MATH 416 Homework 9 Due Wednesday, 13 May 2020

The following problems consider the "hat" and "sinc" functions defined over \mathbb{R} by

$$\operatorname{hat}(t) = \begin{cases} 1 - |t| & \text{for } t \in (-1, 1), \\ 0 & \text{otherwise}, \end{cases} \qquad \operatorname{sinc}(t) = \begin{cases} \frac{\sin(\pi t)}{\pi t} & \text{if } t \neq 0, \\ 1 & \text{if } t = 0. \end{cases}$$

Each of these functions satisfies the *interpolation condition*,

 $\phi(0) = 1, \qquad \phi(k) = 0 \quad \text{for every } k \in \mathbb{Z} - \{0\}.$

For any $\phi : \mathbb{R} \to \mathbb{R}$ that satisfies this condition define $\phi_k : \mathbb{R} \to \mathbb{R}$ by $\phi_k(t) = \phi(t-k)$. For every real sequence $\{c_k\}_{k \in \mathbb{Z}}$ over \mathbb{Z} and every $m, n \in \mathbb{Z}$ with $m \leq n$ define $u_{mn} : \mathbb{R} \to \mathbb{R}$ by

(1)
$$u_{mn}(t) = \sum_{k=m}^{n} c_k \phi_k(t).$$

We say that $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the *Cauchy property* with respect to a norm $\|\cdot\|$ if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that every $m, n \in \mathbb{Z}$ with $m \leq n$ we have

$$n \leq -N_{\epsilon}$$
 or $N_{\epsilon} \leq m \implies ||u_{mn}|| < \epsilon$.

1. Let $\phi(t) = hat(t)$. Let $\{c_k\}_{k \in \mathbb{Z}}$ be a real sequence over \mathbb{Z} . Define u_{mn} by (1). Show that $\{u_{mn}\}$ has the Cauchy property with respect to the $L^{\infty}(\mathbb{R})$ norm if and only if

$$\lim_{k \to -\infty} |c_k| = 0 \quad \text{and} \quad \lim_{k \to +\infty} |c_k| = 0.$$

2. Let $\phi(t) = hat(t)$. Let $\{c_k\}_{k \in \mathbb{Z}}$ be a real sequence over \mathbb{Z} . Define u_{mn} by (1). Show that $\{u_{mn}\}$ has the Cauchy property with respect to the $L^2(\mathbb{R})$ norm if and only if

$$\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$$

3. Let $\phi(t) = hat(t)$. Let $\{c_k\}_{k \in \mathbb{Z}}$ be a real sequence over \mathbb{Z} . Define u_{mn} by (1). Show that $\{u_{mn}\}$ has the Cauchy property with respect to the $L^1(\mathbb{R})$ norm if and only if

$$\sum_{k\in\mathbb{Z}}|c_k|<\infty$$
 .

4. Let $\phi(t) = \operatorname{sinc}(t)$. Let $\{c_k\}_{k \in \mathbb{Z}}$ be a real sequence over \mathbb{Z} . Define u_{mn} by (1). Show that $\{u_{mn}\}$ has the Cauchy property with respect to the $L^2(\mathbb{R})$ norm if and only if

$$\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$$

- 5. Let $\hat{u}(\xi) = hat(\xi)$.
 - a. Compute $u(t) = \mathcal{F}^{-1}\hat{u}(t)$.
 - b. Find the sequence $\{c_k\}_{k\in\mathbb{Z}}$ such that

$$u(t) = \sum_{\substack{k \in \mathbb{Z} \\ 1}} c_k \operatorname{sinc}(2t - k) \,.$$