
Math 246 Exam 3 Solutions
Professor David Levermore

Thursday, 19 November 2020
due by 4:00pm Friday, 20 November

(1) [6] Two masses are connected by springs and slide along a frictionless horizontal track
as illustrated by the following schematic diagram.∣∣∣∣−\/∖/∖/∖/∖/∖/∖/− m −\
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Their motion is governed by the second-order system

ḧ1 = −4h1 − 2(h1 − h2) , ḧ2 = −2(h2 − h1)− 3h2 ,

where h1 and h2 are the horizontal displacements of the masses from their respective
equilibrium positions. Recast this system as a first-order system in the form ẋ = Ax.

Solution. The second-order system is given in normal form. Because this system is
two dimensional and is second order, the first-order system must have dimension at
least four. One such first-order system is

d

dt


x1
x2
x3
x4

 =


x3
x4

−4x1 − 2(x1 − x2)
−2(x2 − x1)− 3x2

 , where


x1
x2
x3
x4

 =


h1
h2
ḣ1
ḣ2

 .

This has the form ẋ = Ax where

x =


x1
x2
x3
x4

 , A =


0 0 1 0
0 0 0 1
−6 2 0 0
2 −5 0 0

 .

Remark. There should be no h1, h2, ḣ1, or ḣ2 appearing in the first-order system.
The only place these should appear is in the dictionary on the right that shows their
relationship to the new variables. The first-order system should be expressed solely
in terms of the new variables, which are x1, x2, x3, and x4 in the solution given above
because the requested form was ẋ = Ax.

Remark. The dyanamics of a general spring-mass system depicted in the schematic
diagram is governed by the second-order system

m1ḧ1 = −k1h1 − k2(h1 − h2) , m2ḧ2 = −k2(h2 − h1)− k3h2 ,
where m1 and m2 are the respecitve masses and k1, k2 and k3 are the respective
spring coefficients. After dividing by the masses and comparing the result with the
system given in the problem, we see that

k1
m1

= 4 ,
k2
m1

= 2 ,
k2
m2

= 2 ,
k3
m2

= 3 .

It follows that m1 = m2, which is why both masses are labeled with m in the diagram.
1
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(2) [8] Two connected tanks, each with a capacity of 50 liters, contain brine (salt water).
Initially the first tank contains 18 liters of brine with a salt concentration of 3 grams
per liter and the second contains 17 liters of brine with a salt concentration of 2
grams per liter. At t = 0 brine with a salt concentration of 6 grams per liter flows
into the first tank at 8 liters per hour. Well-stirred brine flows from the first tank
into the second at 7 liters per hour, from the second into the first at 5 liters per hour,
from the first into a drain at 4 liter per hour, and from the second into a drain at 3
liters per hour.
(a) [2] Determine the volume (liters) of brine in each tank as a function of time.
(b) [4] Give an initial-value problem that governs the amount (grams) of salt in each

tank as a function of time.
(c) [2] Give the interval of definition for the solution of this initial-value problem.

Remark. Let V1(t) and V2(t) be the volumes (lit) of brine in the first and second
tank at time t hours. Let S1(t) and S2(t) be the mass (gr) of salt in the first and
second tank at time t hours. Because the mixtures are assumed to be well-stirred,
the salt concentration of the brine in the tanks at time t are C1(t) = S1(t)/V1(t) and
C2(t) = S2(t)/V2(t) respectively. In particular, these are the concentrations of the
brine that flows out of these tanks. At t = 0 we have

S1(0) = C1(0)V1(0) = 3 · 18 = 54 gr , S2(0) = C2(0)V2(0) = 2 · 17 = 34 gr .

We have the following picture.

50 lit cap 50 lit cap

6 gr/lit
8 lit/hr

→

C1(t) gr/lit
4 lit/hr

←

V1(t) lit
S1(t) gr

→ C1(t) gr/lit
7 lit/hr

→

← C2(t) gr/lit
5 lit/hr

←

V2(t) lit
S2(t) gr

→ C2(t) gr/lit
3 lit/hr

V1(0) = 18 lit
S1(0) = 54 gr

V2(0) = 17 lit
S2(0) = 34 gr

Solution (a). We are asked to determine V1(t) and V2(t). The rates above give

V1(t) = V1(0) + (8 + 5− 7− 4)t = 18 + 2t lit ,

V2(t) = V2(0) + (7− 5− 3)t = 17− t lit .

Remark. Because the tanks each have a capacity of 50 liters, we have the restrictions

0 ≤ V1(t) = 18 + 2t ≤ 50 , 0 ≤ V2(t) = 17− t ≤ 50 .

These restrictions are

−9 ≤ t ≤ 16 , −33 ≤ t ≤ 17 ,

which combine to give the restrictions

−9 ≤ t ≤ 16 .

Notice that these restrictions happen when the first tank is either empty or full.
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Solution (b). You are asked to give an initial-value problem that governs S1(t) and
S2(t). These are governed by the initial-value problem

dS1

dt
= 6·8 +

S2

17− t
5− S1

18 + 2t
7− S1

18 + 2t
4 , S1(0) = 54 ,

dS2

dt
=

S1

18 + 2t
7− S2

17− t
5− S2

17− t
3 , S2(0) = 34 .

You could leave the answer in the above form. It can however be simplified to

dS1

dt
= 48 +

5

17− t
S2 −

11

18 + 2t
S1 , S1(0) = 54 ,

dS2

dt
=

7

18 + 2t
S1 −

8

17− t
S2 , S2(0) = 34 .

Solution (c). You are asked to give the interval of definition for the solution of this
initial-value problem. This can be done because the differential equation is linear. Its
coefficients are undefined either at t = −9 or at t = 17 and are continuous elsewhere.
Its forcing is constant, so is continuous everywhere. Therefore the natural interval of
definition of this initial-value problem is (−9, 17) because:
• the initial time t = 0 is in (−9, 17);
• all the coefficients and the forcing are continuous over (−11, 17);
• two coefficients are undefined at t = −9;
• two coefficients are undefined at t = 17.

However, this interval is not consistent with the restictions given earlier because the
first tank overflows when t = 16. Therefore one acceptable answer is (−9, 16].

We can also argue that the interval of definition for the solution of this initial-value
problem is [0, 16] because the word problem starts at t = 0.

(3) [10] Consider the vector-valued functions x1(t) =

(
1
t3

)
, x2(t) =

(
t2

4 + t5

)
.

(a) [2] Compute the Wronskian Wr[x1,x2](t).
(b) [3] Find B(t) such that x1, x2 is a fundamental set of solutions to the system

x′ = B(t)x wherever Wr[x1,x2](t) 6= 0.
(c) [2] Give a general solution to the system found in part (b).
(d) [3] Compute the Green matrix associated with the system found in part (b).

Solution (a). The Wronskian is

Wr[x1,x2](t) = det

(
1 t2

t3 4 + t5

)
= 1 · (4 + t5)− t3 · t5 = 4 + t5 − t5 = 4 .

Solution (b). If x1, x2 is a fundamental set of solutions for the system x′ = B(t)x
then a fundamental matrix is

Ψ(t) =

(
1 t2

t3 4 + t5

)
.
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Because any fundamental matrix is invertible and satisfies Ψ′(t) = B(t)Ψ(t), we see
that

B(t) = Ψ′(t)Ψ(t)−1 =

(
0 2t

3t2 5t4

) (
1 t2

t3 4 + t5

)−1
=

1

4

(
0 2t

3t2 5t4

) (
4 + t5 −t2
−t3 1

)
=

1

4

(
−2t4 2t

12t2 − 2t7 2t4

)
.

Solution (c). A general solution is

x(t) = c1x1(t) + c2x2(t) = c1

(
1
t3

)
+ c2

(
t2

4 + t5

)
.

Solution (d). By using the fundamental matrix Ψ(t) from part (b) we find that the
Green matrix is

G(t, s) = Ψ(t)Ψ(s)−1 =

(
1 t2

t3 4 + t5

) (
1 s2

s3 4 + s5

)−1
=

1

4

(
1 t2

t3 4 + t5

) (
4 + s5 −s2
−s3 1

)
=

1

4

(
4 + s5 − t2s3 t2 − s2

t3(4 + s5)− (4 + t5)s3 4 + t5 − t3s2
)
.

Remark. Remember to check that G(s, s) = I.

(4) [8] Given that 2 is an eigenvalue of the matrix

C =

−4 0 3
3 1 0
2 −2 4

 ,

do the following.
(a) [4] Find all of the eigenvectors of C associated with 2.
(b) [4] Find the other eigenvalues of C. (You do not need to find more eigenvectors!)

Solution (a). The eigenvectors of C associated with 2 are all nonzero vectors v such
that Cv = 2v. Equivalently, they are all nonzero vectors v such that (C− 2I)v = 0,
which is −6 0 3

3 −1 0
2 −2 2

v1v2
v3

 =

0
0
0

 .

The entries of v thereby satisfy the homogeneous linear algebraic system

−6v1 + 3v3 = 0 .

3v1 − v2 = 0 ,

2v1 − 2v2 + 2v3 = 0 .
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This system may be solved either by elimination or by row reduction. By any method
its general solution is found to be

v1 = α , v2 = 3α , v3 = 2α , for any constant α .

Therefore every eigenvector of C associated with 2 has the form

α

1
3
2

 for some constant α 6= 0 .

Solution (b). The eigenvalues of C are the zeros of its characteristic polynomial
pC(ζ), which is defined by

pC(ζ) = det(ζI−C) = det

ζ + 4 0 −3
−3 ζ − 1 0
−2 2 ζ − 4


= (ζ + 4)(ζ − 1)(ζ − 4) + (−3)(−3)2− (−2)(ζ − 1)(−3)

= (ζ2 − 16)(ζ − 1) + 18− 6(ζ − 1)

= ζ3 − ζ2 − 22ζ + 40 .

Next, check that pC(2) = 8− 4− 44 + 40 = 0. (If this is not true then a mistake was
made in computing pC(ζ).) Because we know that 2 is a zero of pC(ζ), the others can
be found either by trying factors of 40, by factoring pC(ζ) by polynomial division, or
by factoring a translation of pC(ζ). By either route the other eigenvalues of C are
found to be −5 and 4.

Trying Factors of 40. The factors of 40 are ±1, ±2, ±4, ±5, ±8, ±10, ±20, and
±40. Trying these in order of increasing magnitude we get

pC(1) = 1− 1− 22 + 40 = 18 , pC(−1) = −1− 1 + 22 + 40 = 60 ,

pC(2) = 8− 4− 44 + 40 = 0 , pC(−2) = −8− 4 + 44 + 40 = 72 ,

pC(4) = 64− 16− 88 + 40 = 0 , pC(−4) = −64− 16 + 88 + 40 = 48 ,

pC(5) = 125− 25− 110 + 40 = 30 , pC(−5) = −125− 25 + 110 + 40 = 0 .

Because pC(ζ) has zeros 2, 4, and −5, the other eigenvalues of C are 4 and −5.

Factoring pC(ζ) by Polynomial Division. Because pC(2) = 0, we know that ζ−2
is a factor of pC(ζ). Upon dividing pC(ζ) by ζ − 2 we see that

pC(ζ) = (ζ − 2)
(
ζ2 + ζ − 20

)
= (ζ − 2)(ζ + 5)(ζ − 4) .

Because pC(ζ) has zeros 2, −5, and 4, the other eigenvalues of C are −5 and 4. Any
polynomial division algorithm can be used. For example, long division gives

ζ2 + ζ − 20

ζ − 2
)
ζ3 − ζ2 − 22ζ + 40
ζ3 − 2ζ2

ζ2 − 22ζ
ζ2 − 2ζ
−20ζ + 40 .

Synthetic division is a bit faster, if you know it.
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Factoring a Translation of pC(ζ). Because pC(2) = 0, let q(δ) be the translation
of pC(ζ) given by

q(δ) = pC(2 + δ) = (2 + δ)3 − (2 + δ)2 − 22(2 + δ) + 40

=
(
8 + 12δ + 6δ2 + δ3

)
−
(
4 + 4δ + δ2

)
− 22(2 + δ) + 40

= −14δ + 5δ2 + δ3 = δ
(
δ2 + 5δ − 14

)
= δ(δ + 7)(δ − 2) .

The zeros of q(δ) are 0, −7, and 2, so the zeros of pC(ζ) are 2, −5, and 4. Therefore
the other eigenvalues of C are −5 and 4.

Remark. Because pC(ζ) = q(ζ − 2), by setting δ = ζ − 2 into the factorization of
q(δ) found here we get the factorization of pC(ζ) found by polynomial division.

(5) [8] Solve the initial-value problem

d

dt

(
x
y

)
=

(
−2 −5
1 −4

)(
x
y

)
,

(
x(0)
y(0)

)
=

(
3
0

)
.

Remark. Because this is an initial-value problem, computing the matrix exponential
gives a direct route to the answer. The fastest way to compute a 2 × 2 matrix
exponential is by using the appropriate formula.

Solution by Formula. The characteristic polynomial of

(
−2 −5
1 −4

)
is

p(ζ) = ζ2 − tr(A)ζ + det(A) = ζ2 + 6ζ + 13 = (ζ + 3)2 + 22 .

This is a sum of squares with µ = −3 and ν = 2. Then by formula

etA = e−3t
[
cos(2t)I +

sin(2t)

2
(A− (−3)I)

]
= e−3t

[
cos(2t)

(
1 0
0 1

)
+

sin(2t)

2

(
1 −5
1 −1

)]
= e−3t

(
cos(2t) + 1

2
sin(2t) −5

2
sin(2t)

1
2

sin(2t) cos(2t)− 1
2

sin(2t)

)
.

(Check that tr(A + 3I) = 0!) Therefore the solution of the initial-value problem is

x(t) = etAxI = e−3t
(

cos(2t) + 1
2

sin(2t) −5
2

sin(2t)
1
2

sin(2t) cos(2t)− 1
2

sin(2t)

)(
3
0

)
= e−3t

(
3 cos(2t) + 3

2
sin(2t)

3
2

sin(2t)

)
.

(6) [8] A real 3× 3 matrix H has the eigenpairs0 ,

 2
1
−2

 ,

i6 ,
1− i2

2 + i2
2− i

 ,

−i6 ,
1 + i2

2− i2
2 + i

 .

(a) [4] Give an invertible matrix V and a diagonal matrix D such that H = VDV−1.
(You do not have to compute either V−1 or H!)

(b) [4] Give a real fundamental matrix for the system x′ = Hx.
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Solution (a). One choice for V and D is

V =

 2 1− i2 1 + i2
1 2 + i2 2− i2
−2 2− i 2 + i

 , D =

0 0 0
0 i6 0
0 0 −i6

 .

Remark. There are 5 other choices for D. (Can you find them all?)

Solution (b). Use the given eigenpairs to construct the real eigensolutions

x1(t) =

 2
1
−2

 , x2(t) = Re

ei6t
1− i2

2 + i2
2− i

 , x3(t) = Im

ei6t
1− i2

2 + i2
2− i

 .

Because

ei6t

1− i2
2 + i2
2− i

 =
(

cos(6t) + i sin(6t)
)1− i2

2 + i2
2− i


=

 cos(6t) + 2 sin(6t)
2 cos(6t)− 2 sin(6t)
2 cos(6t) + sin(6t)

+ i

 sin(6t)− 2 cos(6t)
2 sin(6t) + 2 cos(6t)
2 sin(6t)− cos(6t)

 ,

we see that a real fundamental matrix for the system is

Ψ(t) =
(
x1(t) x2(t) x3(t)

)
=

 2 cos(6t) + 2 sin(6t) sin(6t)− 2 cos(6t)
1 2 cos(6t)− 2 sin(6t) 2 sin(6t) + 2 cos(6t)
−2 2 cos(6t) + sin(6t) 2 sin(6t)− cos(6t)

 .

(7) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
1 6
4 3

)(
x
y

)
.

Solution by Eigensolutions. The characteristic polynomial of B =

(
1 6
4 3

)
is

p(ζ) = ζ2 − tr(B)ζ + det(B) = ζ2 − 4ζ − 21 = (ζ + 3)(ζ − 7) .

The eigenvalues of B are the roots of this polynomial, which are −3 and 7. Consider
the matrices

B + 3I =

(
4 6
4 6

)
, B− 7I =

(
−6 6
4 −4

)
.

After checking that the determinant of each matrix is zero, we can read off that
eigenpairs of B are (

−3 ,

(
3
−2

))
,

(
7 ,

(
1
1

))
,

whereby two eigensolutions are

x1(t) = e−3t
(

3
−2

)
, x2(t) = e7t

(
1
1

)
.
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Therefore a real general solution of the system is

x(t) = c1x1(t) + c2x2(t) = c1e
−3t
(

3
−2

)
+ c2e

7t

(
1
1

)
.

Solution by Formula. The characteristic polynomial of B =

(
1 6
4 3

)
is

p(ζ) = ζ2 − tr(B)ζ + det(B) = ζ2 − 4ζ − 21 = (ζ − 2)2 − 4− 21 = (ζ − 2)2 − 52 .

This is a difference of squares with µ = 2 and ν = 5. Then

etB = e2t
[
cosh(5t)I +

sinh(5t)

5

(
B− 2I

)]
= e2t

[
cosh(5t)

(
1 0
0 1

)
+

sinh(5t)

5

(
−1 6
4 1

)]

= e2t

cosh(5t)− 1
5

sinh(5t) 6
5

sinh(5t)

4
5

sinh(5t) cosh(5t) + 1
5

sinh(5t)

 .

(Check that tr(B− 2I) = 0!) Therefore a real general solution of the system is

x(t) = etBc = e2t

cosh(5t)− 1
5

sinh(5t) 6
5

sinh(5t)

4
5

sinh(5t) cosh(5t) + 1
5

sinh(5t)

c1
c2


= c1e

2t

cosh(5t)− 1
5

sinh(5t)

4
5

sinh(5t)

+ c2e
2t

 6
5

sinh(5t)

cosh(5t) + 1
5

sinh(5t)

 .

(8) [8] Find a real general solution of the system

d

dt

(
x
y

)
=

(
−8 −3
3 −2

)(
x
y

)
.

Solution by Formula. The characteristic polynomial of A =

(
−8 −3
3 −2

)
is

p(ζ) = ζ2 − tr(A)ζ + det(A) = ζ2 + 10ζ + 25 = (ζ + 5)2 .

This is a pserfect square with µ = −5. Then

etA = e−5t
[
I + t

(
A− (−5)I

)]
= e−5t

[(
1 0
0 1

)
+ t

(
−3 −3
3 3

)]
= e−5t

(
1− 3t −3t

3t 1 + 3t

)
.

(Check that tr(A + 5I) = 0!) Therefore a real general solution of the system is

x(t) = etAc = e−5t
(

1− 3t −3t
3t 1 + 3t

)c1
c2


= c1e

−5t
(

1− 3t
3t

)
+ c2e

−5t
(
−3t

1 + 3t

)
.
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Solution by Eigensolutions. The characteristic polynomial of A =

(
−8 −3
3 −2

)
is

p(z) = z2 − tr(A)z + det(A) = z2 + 10z + 25 = (z + 5)2 .

The eigenvalues of A are the roots of this polynomial, which is the double root −5.
Consider the matrix

A + 5I =

(
−3 −3
3 3

)
.

After checking that the determinant of this matrix is zero, we can read off that an
eigenpair of A is (

−5 ,

(
−1
1

))
,

whereby an eigensolution is

x1(t) = e−5t
(
−1
1

)
.

A second solution can be constructed by the formula

x2(t) = e−5t
[
I + t (A + 5I)

]
w ,

where w is any nonzero vector that is not an eigenvector. If w =
(
1 0

)T
then

x2(t) = e−5t
[(

1 0
0 1

)
+ t

(
−3 −3
3 3

)](
1
0

)
= e−5t

(
1− 3t −3t

3t 1 + 3t

)(
1
0

)
= e−5t

(
1− 3t

3t

)
.

(Check that tr(A + 5I) = 0!) Therefore a real general solution of the system is

x(t) = c1x1(t) + c2x2(t) = c1e
−5t
(
−1
1

)
+ c2e

−5t
(

1− 3t
3t

)
.

(9) [10] Find the natural fundamental set of solutions associated with the initial-time 0
for the operator D4 + 3D2 − 4. You may refer to the table on the last page.

Solution. The characteristic polynomial of L = D4 + 3D2− 4 is p(s) = s4 + 3s2− 4.
Therefore its Green function g(t) is given by

g(t) = L−1
[

1

p(s)

]
(t) = L−1

[
1

s4 + 3s2 − 4

]
(t) .

Because p(s) factors as p(s) = (s2 − 1)(s2 + 4) we have the partial fraction identity

1

s4 + 3s2 − 4
=

1

(s2 − 1)(s2 + 4)
=

1
5

s2 − 1
+
−1

5

s2 + 4
.

Because s2− 1 factors as s2− 1 = (s− 1)(s+ 1) we have the partial fraction identity

1

s2 − 1
=

1

(s− 1)(s+ 1)
=

1
2

s− 1
+
−1

2

s+ 1
.
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By combining the above partial fraction identities we obtain

1

s4 + 3s2 − 4
= 1

10

1

s− 1
− 1

10

1

s+ 1
− 1

5

1

s2 + 4
.

Referring to the table on the last page, item 1 with a = 1 and n = 0 and with a = −1
and n = 0 gives

L−1
[

1

s− 1

]
(t) = et , L−1

[
1

s+ 1

]
(t) = e−t ,

while item 3 with a = 0 and b = 4 gives

L−1
[

2

s2 + 4

]
(t) = sin(2t) .

Therefore the Green function g(t) is given by

g(t) = L−1
[

1

s4 + 3s2 − 4

]
(t)

= 1
10
L−1
[

1

s− 1

]
(t)− 1

10
L−1
[

1

s+ 1

]
(t)− 1

10
L−1
[

2

s2 + 4

]
(t)

= 1
10
et − 1

10
e−t − 1

10
sin(2t) .

Then because we see the characteristic polynomial as

p(s) = s4 + 0s3 + 3s2 + 0s− 4 ,

the natrual fundamental set for t = 0 is found by

N3(t) = g(t) = 1
10
et − 1

10
e−t − 1

10
sin(2t) ,

N2(t) = N ′3(t) + 0g(t) = 1
10
et + 1

10
e−t − 1

5
cos(2t) ,

N1(t) = N ′2(t) + 3g(t)

= 1
10
et − 1

10
e−t + 2

5
sin(2t) + 3

10
et − 3

10
e−t − 3

10
sin(2t) ,

= 2
5
et − 2

5
e−t + 1

10
sin(2t) ,

N0(t) = N ′1(t) + 0g(t) = 2
5
et + 2

5
e−t + 1

5
cos(2t) .

Remark. The calculation of the natural fundamental set is a bit simpler if the Green
function is expressed in terms of hyperbolic functions. It becomes

N3(t) = g(t) = 1
5

sinh(t)− 1
10

sin(2t) ,

N2(t) = N ′3(t) + 0g(t) = 1
5

cosh(t)− 1
5

cos(2t) ,

N1(t) = N ′2(t) + 3g(t)

= 1
5

sinh(t) + 2
5

sin(2t) + 3
5

sinh(t)− 3
10

sin(2t) ,

= 4
5

sinh(t) + 1
10

sin(2t) ,

N0(t) = N ′1(t) + 0g(t) = 4
5

cosh(t) + 1
5

cos(2t) .

Solution from General Initial-Value Problem. For the operator D4 + 3D2 − 4
the general initial-value problem for initial-time 0 is

y′′′′ + 3y′′ − 4y = 0 , y(0) = y0 , y′(0) = y1 , y′′(0) = y2 , y′′′(0) = y3 .
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Its characteristic polynomial is

p(z) = z4 + 3z2 − 4 = (z2 − 1)(z2 + 4) = (z − 1)(z + 1)(z2 + 22) ,

which has roots 1, −1, i2 and −i2. Therefore a real general solution is

y(t) = c1e
t + c2e

−t + c3 cos(2t) + c4 sin(2t) .

Because

y′(t) = c1e
t − c2e−t − 2c3 sin(2t) + 2c4 cos(2t) ,

y′′(t) = c1e
t + c2e

−t − 4c3 cos(2t)− 4c4 sin(2t) ,

y′′′(t) = c1e
t − c2e−t + 8c3 sin(2t)− 8c4 cos(2t) ,

the general initial conditions yield the linear algebraic system

y0 = y(0) = c1e
0 + c2e

0 + c3 cos(0) + c4 sin(0) = c1 + c2 + c3 .

y1 = y′(0) = c1e
0 − c2e0 − 2c3 sin(0) + 2c4 cos(0) = c1 − c2 + 2c4 ,

y2 = y′′(0) = c1e
0 + c2e

0 − 4c3 cos(0)− 4c4 sin(0) = c1 + c2 − 4c3 ,

y3 = y′′′(t) = c1e
0 − c2e0 + 8c3 sin(0)− 8c4 cos(0) = c1 − c2 − 8c4 .

This can be viewed as decoupling into the two systems

y0 = c1 + c2 + c3 , y1 = c1 − c2 + 2c4 ,

y2 = c1 + c2 − 4c3 , y3 = c1 − c2 − 8c4 ,

where the system on the left is for c1 + c2 and c3 while the system on the right is for
c1 − c2 and c4. The solutions of these systems are

c1 + c2 =
4y0 + y2

5
, c1 − c2 =

4y1 + y3
5

,

c3 =
y0 − y2

5
, c4 =

y1 − y3
10

.

The top two equations then yield

c1 =
4y0 + 4y1 + y2 + y3

10
, c2 =

4y0 − 4y1 + y2 − y3
10

.

Therefore the solution of the general initial-value problem is

y =
4y0 + 4y1 + y2 + y3

10
et +

4y0 − 4y1 + y2 − y3
10

e−t

+
y0 − y2

5
cos(2t) +

y1 − y3
10

sin(2t)

= y0
(
2
5
et + 2

5
e−t + 1

5
cos(2t)

)
+ y1

(
2
5
et − 2

5
e−t + 1

10
sin(2t)

)
+ y2

(
1
10
et + 1

10
e−t − 1

5
cos(2t)

)
+ y3

(
1
10
et − 1

10
e−t − 1

10
sin(2t)

)
.

We can read off from this that the natural fundamental set of solutions associated
with the initial-time 0 for the operator D4 + 3D2 − 4 is

N0(t) = 2
5
et + 2

5
e−t + 1

5
cos(2t) , N1(t) = 2

5
et − 2

5
e−t + 1

10
sin(2t) ,

N2(t) = 1
10
et + 1

10
e−t − 1

5
cos(2t) , N3(t) = 1

10
et − 1

10
e−t − 1

10
sin(2t) .
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(10) [8] Compute the Laplace transform of f(t) = u(t− 3) e−i2t from its definition.
(Here u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫ T

0

e−stu(t− 3) e−i2t dt = lim
T→∞

∫ T

3

e−(s+i2)t dt .

For every T > 3 we have∫ T

3

e−(s+i2)t dt = −e
−(s+i2)t

s+ i2

∣∣∣∣T
3

= −e
−(s+i2)T

s+ i2
+
e−(s+i2)3

s+ i2
,

whereby the definition of the Laplace transform gives

L[f ](s) = lim
T→∞

[
− e−(s+i2)T

s+ i2
+
e−(s+i2)3

s+ i2

]
=


e−(s+i2)3

s+ i2
for s > 0 ,

undefined for s ≤ 0 .

(11) [10] Consider the following MATLAB commands.

>> syms t x(t) s X
>> f = t̂ 2 + heaviside(t − 2)*(6 − t − t̂ 2) + heaviside(t − 6)*(t − 6);
>> diffeqn = diff(x, 2) + 4*diff(x, 1) + 29*x(t) == f;
>> eqntrans = laplace(diffeqn, t, s);
>> algeqn = subs(eqntrans, ...

[laplace(x(t), t, s), x(0), subs(diff(x(t), t), t, 0)], [X, 3, −4]);
>> xtrans = simplify(solve(algeqn, X));
>> x = ilaplace(xtrans, s, t)
(a) [2] Give the initial-value problem for x(t) that is being solved.
(b) [8] Find the Laplace transform X(s) of the solution x(t). (Just solve for X(s)!

DO NOT take the inverse Laplace transform of X(s) to solve for x(t)!)
You may refer to the table below.

Solution (a). The initial-value problem for x(t) that is being solved is

x′′ + 4x′ + 29x = f(t) , x(0) = 3 , x′(0) = −4 ,

where the forcing f(t) can be expressed either as the piecewise-defined function

f(t) =


t2 for 0 ≤ t < 2 ,

6− t for 2 ≤ t < 6 ,

0 for 6 ≤ t ,

or in terms of the unit step function as

f(t) = t2 + u(t− 2)(6− t− t2) + u(t− 6)(t− 6) .

Solution (b). The Laplace transform of the differential equation is

L[x′′](s) + 4L[x′](s) + 29L[x](s) = L[f ](s) ,
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where the initial conditions give

L[x](s) = X(s) ,

L[x′](s) = sL[x](s)− x(0) = sX(s)− 3 ,

L[x′′](s) = sL[x′](s)− x′(0) = s2X(s)− 3s+ 4 .

Therefore the Laplace transform of the initial-value problem is(
s2X(s)− 3s+ 4

)
+ 4
(
sX(s)− 3

)
+ 29X(s) = F (s) ,

where F (s) = L[f ](s). This simplifies to

(s2 + 4s+ 29)X(s)− 3s− 8 = F (s) ,

whereby

X(s) =
1

s2 + 4s+ 29

(
3s+ 8 + F (s)

)
.

To compute F (s), we write f(t) as

f(t) = t2 + u(t− 2)(6− t− t2) + u(t− 6)(t− 6)

= t2 + u(t− 2)j1(t− 2) + u(t− 6)j2(t− 6) ,

where upon by setting j1(t − 2) = 6 − t − t2 and j2(t − 6) = t − 6, the shifty step
method gives

j1(t) = 6− (t+ 2)− (t+ 2)2 = 6− t− 2− t2 − 4t− 4 = −t2 − 5t ,

j2(t) = (t+ 6)− 6 = t .

Referring to the table on the last page, item 1 with a = 0 and n = 1, and with a = 0
and n = 2 shows that

L[t](s) =
1

s2
, L[t2](s) =

2

s3
,

whereby item 7 with c = 2 and j(t) = j1(t) = −t2 − 5t and with c = 6 and
j(t) = j2(t) = t shows that

L
[
u(t− 2)j1(t− 2)

]
(s) = e−2sL[j1](s) = −e−2sL[t2 + 5t](s) = −e−2s

(
2

s3
+

5

s2

)
,

L
[
u(t− 6)j2(t− 6)

]
(s) = e−6sL[j2](s) = e−6sL[t](s) = e−6s

1

s2
.

Therefore

F (s) = L
[
t2 + u(t− 2)j1(t− 2) + u(t− 6)j2(t− 6)

]
(s)

=
2

s3
− e−2s

(
2

s3
+

5

s2

)
+ e−6s

1

s2
.

Upon placing this result into the expression for X(s) found earlier, we obtain

X(s) =
1

s2 + 4s+ 29

(
3s+ 8 +

2

s3
− e−2s

(
2

s3
+

5

s2

)
+ e−6s

1

s2

)
.
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(12) [8] Find the inverse Laplace transform L−1[Y (s)](t) of the function

Y (s) = e−4s
2s+ 9

s2 − 6s+ 34
.

You may refer to the table below.

Solution. Referring to the table on the last page, item 7 with c = 4 shows that

L−1
[
e−4s J(s)

]
= u(t− 4)j(t− 4) , where j(t) = L−1[J(s)](t) .

We apply this formula to

J(s) =
2s+ 9

s2 − 6s+ 34
.

Complete the square in the denominator to get (s− 3)2 + 52. We have the partial
fraction identity

J(s) =
2s+ 9

s2 − 6s+ 34
=

2(s− 3) + 15

(s− 3)2 + 52
=

2(s− 3)

(s− 3)2 + 52
+

15

(s− 3)2 + 52
.

Referring to the table on the last page, items 2 and 3 with a = 3 and b = 5 give

L−1
[

s− 3

(s− 3)2 + 52

]
(t) = e3t cos(5t) , L−1

[
5

(s− 3)2 + 52

]
(t) = e3t sin(5t) .

The above formulas and the linearity of the inverse Laplace transform yield

j(t) = L−1[J(s)](t) = L−1
[

2s+ 9

s2 − 6s+ 34

]
(t)

= L−1
[

2(s− 3)

(s− 3)2 + 52
+

15

(s− 3)2 + 52

]
(t)

= 2L−1
[

s− 3

(s− 3)2 + 52

]
(t) + 3L−1

[
5

(s− 3)2 + 52

]
(t)

= 2e3t cos(5t) + 3e3t sin(5t) .

Therefore

L−1
[
Y (s)

]
(t) = L−1[e−4sJ(s)](t)

= u(t− 4)j(t− 4)

= u(t− 4)
(

2e3(t−4) cos
(
5(t− 4)

)
+ 3e3(t−4) sin

(
5(t− 4)

))
.
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Table of Laplace Transforms

L[tneat](s) =
n!

(s− a)n+1
for s > a .

L[eat cos(bt)](s) =
s− a

(s− a)2 + b2
for s > a .

L[eat sin(bt)](s) =
b

(s− a)2 + b2
for s > a .

L[j′(t)](s) = sJ(s)− j(0) where J(s) = L[j(t)](s) .

L[tnj(t)](s) = (−1)nJ (n)(s) where J(s) = L[j(t)](s) .

L[eatj(t)](s) = J(s− a) where J(s) = L[j(t)](s) .

L[u(t− c)j(t− c)](s) = e−csJ(s) where J(s) = L[j(t)](s), c ≥ 0,

and u is the unit step function.

L[δ(t− c)j(t)](s) = e−csj(c) where c ≥ 0 and δ is the unit impulse.


