Math 246 Final Exam Professor David Levermore begins 10:00am on Wednesday, 16 December 2020 due by noon on Thursday, 17 December 2020

- This is an "open-book exam". You may refer to the on-line text or the solutions to any of our past quizzes or group work.
- Work on your own! Do not consult with anyone or with any interactive resource.
- On the top of the first page of your answers please hand copy and sign the University Honor Pledge.

University Honor Pledge: I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

- Answers should be handwritten. Indicate where the answer to each part of each problem is located. Cross out work that you do not want considered.
- Use the **Table of Laplace Transforms** found at the end of the exam.
- Your reasoning must be given for full credit!
- Upload your answers to ELMS as a pdf file by **noon on Thursday, December 17.**
- (1) [20] Find an explicit solution to each of the following initial-value problems. Identify their intervals of definition.

(a) [10]
$$x' = -\frac{4t}{(t^2+1)x}$$
, $x(0) = -2$.
(b) [10] $(1+t)v' + 4v = \frac{e^t}{(1+t)^3}$, $v(0) = 3$

(2) [10] Consider the following Matlab commands.

[t,y] = ode45(@(t,y) y.*(y+4), [2,6], -2.0:4.0:2.0);plot(t,y)

The following questions need not be answered in Matlab format!

- (a) [2] What differential equation is being solved numerically?
- (b) [1] Over what time interval are the solutions being approximated?
- (c) [3] Give the initial condition for each solution being approximated.
- (d) [4] Sketch each of these solutions over this time interval on a single graph. Label the initial value of each solution clearly.
- (3) [20] Give an explicit real general solution to each of the following equations.
 - (a) $[10] u'' 11u' + 24u = 12e^{2t}$.
 - (b) [10] $x'''' + 18x'' + 81x = 24\cos(3t)$.
- (4) [10] Given that t^2 and t^4 solve the associated homogeneous differential equation, solve the initial-value problem

$$t^2 v'' - 5t v' + 8v = \frac{8t^5}{1+t^2}, \qquad v(1) = 0, \quad v'(1) = 0.$$

Evaluate any definite integrals that arise.

(5) [20] Let x(t) be the solution of the initial-value problem

$$x'' + 8x' + 20x = f(t), \qquad x(0) = -3, \quad x'(0) = 5,$$

where the forcing f(t) is given by

$$f(t) = \begin{cases} t^2 & \text{for } 0 \le t < 2, \\ 4e^{2-t} & \text{for } 2 \le t < \infty. \end{cases}$$

- (a) [10] Find the Laplace transform F(s) of the forcing f(t).
- (b) [10] Find the Laplace transform X(s) of the solution x(t). (DO NOT take the inverse Laplace transform to find x(t); just solve for X(s)!)

Use the **Table of Laplace Transforms** found at the end of the exam.

- (6) [10] Find the function y(t) whose Laplace transform is $Y(s) = \frac{e^{-5s}(s+9)}{s^2 4s 21}$. Use the **Table of Laplace Transforms** found at the end of the exam.
- (7) [20] Solve the initial-value problem $\mathbf{x}' = \mathbf{B}\mathbf{x}$, $\mathbf{x}(0) = \mathbf{x}^{\mathrm{I}}$ for the following **B** and \mathbf{x}^{I} .

(a) [10]
$$\mathbf{B} = \begin{pmatrix} -2 & -1 \\ 1 & -4 \end{pmatrix}, \quad \mathbf{x}^{\mathrm{I}} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}.$$

(b) [10] $\mathbf{B} = \begin{pmatrix} -2 & 5 \\ -1 & -4 \end{pmatrix}, \quad \mathbf{x}^{\mathrm{I}} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$

(8) [20] Two masses are connected by springs and slide along a frictionless horizontal track as illustrated by the following schematic diagram.

Their motion is governed by the second-order system

$$\ddot{h}_1 = -4h_1 - 6(h_1 - h_2), \qquad \ddot{h}_2 = -6(h_2 - h_1) - 4h_2,$$

where h_1 and h_2 are the horizontal displacements of the masses from their respective equilibrium positions.

(a) [4] Recast this system as a first-order system in the form $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ where

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -10 & 6 & 0 & 0 \\ 6 & -10 & 0 & 0 \end{pmatrix}$$

(b) [8] Show that \mathbf{A} has the eigenpairs

$$\left(i2, \begin{pmatrix}1\\1\\i2\\i2\end{pmatrix}\right), \quad \left(-i2, \begin{pmatrix}1\\1\\-i2\\-i2\end{pmatrix}\right), \quad \left(i4, \begin{pmatrix}1\\-1\\i4\\-i4\end{pmatrix}\right), \quad \left(-i4, \begin{pmatrix}1\\-1\\-i4\\i4\end{pmatrix}\right).$$

(c) [8] Give a fundamental set of real solutions for the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$.

(9) [10] Compute $e^{t\mathbf{C}}$ for

$$\mathbf{C} = \begin{pmatrix} 0 & -3 & 0 \\ 3 & 0 & 4 \\ 0 & -4 & 0 \end{pmatrix} \;,$$

given that

- the characteristic polynomial of **C** is $p(z) = z^3 + 25z$,
- the Green function for $D^3 + 25D$ is $g(t) = \frac{1}{25} (1 \cos(5t))$.
- (10) [20] A real 2×2 matrix **B** has the eigenpairs

$$\left(-1, \begin{pmatrix} 2\\ 3 \end{pmatrix}\right)$$
 and $\left(-2, \begin{pmatrix} 3\\ -2 \end{pmatrix}\right)$.

- (a) [4] Give a general solution to the linear planar system $\mathbf{x}' = \mathbf{B}\mathbf{x}$.
- (b) [2] Give an invertible matrix **V** and a diagonal matrix **D** that diagonalize **B**.
- (c) [8] Compute $e^{t\mathbf{B}}$.
- (d) [6] Sketch a phase-plane portrait for this system and identify its type. Classify the stability of the origin. (Carefully mark all sketched orbits with arrows!)
- (11) [20] Consider the system

$$x' = y - 4x + x^2$$
, $y' = 4y - 2xy$.

- (a) [10] Find a nonconstant function H(x, y) such that every orbit of the system satisfies H(x, y) = c for some constant c.
- (b) [10] The stationary points are (0,0), (4,0), and (2,4). In the phase-plane sketch these stationary points plus the level set H(x,y) = c for each value of c that corresponds to a stationary point that is a saddle. (No arrows are required!)
- (12) [20] Consider the system

$$\dot{u} = -4u - v$$
, $\dot{v} = 2u - v - 3u^2$.

- (a) [3] This system has two stationary points. Find them.
- (b) [3] Find the Jacobian matrix at each stationary point.
- (c) [6] Classify the type and stability of each stationary point.
- (d) [8] Sketch a phase-plane portrait of the system that shows its behavior near each stationary point. (Carefully mark all sketched orbits with arrows!)

	$h(t) = \mathcal{L}^{-1}[H](t)$)	$H(s) = \mathcal{L}[h](s)$	
1.	$t^n e^{at}$	for $n \ge 0$	$\frac{n!}{(s-a)^{n+1}}$	for $s > a$
2.	$e^{at}\cos(bt)$		$\frac{s-a}{(s-a)^2+b^2}$	for $s > a$
3.	$e^{at}\sin(bt)$		$\frac{b}{(s-a)^2 + b^2}$	for $s > a$
4.	$e^{at}\cosh(bt)$		$\frac{s-a}{(s-a)^2 - b^2}$	for $s > a + b $
5.	$e^{at}\sinh(bt)$		$\frac{b}{(s-a)^2 - b^2}$	for $s > a + b $
6.	$t^n j(t)$	for $n \ge 0$	$(-1)^n J^{(n)}(s)$	where $J(s) = \mathcal{L}[j](s)$
7.	j'(t)		s J(s) - j(0)	where $J(s) = \mathcal{L}[j](s)$
8.	$e^{at}j(t)$		J(s-a)	where $J(s) = \mathcal{L}[j](s)$
9.	u(t-c)j(t-c)	for $c \ge 0$	$e^{-cs}J(s)$	where $J(s) = \mathcal{L}[j](s)$
10.	$\delta(t-c)j(t)$	for $c \ge 0$	$e^{-cs}j(c)$	

Table of Laplace Transforms

Here a, b, and c are real numbers; n is an integer; j(t) is any function that is nice enough; u(t) is the unit step (Heaviside) function; $\delta(t)$ is the unit impulse (Dirac delta).