MATH 416 Homework 8 Due Wednesday, 8 April 2020

- Let {x_j}ⁿ_{j=0} ⊂ ℝ be symmetric about 0. This means if x ∈ {x_j}ⁿ_{j=0} then -x ∈ {x_j}ⁿ_{j=0}.
 a. Show that if f : ℝ → ℝ is even (i.e. f(-x) = f(x)) that then its polynomial interpolant of degree at most n through the nodes {x_j}ⁿ_{j=0} is also even.
 - b. Show that if $f : \mathbb{R} \to \mathbb{R}$ is odd (i.e. f(-x) = -f(x)) that then its polynomial interpolant of degree at most n through the nodes $\{x_j\}_{j=0}^n$ is also odd.

Hint: Use the uniqueness of the interpolant.

Remark. These facts can simplify interpolation because an even polynomial p(x) has only even powers of x, while an odd polynomial p(x) has only odd powers of x.

- 2. Find the six Lagrange interpolating polynomials for the nodes $\{-5, -3, -1, 1, 3, 5\}$. On a single graph plot these polynomials over the interval [-6, 6].
- 3. Generate the Chebyshev polynomials $\{T_n(x)\}_{n=0}^6$ and find their roots. (Show work!) On a single graph plot the polynomials $\{T_n(x)\}_{n=1}^6$ over the interval [-1, 1].
- 4. Compute the polynomials of degree at most 5 that interpolate the values of the function $f(x) = 1/(1 + x^2)$ at

a. the uniform nodes $\{-5, -3, -1, 1, 3, 5\};$

b. the Chebyshev nodes $\{6r : T_6(r) = 0\}$.

Plot these two interpolants over the interval [-6, 6]. Which gives a better approximation to f(x) over [-6, 6]?

5. Plot the continuous, piecewise linear approximation of $f(x) = 1/(1 + x^2)$ over [-6, 6] that is linear over the subintervals [-6, -4], [-4, -2], [-2, 0], [0, 2], [2, 4], and [4, 6]. How does this piecewise interpolation compare with the two found in the previous exercise?