
Math 246 Exam 2 Solutions
Professor David Levermore
Thursday, 22 October 2020

due by 4:00pm Friday, 23 October

(1) [4] Give the interval of definition for the solution of the initial-value problem

y′′′ +
e3t

sin(2t)
y′′ +

2 + t

8− t
y =

cos(4t)

9− t2
, y(−7) = y′(−7) = y′′(−7) = 5 .

Solution. The equation is linear and is already in normal form. Notice the following.
� The coefficient of y′′ is undefined at t = nπ

2
for every integer n

and is continuous elsewhere.
� The coefficient of y is undefined at t = 8 and is continuous elsewhere.
� The forcing is undefined at t = ±3 and is continuous elsewhere.
� The initial time is t = −7.

Plotting these points on a time-line near the initial time t = −7 gives

———-◦——————•—————◦——→ t
−5

2
π −7 −2π

Therefore the interval of definition is (−5
2
π,−2π) because:

• the initial time t = −7 is in (−5
2
π,−2π);

• all the coefficients and the forcing are continuous over (−5
2
π,−2π);

• the coefficient of y′′ is undefined at t = −5
2
π;

• the coefficient of y′′ is undefined at t = −2π.

Remark. All four reasons must be given for full credit.
◦ The first two are why a (unique) solution exists over the interval (−5

2
π,−2π).

◦ The last two are why this solution does not exist over a larger interval.

(2) [12] The functions e7t and e−7t are a fundamental set of solutions to v′′ − 49v = 0.
(a) [8] Solve the general initial-value problem

v′′ − 49v = 0 , v(0) = v0 , v′(0) = v1 .

(b) [4] Find the associated natural fundamental set of solutions to v′′ − 49v = 0.

Solution (a). Because we are given that e7t and e−7t are a fundamental set of
solutions to v′′ − 49v = 0, a general solution is

v = c1e
7t + c2e

−7t .

Because v′ = 7c1e
7t − 7c2e

−7t, the initial conditions imply

v0 = v(0) = c1 + c2 , v1 = v′(0) = 7c1 − 7c2 .

We solve these equations to obtain

c1 = 1
2
v0 + 1

14
v1 , c2 = 1

2
v0 − 1

14
v1 .

Therefore the solution to the general initial-value problem is

v(t) =
(
1
2
v0 + 1

14
v1
)
e7t −

(
1
2
v0 − 1

14
v1
)
e−7t .

1
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Solution (b). The solution found in part (a) can be written as

v(t) = v0
e7t + e−7t

2
+ v1

e7t − e−7t

14
.

We can read off from this that the associated natural fundamental set of solutions is

N0(t) =
e7t + e−7t

2
, N1(t) =

e7t − e−7t

14
.

Remark. These may be expressed in terms of hyperbolic functions as

N0(t) = cosh(7t) , N1(t) = 1
7

sinh(7t) .

(3) [4] Suppose that Z1(t), Z2(t), Z3(t), and Z4(t) solve the differential equation

z′′′′ + 5z′′′ + e3tz′′ + sin(5t)z′ + t2z = 0 ,

Suppose we know that Wr[Z1, Z2, Z3, Z4](3) = 4. Find Wr[Z1, Z2, Z3, Z4](t).

Solution. The Abel Theorem says that w(t) = Wr[Z1, Z2, Z3, Z4](t) satisfies

w′ + 5w = 0 .

We see that w(t) = ce−5t for some c. Because w(t) satisfies the initial condition

w(3) = Wr[Z1, Z2, Z3, Z4](3) = 4 ,

we have w(0) = ce−5·3 = 4, whereby c = 4e5·3. Therefore w(t) = 4e−5(t−3), which
shows that

Wr[Z1, Z2, Z3, Z4](t) = 4e−5(t−3) .

(4) [12] Let L be a linear ordinary differential operator with constant coefficients. Sup-
pose that all the roots of its characteristic polynomial (listed with their multiplicities)
are −2 + i4, −2 + i4, −2 + i4, −2− i4, −2− i4, −2− i4, −3, −3, 0, 0, 0.
(a) [1] Give the order of L. (Give your reasoning!)
(b) [6] Give a real general solution of the homogeneous equation Lu = 0.
(c) [5] Write down the form for the particular solution needed to start the Undeter-

mined Coefficients method for the equation Lv = t2e−2t cos(4t).

Solution (a). Because 11 roots are listed, the degree of the characteristic polynomial
must be 11, whereby the order of L is 11.

Solution (b). A fundamental set of eleven real-valued solutions is built as follows.
� The conjugate pair of triple roots −2± i4 contributes

e−2t cos(4t) , e−2t sin(4t) , t e−2t cos(4t) , t e−2t sin(4t) ,

t2e−2t cos(4t) , and t2e−2t sin(4t) .

� The double real root −3 contributes

e−3t and t e−3t .

� The triple real root 0 contributes

1 , t , and t2 .
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Therefore a real general solution of the homogeneous equation Lu = 0 is

u = c1e
−2t cos(4t) + c2e

−2t sin(4t) + c3t e
−2t cos(4t) + c4t e

−2t sin(4t)

+ c5t
2e−2t cos(4t) + c6t

2e−2t sin(4t)

+ c7e
−3t + c8t e

−3t + c9 + c10t+ c11t
2 .

Solution (c). The forcing of the nonhomogeneous linear equation Lv = t2e−2t cos(4t)
has degree d = 2 and characteristic µ + iν = −2 + i4. Because the characteristic
µ + iν = −2 + i4 is listed as a triple root of the characteristic polynomial, it has
multiplicity m = 3. Therefore, we have

d = 2 , µ+ iν = −2 + i4 , m = 3 .

Because m+d = 5, m = 3, and µ+ iν = −2 + i4, the form for the particular solution
needed to start the Undetermined Coefficients method is

vp =
(
A0t

5 + A1t
4 + A2t

3
)
e−2t cos(4t)

+
(
B0t

5 +B1t
4 +B2t

3
)
e−2t sin(4t) .

(5) [8] Find a real general solution of the equation y′′′′ + 12y′′ + 36y = 36 cos(3t).

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
linear differential operator is L = D4 + 12D2 + 36. Its characteristic polynomial is

p(z) = z4 + 12z2 + 36 = (z2 + 6)2 ,

which has the conjugate pair of double roots ±i
√

6. The forcing 36 cos(3t) has charac-
teristic form with degree d = 0 and characteristic µ+ iν = i3, which has multiplicity
m = 0. Therefore we can use either Key Identity Evaluations, the Zero Degree
Formula, or Undetermined Coefficients to find a particular solution. Each of these
methods gives the real particular solution

yP (t) = 4 cos(3t) .

Therefore a real general solution is

y(t) = c1 cos
(√

6 t
)

+ c2 sin
(√

6 t
)

+ c3t cos
(√

6 t
)

+ c4t sin
(√

6 t
)

+ 4 cos(3t) .

Key Identity Evaluations. Because m = m+d = 0 and µ+ iν = i3, we only need
to evaluate the Key Identity at z = i3. The Key Identity is

L(ezt) = (z4 + 12z2 + 36) · ezt .
When this is evaluated at z = i3 we find that

L(ei3t) =
(
(i3)4 + 12 · (i3)2 + 36

)
· ei3t = (81− 12 · 9 + 36)ei3t = 9ei3t .

Because the forcing 36 cos(3t) has the phasor form Re(36ei3t), we multiply the above
by 4 to obtain

L(ei3t) = 36ei3t .

The real part of this equation shows that a particular solution is

yP (t) = Re(4ei3t) = 4 cos(3t) .
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the phasor form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

yP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem the forcing has the phasor form

f(t) = 36 cos(3t) = Re
(
36ei3t

)
,

with characteristic µ + iν = i3 and phasor α − iβ = 36. Because the characteristic
polynomial is p(z) = z4 + 12z2 + 36 and m = 0, we have

p(m)(µ+ iν) = p(i3) = (i3)4 + 12 · (i3)2 + 36 = 81− 12 · 9 + 36 = 9 .

Therefore the particular solution becomes

yP (t) = Re

(
36

9
ei3t
)

= 4 cos(3t) .

Undetermined Coefficients. Because m + d = m = 0 and µ + iν = i3, there is a
particular solution in the form

yP (t) = A cos(3t) +B sin(3t) .

Because
y′P (t) = −3A sin(3t) + 3B cos(3t) ,

y′′P (t) = −9A cos(3t)− 9B sin(3t) ,

y′′′P (t) = 27A sin(3t)− 27B cos(3t) ,

y′′′′P (t) = 81A cos(3t) + 81B sin(3t) ,

we see that

LyP (t) = y′′P (t) + 12y′P (t) + 36yP (t)

=
[
81A cos(3t) + 81B sin(3t)

]
+ 12

[
− 9A cos(3t)− 9B sin(3t)

]
+ 36

[
A cos(3t) +B sin(3t)

]
= 9A cos(3t) + 9B sin(3t) .

By setting LyP (t) = 36 cos(3t), the linear independence of cos(3t) and sin(3t) implies
that 9A = 36 and 9B = 0, whereby the particular solution becomes

yP (t) = 4 cos(3t) .

(6) [8] What answer will be produced by the following Matlab commands?

>> syms x(t)
>> ode = diff(x,t,2) + 3*diff(x,t) − 10*x == 28*t*exp(2*t);
>> xSol(t) = dsolve(ode)

Solution. The commands ask MATLAB for a real general solution of the equation

D2x+ 3Dx− 10x = 28t e2t , where D =
d

dt
.
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While your answer did not have to be given in MATLAB format, MATLAB will
produce something equivalent to

2*t̂ 2*exp(2*t) − (4/7)*t*exp(2*t) + C1*exp(−5*t) + C2*exp(2*t)

This can be seen as follows. This is a nonhomogeneous linear equation for x(t)
with constant coefficients. Its linear differential operator is L = D2 + 3D − 10. Its
characteristic polynomial is

p(z) = z2 + 3z − 10 = (z + 5)(z − 2) ,

which has the two real roots −5 and 2. Therefore a real general solution of the
associated homogeneous problem is

xH(t) = c1e
−5t + c2e

2t .

The forcing 28t e2t has degree d = 1, characteristic µ+iν = 2, and multiplicity m = 1.
A particular solution xP (t) can be found by using either Key Identity Evaluations
or Undetermined Coefficients. Below we show that each of these methods yields the
particular solution

xP (t) = 2t2e2t − 4
7
t e2t .

Therefore a real general solution is

x = c1e
−5t + c2e

2t + 2t2e2t − 4
7
t e2t .

Up to notational differences, this is the answer that MATLAB produces.

Key Identity Evaluations. Because m = 1, m + d = 2, and µ + iν = 2, we need
to evaluate the first and second derivative of the Key Identity with respect to z at
z = 2. The Key Identity and its first two derivatives with respect to z are

L
(
ezt
)

= (z2 + 3z − 10) · ezt ,
L
(
t ezt

)
= (z2 + 3z − 10) · t ezt + (2z + 3)ezt ,

L
(
t2ezt

)
= (z2 + 3z − 10) · t2ezt + 2(2z + 3)t ezt + 2ezt .

When the first and second derivatives are evaluated at z = 2 we find

L
(
t e2t

)
= (2 · 2 + 3)e2t = 7e2t ,

L
(
t2e2t

)
= 2(2 · 2 + 3)t e2t + 2e2t = 14t e2t + 2e2t .

Because the forcing is 28t e2t, we multiply the first equation by 2
7

and subtract it from
the second to obtain

L
(
t2e2t − 2

7
t e2t

)
= 14t e2t .

We then multiply this equation by 2 to get

L
(
2t2e2t − 4

7
t e2t

)
= 28t e2t .

We can read off from this that a particular solution is

xP (t) = 2t2e2t − 4
7
t e2t .

Undetermined Coefficients. Because m+ d = 2, m = 1, and µ+ iν = 2, there is
a particular solution in the form

xP (t) =
(
A0t

2 + A1t
)
e2t .
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Because

x′P (t) = 2
(
A0t

2 + A1t
)
e2t + (2A0t+ A1) e

2t

=
(
2A0t

2 + (2A0 + 2A1)t+ A1

)
e2t ,

x′′P (t) = 2
(
2A0t

2 + (2A0 + 2A1)t+ A1

)
e2t + (4A0t+ 2A0 + 2A1) e

2t

=
(
4A0t

2 + (8A0 + 4A1)t+ 2A0 + 4A1

)
e2t ,

we see that

LxP (t) = x′′P (t) + 3x′P (t)− 10xP (t)

=
(
4A0t

2 + (8A0 + 4A1)t+ 2A0 + 4A1

)
e2t

+ 3
(
2A0t

2 + (2A0 + 2A1)t+ A1

)
e2t − 10

(
A0t

2 + A1t
)
e2t

= 0A0t
2e2t + (14A0 + 0A1)t e

2t + (2A0 + 7A1)e
2t .

Setting LxP (t) = 28t e2t, the linear independence of t e2t and e2t implies that

14A0 = 28 , 2A0 + 7A1 = 0 .

This system has solution A0 = 2, A1 = −7
4
, whereby the particular solution is

xP (t) = 2t2e2t − 4
7
t e2t .

(7) [8] Compute the Green function g(t) associated with the differential operator

D2 + 6D + 45 , where D =
d

dt
.

Solution. Because the linear differential operator has constant coefficients, its Green
function g(t) satisfies

D2g + 6Dg + 45g = 0 , g(0) = 0 , g′(0) = 1 .

The characteristic polynomial is

p(z) = z2 + 6z + 45 = (z + 3)2 + 62 ,

which has the conjugate pair of simple roots −3 + i6. Hence, a general solution of
the equation is

g(t) = c1e
−3t cos(6t) + c2e

−3t sin(6t) .

The first initial condition implies 0 = g(0) = c1, whereby

g(t) = c2e
−3t sin(6t) .

Because

g′(t) = 6c2e
−3t cos(6t)− 3c2e

−3t sin(6t) .

the second initial condition implies 1 = g′(0) = 6c2, whereby c2 = 1
6
. Therefore the

Green function associated with the differential operator is

g(t) = 1
6
e−3t sin(6t) .
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(8) [8] Solve the initial-value problem

h′′ + 6h′ + 45h =
72e−3t

sin(6t)
, h(π

4
) = h′(π

4
) = 0 .

Solution. This is a nonhomogeneous linear equation with constant coefficients. Be-
cause its forcing does not have characteristic form, we cannot use either Key Identity
Evaluations or Undetermined Coefficients. Because this is an initial-value problem
with homogeneous initial conditions, we will use the Green function method, which
leads directly to the answer.

By the previous problem the Green function for this problem is g(t) = 1
6
e−3t sin(6t).

Because the equation is in normal form, the initial time is π
4
, and both of the initial

values are 0, the solution to this inital-value problem is given by the Green formula

h(t) =

∫ t

π
4

g(t− s)f(s) ds =

∫ t

π
4

1
6
e−3(t−s) sin

(
6(t− s)

) 72e−3s

sin(6s)
ds

= 12e−3t
∫ t

π
4

sin(6t− 6s)

sin(6s)
ds

= 12e−3t
∫ t

π
4

sin(6t) cos(6s)− cos(6t) sin(6s)

sin(6s)
ds

= 12e−3t sin(6t)

∫ t

π
4

cos(6s)

sin(6s)
ds− 12e−3t cos(6t)

∫ t

π
4

ds .

Because∫ t

π
4

cos(6s)

sin(6s)
ds = log(| sin(6s)|)

∣∣∣t
π
4

= log(| sin(6t)|)− log(| sin(3π
2

)|) = log(| sin(6t)|) ,∫ t

π
4

ds = s
∣∣∣t
π
4

= t− π
4
,

we obtain

h(t) = 2e−3t sin(6t) log(| sin(6t)|)− 12e−3t cos(6t)
(
t− π

4

)
.

Remark. The fact that the interval of definition for this solution is (π
6
, π
3
) can be

read off directly from the initial-value problem beforehand. Because sin(6t) < 0 over
this interval, the absolute value inside the log is needed.

Remark. This problem can also be solved by the general Green function method,
but that approach is less efficient because it does not use the Green function g(t)
that was the solution of the previous problem. The integrals end up being the same.
The formula for the general Green function gives

G(t, s) =
e−3t sin(6t)e−3s cos(6s)− e−3t cos(6t)e−3s sin(6s)

6e−6s
.

Remark. This problem can also be solved by variation of parameters, but that
approach is less efficient because it does not directly solve the initial-value problem.
Rather, it yields a general solution after which the parameters c1 and c2 in it must
be determined to satisfy the initial conditions. The integrals end up being the same.
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(9) [10] Consider the nonhomogeneous initial-value problem

t p′′ − (1 + 2t)p′ + 2p =
24t2

1 + 2t
, p(2) = p′(2) = 0 .

(a) [3] Show that 1 + 2t and e2t are a fundamental set of solutions for the associated
homogeneous equation.

(b) [7] Solve the nonhomogeneous initial-value problem.

Solution (a). The Wronskian of 1 + 2t and e2t is

Wr[1 + 2t, e2t](t) = det

(
1 + 2t e2t

2 2e2t

)
= (1 + 2t)2e2t − 2e2t

= 2e2t + 4te2t − 2e2t = 4te2t .

Because Wr[1 + 2t, e2t](t) 6= 0 for t > 0, the functions 1 + 2t and e2t are linearly
independent.

Solution (b). The nonhomogeneous equation for p has variable coefficients, so we
must use either the variation of parameters method or the general Green function
method to solve it. Because this is an initial-value problem, the general Green func-
tion method should be favored. To apply either method we must first bring the
initial-value problem into its normal form,

p′′ − 1 + 2t

t
p′ +

2

t
p =

24t

1 + 2t
, p(2) = p′(2) = 0 .

We see from this that the interval of definition for its solution is (0,∞). Because
1+2t and e2t are linearly independent, they constitute a fundamental set of solutions
to the associated homogeneous equation.

General Green Function. The Green function G(t, s) is given by

G(t, s) =
1

Wr[1 + 2s, e2s](s)
det

(
1 + 2s e2s

1 + 2t e2t

)
=
e2t(1 + 2s)− (1 + 2t)e2s

4se2s
.

Because this initial-value problem has homogeneous initial conditions, its solution is
given by the Green Formula with initial time 2. Specifically, the Green Formula gives

p(t) =

∫ t

2

G(t, s) f(s) ds =

∫ t

2

e2t(1 + 2s)− (1 + 2t)e2s

4se2s
24s

1 + 2s
ds

= e2t
∫ t

2

6e−2s ds− (1 + 2t)

∫ t

2

6

1 + 2s
ds .

Because∫ t

2

6e−2s ds = −3e−2s
∣∣∣t
2

= 3e−4 − 3e−2t ,∫ t

2

6

1 + 2s
ds = 3 log(1 + 2s)

∣∣∣t
2

= 3 log(1 + 2t)− 3 log(5) = 3 log

(
1 + 2t

5

)
,

the solution of the initial-value problem is

p = e2t
(
3e−4 − 3e−2t

)
− 3(1 + 2t) log

(
1 + 2t

5

)
.
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Variation of Parameters. Because 1 + 2t and e2t constitute a fundamental set of
solutions to the associated homogeneous equation, we seek a general solution of the
nonhomogeneous equation in the form

y(t) = (1 + 2t)u1(t) + e2tu2(t) ,

where u′1(t) and u′2(t) satisfy the linear algebraic system

(1 + 2t)u′1(t) + e2tu′2(t) = 0 ,

2u′1(t) + 2e2tu′2(t) =
24t

1 + 2t
.

The solution of this system is

u′1(t) = − 6

1 + 2t
, u′2(t) = 6e−2t .

Integrate these equations over t > 0 to obtain

u1(t) =

∫
−6

1 + 2t
dt = c1 − 3 log(1 + 2t) ,

u2(t) =

∫
6e−2t dt = c2 − 3e−2t .

Therefore a general solution of the nonhomogeneous equation over t > 0 is

p(t) = (1 + 2t)u1(t) + e2tu2(t)

= (1 + 2t)
(
c1 − 3 log(1 + 2t)

)
+ e2t

(
c2 − 3e−2t

)
= (1 + 2t)c1 + e2tc2 − 3

(
(1 + 2t) log(1 + 2t) + 1

)
.

Next, we determine c1 and c2 from the initial conditions. Because

p′(t) = 2ci + 2e2tc2 − 3
(
2 log(1 + 2t) + 2

)
,

the initial conditions imply

0 = p(2) = 5c1 + e4c2 − 3
(
5 log(5) + 1

)
,

0 = p′(2) = 2ci + 2e4c2 − 3
(
2 log(5) + 2

)
.

Therefore c1 and c2 satisfy the linear algebraic system

5c1 + e4c2 = 3
(
5 log(5) + 1

)
, 2ci + 2e4c2 = 3

(
2 log(5) + 2

)
.

The solution of this system is

c1 = 3 log(5) , c2 = 3e−4 .

Therefore the solution of the inital-value problem is

p = 3e−4e2t − 3− 3(1 + 2t) log

(
1 + 2t

5

)
.
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(10) [8] Give a real general solution of the equation

D2v − 5Dv − 36v = 12 cos(2t)− 5 sin(2t) , where D =
d

dt
.

Solution. This is a nonhomogeneous linear equation with constant coefficients. Its
linear differential operator is L = D2 − 5D− 36. Its characteristic polynomial is

p(z) = z2 − 5z − 36 = (z + 4)(z − 9) ,

which has the simple real roots −4 and 9. The forcing 12 cos(2t) − 5 sin(2t) has
characteristic form with degree d = 0 and characteristic µ + iν = i2, which has
multiplicity m = 0. Therefore we can use either Key Identity Evaluations, the Zero
Degree Formula, or Undetermined Coefficients to find a particular solution. Each of
these methods gives the real particular solution

vP (t) = − 53
170

cos(2t) + 8
170

sin(2t) .

Therefore a real general solution is

v(t) = c1e
−4t + c2e

9t − 53
170

cos(2t) + 8
170

sin(2t) .

Key Identity Evaluations. Because m = m+d = 0 and µ+ iν = i2, we only need
to evaluate the Key Identity at z = i2. The Key Identity is

L(ezt) = (z2 − 5z − 36) · ezt .
When this is evaluated at z = i2 we find that

L(ei2t) =
(
(i2)2 − 5 · (i2)− 36

)
· ei2t = (−4− i10− 36)ei2t = (−40− i10)ei2t .

Because the forcing has the phasor form

12 cos(2t)− 5 sin(2t) = Re
(
(12 + i5)ei2t

)
,

we multiply the previous equation by 12 + i5 and divide by −40− i10 to obtain

L

(
12 + i5

−40− i10
ei2t
)

= (12 + i5)ei2t .

The real part of this equation gives the particular solution

vP (t) = Re

(
12 + i5

−40− i10
ei2t
)

= − 1
10

Re

(
12 + i5

4 + i
ei2t
)

= − 1
10

Re

(
12 + i5

4 + i

4− i
4− i

ei2t
)

= − 1
170

Re
(
(12 + i5) (4− i) ei2t

)
= − 1

170
Re
(
(53 + i8) ei2t

)
= − 1

170
Re
(
(53 + i8)

(
cos(2t) + i sin(2t)

))
= − 53

170
cos(2t) + 8

170
sin(2t) .
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Zero Degree Formula. For a forcing f(t) with degree d = 0, characteristic µ+ iν,
and multiplicity m that has the phasor form

f(t) = αeµt cos(νt) + βeµt sin(νt) = eµt Re
(
(α− iβ)eiνt

)
,

this formula gives the particular solution

vP (t) = tmeµt Re

(
α− iβ

p(m)(µ+ iν)
eiνt
)
.

For this problem the forcing has the phasor form

f(t) = 12 cos(2t)− 5 sin(2t) = Re
(
(12 + i5)ei2t

)
,

with characteristic µ+iν = i2 and phasor α−iβ = 12+i5. Because the characteristic
polynomial is p(z) = z2 − 5z − 36 and m = 0, we have

p(m)(µ+ iν) = p(i2) = (i2)2 − 5 · (i2)− 36 = −4− i10− 36 = −40− i10 .

Therefore the particular solution becomes

vP (t) = Re

(
12 + i5

−40− i10
ei2t
)

= − 1
10

Re

(
12 + i5

4 + i
ei2t
)

= − 1
10

Re

(
12 + i5

4 + i

4− i
4− i

ei2t
)

= − 1
170

Re
(
(12 + i5) (4− i) ei2t

)
= − 1

170
Re
(
(53 + i8) ei2t

)
= − 1

170
Re
(
(53 + i8)

(
cos(2t) + i sin(2t)

))
= − 53

170
cos(2t) + 8

170
sin(2t) .

Undetermined Coefficients. Because m + d = m = 0 and µ + iν = i2, there is a
particular solution in the form

vP (t) = A cos(2t) +B sin(2t) .

Because
v′P (t) = −2A sin(2t) + 2B cos(2t) ,

v′′P (t) = −4A cos(2t)− 4B sin(2t) ,

we see that

LvP (t) = v′′P (t)− 5v′P (t)− 36vP (t)

=
[
− 4A cos(2t)− 4B sin(2t)

]
− 5
[
− 2A sin(2t) + 2B cos(2t)

]
− 36

[
A cos(2t) +B sin(2t)

]
= (−40A− 10B) cos(2t) + (10A− 40B) sin(2t) .

By setting LvP (t) = 12 cos(2t) − 5 sin(2t), the linear independence of cos(2t) and
sin(2t) implies that A and B solve the linear algebric system

−40A− 10B = 12 , 10A− 50B = −5 .

This implies that A = − 53
170

and B = 8
170

, whereby the particular solution becomes

vP (t) = − 53
170

cos(2t) + 8
170

sin(2t) .
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(11) [8] The vertical displacement of a spring-mass system is governed by the equation

ḧ+ 40ḣ+ 481h = a cos(ωt− φ) ,

where a > 0, ω > 0, and 0 ≤ φ < 2π. Assume CGS units.
(a) [2] Give the natural frequency and period of the system.
(b) [2] Show the system is under damped and give its damping rate.
(c) [4] Give the steady state solution in its phasor form Re(Γ eiωt).

Solution (a). The natural frequency is

ωo =
√

481 1/sec .

The natural period is then

To =
2π

ωo
=

2π√
481

sec .

Solution (b). The characteristic polynomial of the equation is

p(z) = z2 + 40z + 481 = (z + 20)2 + 481− 400

= (z + 20)2 + 81 = (z + 20)2 + 92 .

This has the conjugate pair of roots −20± i9. Therefore the system is under damped.
The damping rate is η = 20 1/sec, which is minus the real part of these roots.

Alternative Solution (b). The system is under damped because the damping rate
η = 40/2 = 20 1/sec is less than the natural frequency ωo =

√
481 1/sec.

Remark. The damped frequency is ωη = 9 1/sec, which is the imaginary part of
the roots of the characteristic polynomial. Alternatively, it is

ωη =
√
ω 2
o − η2 =

√
481− 400 =

√
81 = 9 1/sec .

The damped period Tη is then

Tη =
2π

ωη
=

2π√
81

=
2π

9
sec .

Solution (c). The forcing f(t) = a cos(ωt− φ) has the phasor form

f(t) = Re
(
γ eiωt

)
, where the phasor is γ = ae−iφ .

Therefore the steady state solution has the phasor form

hP (t) = Re
(
Γ eiωt

)
, where the phasor is Γ =

γ

p(iω)
.

Because γ = ae−iφ and p(z) = z2 + 40z + 481, the phasor Γ is

Γ =
ae−iφ

481− ω2 + i40ω
.

We are not asked to give the solution in either its Cartesian or its polar phasor form,
so we can stop here.
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(12) [10] When a 10 gram mass is hung vertically from a spring, at rest it stretches the
spring 20 cm. (Gravitational acceleration is g = 980 cm/sec2.) A damper imparts a
damping force of 560 dynes (1 dyne = 1 gram cm/sec2) when the speed of the mass
is 4 cm/sec. Assume that the spring force is proportional to displacement, that the
damping force is proportional to velocity, and that there are no other forces. At t = 0
the mass is displaced 3 cm below its rest position and is released with an upward
velocity of 2 cm/sec.
(a) [6] Give an initial-value problem that governs the displacement h(t) for t > 0.

(DO NOT solve this initial-value problem, just write it down!)
(b) [2] Is this system undamped, under damped, critically damped, or over damped?

(Give your reasoning!)
(c) [2] Find the damped frequency and damped period of the system. (Give your

reasoning!)

Solution (a). Let h(t) be the displacement in centimeters at time t in seconds of
the mass from its rest position, with upward displacements being positive. Because
there is no external forcing, the governing initial-value problem has the form

mḧ+ cḣ+ kh = 0 , h(0) = −3 , ḣ(0) = 2 ,

where m is the mass, c is the damping coefficient, and k is the spring constant. The
problem says that m = 10 grams. The damping coefficient c is found by equating
the damping force imparted by the damper when the speed of the mass is 4 cm/sec,
which is c 4 dynes, with the force of 560 dynes. This gives c 4 = 560, or

c =
560

4
= 140 dynes sec/cm .

The spring constant k is found by equating the force of the spring when it is stetched
20 cm, which is k 20 dynes, with the weight of the mass, which is mg = 10 · 980
dynes. This gives k 20 = 10 · 980, or

k =
10 · 980

20
= 490 dynes/cm .

Therefore the governing initial-value problem is

10ḧ+ 140 ḣ+ 490h = 0 , h(0) = −3 , ḣ(0) = 2 .

Remark. With the equation in normal form the answer is

ḧ+ 14 ḣ+ 49h = 0 , h(0) = −3 , ḣ(0) = 2 .

Remark. If we had chosen downward displacements to be positive then the governing
initial-value problem would be the same except for the initial conditions, which would
be h(0) = 3 and ḣ(0) = −2.

Solution (b). The damping rate is η = 14/2 = 7. Because η2 = 49 = ω 2
o , the

system is critically damped.

Alternative Solution (b). The characteristic polynomial is

p(z) = z2 + 14z + 49 = (z + 7)2 .

This polynomial has the double negative root −7, so the system is critically damped.

Solution (c). A critically damped system has no damped frequency or period.


