MATH 416 Homework 6 Due Wednesday, 1 April 2020

For every $N \in \mathbb{Z}_+$ with $N \geq 2$ let \mathbb{Z}_N denote the integers mod N and let $\omega_N = \exp(i2\pi/N)$. The discrete Fourier basis for \mathbb{C}^N is then $\{e_k\}_{k\in\mathbb{Z}_N}$ where for every $k\in\mathbb{Z}_N$ we define e_k by

$$e_k(j) = \omega_N^{kj}$$
 for every $j \in \mathbb{Z}_N$,

so that we can view each e_k as the column vector

$$e_k = \begin{pmatrix} 1 \\ \omega_N^k \\ \omega_N^{2k} \\ \vdots \\ \omega_N^{(N-1)k} \end{pmatrix}.$$

The associated Fourier matrix F_N is then

$$F_{N} = \begin{pmatrix} e_{0} & e_{1} & e_{2} \cdots & e_{N-1} \end{pmatrix} = \begin{pmatrix} \omega_{N}^{kj} \\ \omega_{N}^{k} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1} \\ 1 & \omega_{N} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1} \\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \cdots & \omega_{N}^{2N-2} \\ \vdots & \vdots & \cdots & \ddots & \vdots \\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2N-2} & \cdots & \omega_{N}^{(N-1)^{2}} \end{pmatrix}.$$

- 1. Find ω_N and write out F_N for N=4, N=6, and N=8.
- 2. Let $L^2(\mathbb{Z}_N)$ denote \mathbb{C}^N equipped with the inner product

$$\langle u, v \rangle = \frac{1}{N} \sum_{j \in \mathbb{Z}_N} \overline{u(j)} v(j).$$

Show that $\{e_k\}_{k\in\mathbb{Z}_N}$ is an orthonormal basis of $L^2(\mathbb{Z}_N)$.

3. Show that every $v \in L^2(\mathbb{Z}_N)$ can be expressed as

$$v = \sum_{k \in \mathbb{Z}_N} \hat{v}(k) e_k$$
, where $\hat{v}(k) = \langle e_k, v \rangle$.

1

4. Compute $det(F_N)$ for N=4, N=6, and N=8. (Hint: Vandermonde)

5. Complete the calculation that we started in lecture by using the Fast Fourier Transform (FFT) algorithm to calculate $\hat{v}(k)$ for N=8. Recall that this calculation started as

$$\begin{pmatrix} v(0) \\ v(1) \\ v(2) \\ v(3) \\ v(4) \\ v(5) \\ v(6) \end{pmatrix} \mapsto \begin{pmatrix} v(0) \\ v(4) \\ v(6) \end{pmatrix} = \begin{pmatrix} v(0) \\ v(4) \\ v(6) \end{pmatrix} + \begin{pmatrix} v(0) + v(4) \\ v(0) - v(4) \\ v(0) - v(4) \end{pmatrix} + \begin{pmatrix} v(0) + v(4) + (v(2) + v(6)) \\ (v(0) - v(4)) - i(v(2) - v(6)) \\ (v(0) + v(4)) - i(v(2) + v(6)) \\ (v(0) + v(4) + i(v(2) + v(6)) \\ (v(0) + v(4)) - i(v(2) + v(6)) \\ (v(0) + v(4)) - i(v(2) + v(6)) \\ (v(0) + v(4)) - i(v(2) + v(6)) \\ (v(0) + v(4) + i(v(2) + v(6)) \\ (v(0) + v($$

You may express the answer in terms of ω_8