MATH 416 Homework 12 Due Friday, 15 May 2020

Haar wavelets were the only example given in class of a multiresolution analysis for which the mother scaling and wavelet functions were expressed by simple formulas. Here we develop another such example, the Shannon wavelets, which have the scaling function $\phi(t) = \text{sinc}(t)$. These wavelets have no practical application as far as I know because they decay very slowly. However, they do illustrate multiresolution analysis.

- 1. Show that $\phi(t) = \operatorname{sinc}(t)$ is a scaling function. This means:
 - a. show that $\phi \in L^2(\mathbb{R})$;
 - b. show that $\{\phi_k : k \in \mathbb{Z}\}$ is an orthonormal set, where $\phi_k \in L^2(\mathbb{R})$ is defined by

$$\phi_k(t) = \phi(t-k)$$
 for every $t \in \mathbb{R}$.

2. For every $j, k \in \mathbb{Z}$ define $\phi_{jk} \in L^2(\mathbb{R})$ by

$$\phi_{jk}(t) = 2^{\frac{j}{2}}\phi(2^{j}t - k)$$
 for every $t \in \mathbb{R}$.

For every $j \in \mathbb{Z}$ define the scaling subspace V_j by $V_j = \overline{\operatorname{span}}\{\phi_{jk} : k \in \mathbb{Z}\}.$

- a. Show for every $j \in \mathbb{Z}$ that $\{\phi_{jk} : k \in \mathbb{Z}\}$ is an orthonormal set.
- b. Show for every $j \in \mathbb{Z}$ that

$$u \in V_j \iff \operatorname{supp}(\hat{u}) \subset [-2^{j-1}, 2^{j-1}],$$

where $\hat{u} = \mathcal{F}u$ is the Fourier transform of u.

Remark. Here supp (\hat{u}) denotes the support of \hat{u} , which is $\{\xi \in \mathbb{R} : \hat{u}(\xi) \neq 0\}$.

3. Find $\{h_\ell\}_{\ell\in\mathbb{Z}}$ such that ϕ satisfies a two-scale formula in the form

$$\phi(t) = \sum_{\ell \in \mathbb{Z}} h_{\ell} \sqrt{2} \phi(2t - \ell).$$

Hint: Use the Shannon Sampling Theorem. The series will not be finite.

4. The associated wavelet function is given by

$$\psi(t) = \sum_{\ell \in \mathbb{Z}} g_{\ell} \sqrt{2} \phi(2t - \ell) ,$$

where $g_{\ell} = (-1)^{\ell} h_{1-\ell}$ for every $\ell \in \mathbb{Z}$. Find $\psi(t)$.

5. For every $j, k \in \mathbb{Z}$ define $\psi_{jk} \in L^2(\mathbb{R})$ by

$$\psi_{ik}(t) = 2^{\frac{j}{2}} \psi(2^j t - k)$$
 for every $t \in \mathbb{R}$.

For every $j \in \mathbb{Z}$ define the wavelet subspace W_j by $W_j = \overline{\operatorname{span}}\{\psi_{jk} : k \in \mathbb{Z}\}.$

- a. Show for every $j \in \mathbb{Z}$ that $\{\psi_{jk} : k \in \mathbb{Z}\}$ is an orthonormal set.
- b. For every $j \in \mathbb{Z}$ find the closed $S_j \subset \mathbb{R}$ such that

$$v \in W_j \iff \operatorname{supp}(\hat{v}) \subset S_j$$
,

where $\hat{v} = \mathcal{F}v$ is the Fourier transform of v.