27 gr S9(0) = 18 gr

We are asked to write down an initial-value problem that governs Si(t) and Sx(t).

The rates work out so there will be Vi (t) = 45 + ¢ liters of brine in the first tank
and V5(t) = 30 — 2¢ liters in the second. Then S;(t) and Sy(t) are governed by the
initial-value problem

dSl SQ Sl Sl
1 _5.6 _ ] _

dt +30—2t 45+t 45+t
ng Sl SQ 52

dt 45+t8 30—2t7 302" 52(0) =18

You could leave the answer in the above form. However, it can be simplified to

4

: $,(0) = 27,

ds, 7 12
R _ =9
dt 30+30—2t52 45+t81’ $1(0) =27,
ds, 8 5

dt _45+t51_15—t52’ 52(0) =18

Solution (b). This first-order system of differential equations is linear.

o Its coefficients are undefined either at ¢ = —45 or at ¢ = 15 and are continuous

elsewhere.

o Its forcing is constant, so is continuous everywhere.

¢ Its initial time is ¢ = 0.
Therefore the natural interval of definition for the solution of this initial-value prob-
lem is (—45, 15) because:

e the initial time ¢t = 0 is in (—45, 15);

e all the coefficients and the forcing are continuous over (—45, 15);

e two coefficients are undefined at t = —45;

e two coefficients are undefined at ¢ = 15.
However, it could also be argued that the interval of definition for the solution of this
initial-value problem is [0, 15) because the word problem starts at ¢t = 0.



(9) Consider the matrices

C(—i2 14 (76
A_<2+z' —4)’ B_(S 7)'

ompute the matrices

=
2 5 i
AV -
os)

—~
= @
SN~—
oy
L

Solution (a). The transpose of A is

Al = (1_122' 2—+4i) '
Solution (b). The conjugate of A is

A= (2& 1—_42.) '
Solution (c¢). The Hermitian transpose of A is

AT _ <1ZEZ 2_—4¢> .
Solution (d). The difference of 5A and B is given by

rom= (510 ) (1 0)= (T 3

Solution (e). The product of A and B is given by

(=i 144\ (T 6
AB_<2+2' —4)(8 7)

(=2 T+ (1+4)-8 —i2-6+(1+14)-7
_( (2+1i)7—4-8  (2+414)-6—4.7 )

([ 8—i6  T—i5
“\ 18447 —16+i6)

Solution (f). Observe that it is clear that B has an inverse because

76
8 7

Then the inverse of B is given by

BT = detl(B) (—78 _76) - (—78 _76) '

det(B)zdet( ):7~7—6~8:49—48:1.
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(10) Consider the vector-valued functions x;(t) = (t 2:_2 3), xa(t) = (t3>
(a) Compute the Wronskian Wr[xy, xo](t).
(b) Find A(t) such that x;, xs is a fundamental set of solutions to i—j = A(t)x

wherever Wr[xy, x2|(t) # 0.
(c) Give a fundamental matrix W(t) for the system found in part (b).
(d) For the system found in part (b), solve the initial-value problem

%:A@L qn:G).

(e) For the A(t) found in part (b), give the Green matrix for the system
x'=A(t)x+£(t).

Solution (a).

4 2
Wrlxi, xo)(t) = det(t 2;'—23 t3) =3t'+9-2t" =t*+9.

th+3 2 dW(t)

2t2 3

dt
-t (1 (5 2)

1 (a2t 3 =t 1 (8 6t—2°
Trgol\4at o)\ =22 *+3) T mrog\12e 43 )

Solution (c). Because x;(t), x3(t) is a fundamental set of solutions to the system
found in part (b), a fundamental matrix for the system found in part (b) is simply
given by

Solution (b). Let ¥(t) = ( > Because = A(t)¥(t), we have

w(0) = () xa(0) = ("0 )

Solution (d). Because a fundamental matrix ¥(¢) for the system found in part (b)
was given in part (c), the solution of the initial-value problem is

MQZWMWM”MUZ(i;3§>@ Ql(a
(" 5 (% 6)
w5 D) wa)



(11)

11

Alternative Solution (d). Because x;(t), x2(t) is a fundamental set of solutions
to the system found in part (b), a general solution is given by

x(t) = e (f) + epxa(t) = & <t42t+2 3) +e (‘;) .

The initial condition then implies that

x(1) = ¢ (3) T C (;1),) - (24;1: 3Cc22> - <(1)> ’

from which we see that ¢; = 1% and ¢y = —%. The solution of the initial-value problem

is thereby
' 43 2 it — 3t + 15
0= (") -1 (5) - (")

Solution (e). Because a fundamental matrix W(¢) for the system found in part (b)
was given in part (c), the Green matrix for the nonhomogeneous system is

B t14+3 2\ (st+3 2\
atts) = wows = (00 ) (55

C(tr+3 2 1 3 =5

T\ 22 3) 449\ —28% 5P+ 3

1 3t +9 — 26252 12(s 4 3) — (1 + 3)s?

T s+ 9 6% — 65> 35t +9 — 2t%s2 '

Compute e for the following matrices.

wa=(1 1)

ma-(" )

Solution (a) by Two-by-Two Formula. Because

14
()

the characteristic polynomial of A is given by
p(z) =22 — tr(A)z +det(A) = 2 =22 — 3 = (z — 1)* — 22,

This is a difference of squares with ¢ = 1 and v = 2. Hence,

sinh(2t) (A — I)}

— ¢! [cosh(%) <(1) (1)) + % (? g)]

B t(cosh(Qt) 251nh(2t))
—° +sinh(2¢) cosh(2t) )

et = ¢ [Cosh(2t)1 +
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Solution (a) by the Natural Fundamental Set Method. Because

1 4
A=(01);

the characteristic polynomial of A is
p(z) =22 — tr(A)z+det(A) =22 —22 -3 = (2 +1)(z — 3).

Below we show that the natural fundamental set of solutions for ¢ = 0 associated
with p(D) = D? — 2D + 3 is

&3t 4 3t o3t _ ot
No(t) = ——— Ni(t) = ——
Then
3t —t 3t —t
A e+ 3e 10 e’ —e 1 4
et = No(t)L+ Ny (A = ——=— <0 (11
1 [2e% F2e7" 46 —de?
T\ e —et 23 2]
From the Green Function. By the partial fraction identity
1 B 1 g N -2
s2—-25+3 (s—3)(s+1) s—3 s+1’
the Green function associated with p(D) = D? — 2D + 3 is
1 1
=L'—| ) =L ——| (¢
o0 =7 0= ] @
B 1 _ 1 _

Then, because the characteristic polynomial is p(s) = s? — 2s + 3, the natural funda-
mental set is
t

Ni(t) = g(t) = e — e,

No(t) = Ni(t) —2g(t) = (3€™ + 2e7") — (3e” — 2e7") = 1% 4 370,

From the General Initial-Value Problem. The general initial-value problem
associated with p(D) = D* — 2D + 3 is

y' =2/ =3y=0, y0)=w, y0)=uy.
This has the general solution y(t) = c1€3 + coe™. Because ¢/ (t) = 3c1€3 — cpe™, the
general initial conditions yield

yOZYJ(O):Cl-i-Cz, y1=y’(0):301—02.
This system can be solved to obtain
_YTHh Pl
1 4 9 2 4 .

The solution of the general initial-value problem is thereby

Yo + th 3yo—y1 _, el +3et et —e”
ylty = o em oo _E Ty S
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Therefore the associated natural fundamental set of solutions is

e3t 4 3e7t et — et
No(h) = —"—,  Nit)=—F—

Solution (a) by Eigen Methods. Because

14
=)

the characteristic polynomial of A is
p(z) =22 — tr(A)z+det(A) =22 =22 -3 = (2 +1)(z — 3).

The eigenvalues of A are the roots of this polynomial, which are —1 and 3. Because

2 4 2 4
A+I:<1 2>, A—31:<1 _2>,

we can read off that A has the eigenpairs

) G0)
() 2y

Because det(V) = 4, we see that
—1
tA tDx7—1 __ 2 2 e_t 0 2 2
cr=Verv _(—1 1)(0 )\ -1 1
(2 2\ (et 0\1(1 -2\ 1
S\-1 1 0 )J4\1 2) 4

1 (2e_t + 23t 4e3t — 4e_t)

T4\ et et et 4 203

Set

Solution (b) by Two-by-Two Formula. Because

6 4
A=(5 )

the characteristic polynomial of A is given by
p(z) =22 — tr(A)z +det(A) = 22 — 82 + 16 = (2 — 4)?.

This is a perfect square with u = 4. Hence,

tA 4t B _ox|(1 0 2 4
et =e {I+t(A 41)]—6 {(0 1)+t<_1 9
o142t 4t
- € t 1—2t) "

Solution (b) by the Natural Fundamental Set Method. Because

6 4
=)
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the characteristic polynomial of A is
p(z) = 2% — tr(A)z +det(A) = 22 — 824+ 16 = (2 — 4)*.

Below we show that the natural fundamental set of solutions for ¢ = 0 associated
with p(D) = D? — 8D + 16 is

No(t) = (1 — 4t)e*, Ni(t) =te.
Then

0 1 -1 2

_ (12t 4
—t 1-2t)"

From the Green Function. Because p(s) = s* — 8s + 16 = (s — 4)?, the Green
function associated with p(D) = D? — 8D + 16 is

o) =7 | 0 =07 gy @

Then, because the characteristic polynomial is p(s) = s* — 8s + 16, the natural
fundamental set is

Ni(t) = g(t) = te",
No(t) = Ny(t) — 8g(t) = (e* +4te™) — 8te" =" —4te™.

¢ — Ny(OT + N1 (H)A = (1 — 4t)e (1 0) +tett ( 6 4)

From the General Initial-Value Problem. The general initial-value problem
associated with p(D) = D? — 8D + 16 is

y' =8y +16y=0,  y(0) =y, ¥(0)=u.
This has the general solution y(t) = cie® + cyte?’. Because
Y (t) = 4eie® + degte™ + e
the general initial conditions yield
Yo =y(0) =c1, 1 =9(0) =4c; + co.

This system can be solved to obtain ¢; = y and ¢s = y; — 4yy. The solution of the
general initial-value problem is thereby

y(t) = yoe' + (1 — dyo)te® = (1 —4t)e™ yo +te* yy .
Therefore the associated natural fundamental set of solutions is
No(t) = (1 —4t)e™,  Ny(t) =te'.

(12) Give the Green matrix for the system x’ = Ax + f(¢) when

wa=(1 1)
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ma=(" )

Solution (a). By the solution to part (a) of the previous problem

A _ 1 (2% 4 2e7" 4e — 4e
4 €3t _ e—t 26315 + 26_t
Therefore the Green matrix G(t, s) is given by

1 263(t—s) 4 26—(15—5) 463(t—s) _ 46—(t—s)
_ A _—sA _ (t—s)A _ —
G(t,s) =e%e = =1 ( 3t=5) _ o=(t=s)  9g3(t—s) | 9p—(t=s) | -

Solution (b). By the solution to part (b) of the previous problem

A w142t 4t
€ =€ (—t 1—92t) -

Therefore the Green matrix G(t, s) is given by

_ _ o [(1+2(t—s) 4At—ys)
_ A _—sA __ (t—s)A _ _4A(t—s)
G(t,s) =efe ™ =¢ =e < C(t—s) 1-2t—s))

(13) Consider the matrix

-1 -2 1
A=|4 0 =2
-2 0 1

Compute e given that the characteristic polynomial of A is p(z) = 2®+ 92 and that
the natural fundamental set of solutions associated with ¢ = 0 for D3 + 9D is

No(t) =1, Ni(t) = 4 sin(3t), No(t) = (1 — cos(3t)) .

Solution. The natural fundamental set method says that
e = No(t)I + Ny (t)A + No(t)A?.

Because No(t) =1, Ni(t) = $sin(3t), Nao(t) = §(1 — cos(3t)), and

1 -2 1\ /-1 -2 1
A2=[4 0 2|4 o -2
2 0 1/)\-2 0 1
1-8-2 2 —1+4+4+1 —9 2 4
=|-44+0+4 -8 4-0-2]=[0 -8 2],

2+0-2 4 -2-0+1 0 4 -1
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we see that
1 00 -1 -2 1 -9 2 4
er=110 1 0|+isin(3)[ 4 0 —2]+i1-cos(3)| 0 -8 2
0 01 -2 0 1 0o 4 -1
cos(3t) — g sin(3t) —2sin(3t) + 2 — 2 cos(3t) 3, s sin(3t) + 5 — g, 2 cos(3t)
= 3 sin(3¢) é + %cos(?ﬂf) —= sm(3t) + 2 — 2 cos(3t)
—2sin(3t) 5 — g cos(3t) 8" s T3 Cos(?)t) 3 sm(3t)

(14) Solve each of the following initial-value problems.

wa() -G 20 G-
()=o) 6 G)-0):

Solution (a). The characteristic polynomial of A = (; _21) is given by

p(z) = 2" — tr(A)z + det(A) = 2* — 2 — 12 = (2 — $)* — (3)*.

This is a difference of squares with u = % and v = % Hence,
¢
e = eat [cosh(%t)I + —== smh(2 ) (A - %I)}
1 1 0 smh Zt 3 9
- rfoata 3 9+ (¢ 2)
_ bt (cosh(lgéf) .—l— = ilnh(§ ) ;—718 hg%t) ) ‘
7smh(§t) cosh (%t) 2 sin h(Zt)

Therefore the solution of the initial-value problem is

()-8

14 {cosh(Zt) + 2sinh(1¢) 2 sinh(Zt) 1
= ( folinn(Zt) ~ cosh(Tt) — Ssinn(Zr) ) -1
_ L cosh %t) — %sinh(%t)

— "\ = cosh 1t) + 2 sinh(1t)

Solution (b). The characteristic polynomial of A = <_1 4 1) is given by

p(z) =22 — tr(A)z+det(A) = 22 — 22 + 5= (2 — 1)* + 22,
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This is a sum of squares with ;4 = 1 and v = 2. Hence,

Sn2h) (p 1)}

_ {COS(Qt) (é ?) n Sinézt) ( _04 é)}

e (L )

et = ¢ [cos(?t)l +

Therefore the solution of the initial-value problem is
(x(t)) oA <$<0)) _ oA (1)
y(t) y(0) 1
¢ cos(2t)  1sin(2t)) (1 ¢ [ cos(2t) + 1 sin(2t)
—2sin(2t)  cos(2t) 1 —2sin(2t) + cos(2t)
Remark. We could have used other methods to compute et in each part of the

above problem. Alternatively, we could have constructed a fundamental matrix W(t)
and then determined c so that W(t)c satisfies the initial conditions.

(15) Find a general solution for each of the following systems.
(a) d () _ (3 -4\ (=
dt \y L =1)\y
d [z 2 =5\ (z
b _— —
05 () -6 2)0)
() dfz\ _ (5 4\ (=
dt \y =5 1) \y
Solution (a). We must find a general solution for the system
d fz\ _ (3 —4) (=
dt\y) \1 -1)\y)~
L : 3 —4\. .
The characteristic polynomial of A = <1 _1) is given by

p(z) = 2% — tr(A)z +det(A) = 22 — 22+ 1 = (2 — 1)°.

This is a perfect square with © = 2. Hence,

A= I+t(A-T)] =¢ K(l) (1)) +t(? :;)]

=€ .
13 1 -2t
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Therefore a general solution is
[E(t) _ etA C]_ _ et 1 + 2t _4t C]_
yt)) c2) t 1—2t) \c
1+2¢ —4t
ot t
—cle( ' )—i—@e (1_%).

Solution (b) by Two-by-Two Formula. We must find a general solution for the

system $0)-G2)0)

The characteristic polynomial of A = (i :g) is given by

p(z) = 22 — tr(A)z + det(A) = 2> + 42,

This is a sum of squares with ;4 = 0 and v = 4. Hence,

- {cos(4t)1+ sini4t) A} _ {COS ” <(1) (1)>  sin(4) (i :g)}

4
_ (cos(4t) + 5 sin(4¢) — = sin(4¢t) )
sin(4t) cos(4t) — L+ sin(4t) ) -

oo

Therefore a general solution is

() = () = (5™ ™) €)

() il )

2

Solution (b) by Eigen Methods. We must find a general solution for the system

d fz\ _ (2 =5\ (=
dt \y) \4 -2 y)
. . 2 =h).
The characteristic polynomial of A = ( 4 _2> is
p(2) = 22 — tr(A)z 4+ det(A) = 22 + 16.

The eigenvalues of A are the roots of this polynomial, which are +¢4. Because

o (2—i4 =5 (244 =
A_“ﬂ—( 4 —2—¢4)’ A““‘( 4 —2+2’4>’

we can read off that A has the eigenpairs

(o (%) (o (57)
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Therefore the system has the complex-valued solution

et (1 212) = (cos(4t) + isin(4t)) (1 —522)
_ (cos(4t) — 2sin(4t) + 12 cos(4t) + tsin(4t)
( 2 cos(4t) + 12 sin(4t) > '

By taking real and imaginary parts, we obtain the two real solutions

xi(t) = Re (em (1 Z”)) _ <cos(42t)co—S (24ii)n(4t)> |
xa(t) = Tm ( (1 + 2)) _ (2 cos<24;>n?4;§n<4t>) |

Therefore a general solution is

(ng;) . (COS<42t)CO_S (24?)11(415)) ‘e (2 cos(24;)n4<r4ii)n(4t)> .

Solution (c¢) by Two-by-Two Formula. We must find a general solution for the

system a4 @ - <_55 il) (Z) |

The characteristic polynomial of A = <_55 le) is given by

p(2) = 22 — tr(A)z + det(A) = 22 — 62 +25 = (2 — 3)? +42.

This is a sum of squares with ;4 = 3 and v = 4. Hence,

sin(4t) (A - SI)}

o [cos(zxt) (é (1)) L (_25 _42)}
_ (cos(4t% + 1sin(4¢) sm(41t)_ ) '
—3sin(4t)  cos(4t) — Lsin(4t)

Therefore a general solution is

(o) = () = (U™ ™ L) (2)

l . .
et (cos(4tg + 5 Sln(4t)) I ( sin(4t) ) .
cos(

—7 sin(4t) 4t) — 5 sin(4t)

et = ¢ [COS(42§)I +

Solution (c) by Eigen Methods. We must find a general solution for the system

30) -5 ) 0)
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p(2) = 22 — tr(A)z + det(A) = 22 — 62 + 25 = (2 — 3)% + 16.

The eigenvalues of A are the roots of this polynomial, which are 3 + i4. Because

o (2—i4 4 o [(2+i4 4
a-Gein= (00 0) 0 aseom= (P10 L)

The characteristic polynomial of A = ( g 4) is

we can read off that A has the eigenpairs

o (). (oo (53)

Therefore the system has the complex-valued solution

o(BHid)t (1 B i2) = €”(cos(4t) + isin(4t)) (1 — 2'2)

3t —2cos(4t) — i2sin(4t)
— ¢ \cos(4t) + 2sin(4t) + i sin(4t) — i2 cos(4t) ) -

By taking real and imaginary parts, we obtain the two real solutions

s0(t) = e (7200 = (s T aaman)
xp(t) = Tm <6(3+i4)t (1 1%2)) = e (sin(él_t)Q S—inz(f?s(zu)) '

Therefore a general solution is
z(t)\ s —2cos(4t) PR —2sin(4t)
y()) = \cos(4t) + 2sin(4t) 2 \sin(4t) — 2 cos(4t) ) -

Given that 1 is an eigenvalue of the matrix

2 -1 1
A=(1 1 -1],
0 -1 3

find all the eigenvectors of A associated with 1.

Solution. The eigenvectors of A associated with 1 are all nonzero vectors v that
satisfy Av = v. Equivalently, they are all nonzero vectors v that satisfy (A—I)v = 0,
which is
1 -1 1 vy
1 0 -1 vy | =0.
0 —1 2 V3
The entries of v thereby satisfy the homogeneous linear algebraic system
vy —v2+ v3=0,
U1 - U3 = O?
—vg + 2v3 = 0.
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We may solve this system either by elimination or by row reduction. By either
method we find that its general solution is
V1=, Uy =20, vV3=a, for any constant «.
The eigenvectors of A associated with 1 thereby have the form

1
al?2 for any nonzero constant « .
1

(1)

(a) Find all the eigenvalues of A.

(b) For each eigenvalue of A find all of its eigenvectors.
c¢) Diagonalize A.

()

Consider the matrix

(
d) Compute etA.

(e) Compute (sI — A)~! for every s where it is defined.

Solution (a). The characteristic polynomial of A is given by
p(z) =22 — tr(A)z +det(A) = 2> — 22 — 15 = (2 + 3)(z — 5).

The eigenvalues of A are the roots of this polynomial, which are —3 and 5.
Solution (b) by the Cayley-Hamilton Method. We have
6 3 -2 3
ne=(83) aas(? )
Every nonzero column of A — 5I has the form

o (_12) for some a; # 0.

These are all the eigenvectors associated with —3. Similarly, every nonzero column
of A + 3I has the form

o (g) for some as # 0.
These are all the eigenvectors associated with 5.

Solution (c). If we use the eigenpairs

1 3
(+(5) (6)
1 3 -3 0
VZ(—Q 2)’ D:(o 5)'
Because det(V) =1-2—(—2)-3 =246 = 8, we see that

1 /2 -3
-1 _
v _8(2 1).

then set
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We conclude that A has the diagonalization

B (1 3\ (-3 0\1/2 -3
A =VDV _(—2 2)(0 5)5(2 1)'

You do not have to multiply these matrices out. Had we started with different
eigenpairs, the steps would be the same as above but we would obtain a different
diagonalization.

Solution (d). Because A = VDV ™! by part (c), we have
tA tDy7r—1 __ 1 3 6_3t 0 1 2 =3
e_Vev_(—QQ 0 )gl\2 1
_ 11 3 (27 =37
—s\=-2 2 2e° et

1 [ 2e73t +6e5 —3e 3 4 3™

= g (_46—3t+465t 66—3t+2€5t ) .

Solution (e). Because we see from part (a) that
det(sI — A) = pa(s) =s* —2s — 15 = (s +3)(s — 5),

so whenever s # —3 and s # 5 we have

ea= (50 ) e (1)

This is defined for every s except at s = —3 and s = 5.

Alternative Solution (e). Because A = VDV ™! by part (c), we have

1
0
-1 —1 -1 1 3 8+3 l 2 —3
(sI-A)" =V(sI-D)"'V —(_2 9 . 1 sla 1
$—95
2 -3
_ /i1 3 s+3 s4+3
_g(—2 2) 5 Jf
$—5 s§—95
2 N 6 -3 n 3
1
_ +3 -5 3 -5
=5l 74 +S4 °6 +82
s+3 s—5 s+3 s—95
This is defined for every s except at s = —3 and s = 5.

Remark. Partial fraction identities show that the solutions given above are identical.
The second approach is faster than the first for larger matrices.
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(18) What answer will be produced by the following Matlab command?
>> A = [14; 3 2]; [vect, val] = eig(sym(A))

You do not have to give the answer in Matlab format.

Solution. The Matlab command will produce the eigenpairs of A = (zl)) é) The

characteristic polynomial of A is
p(z) = 2% — tr(A)z +det(A) = 22 =32 — 10 = (2 — 5)(2 + 2),

so its eigenvalues are 5 and —2. Because

4 4 3 4
A—5I_<3 _3), A+21_(3 4),

we can read off that the eigenpairs are

e-0) (= 6)

(19) A 3 x 3 matrix A has the eigenpairs

1 ~1 1
-3, (1], 2, | 1 , 5, -1
0 1 2

(a) Give an invertible matrix V and a diagonal matrix D such that !4 = VePV~L
(You do not have to compute either V=1 or ¢'Al)
(b) Give a fundamental matrix for the system x’ = Ax.

Solution (a). One choice for V and D is

1 -1 1 —3 0 0
v=[1 1 -1], D=[0 20
0 1 2 0 05

1 —1 1
xi(t)=e (1], x@®)=e*| 1], xs(t)=e€"|-1],
0 1 2
Then a fundamental matrix for the system is
Bt g2t oot

U(t) = (x1(t) xo(t) xs(t)) = e e —e
0 €2t 265t

Alternative Solution (b). Given the V and D from part (a), a fundamental matrix
for the system is

1 -1 1 e300 0 e 3t —e?t bt
H)=VeP=[1 1 -1 0 €2 0| =[e3t 2 ot
0o 1 2 0 0 e 0 et 2edt
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Table of Laplace Transforms

L)) =
L{eat COS(bt)](S> = ﬁ
ﬁ[eat sin(bt)](s) = m

L[j'®)](s) = s (s) = 4(0)

for s >a.
for s > a.

for s >a.

where J(s) = L[j(t)](s) .
where J(s) = L[j(t)](s) .
where J(s) = L[j(t)](s) .

where J(s) = L[j(t)](s), ¢ > 0,
and u is the unit step function.

where ¢ > 0 and 0 is the unit impulse.



