MATH 416 Homework 2 Due Wednesday, 1 April 2020

Let $\mathbf{A} \in \mathbb{R}^{3 \times 4}$ be given by

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & -1 & 0 \\ 0 & -1 & 2 & 1 \\ 2 & 3 & 0 & 1 \end{pmatrix}$$

Define the linear map $T : \mathbb{R}^4 \to \mathbb{R}^3$ by $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^4$. The null space and range of T are defined respectively by

Null(T) = {
$$\mathbf{x} \in \mathbb{R}^4 : T(\mathbf{x}) = \mathbf{0}$$
},
Range(T) = { $T(\mathbf{x}) \in \mathbb{R}^3 : \mathbf{x} \in \mathbb{R}^4$ }.

- 1. Compute Null(T) and give its dimension.
- 2. Compute $\operatorname{Range}(T)$ and give its dimension.
- 3. Equip \mathbb{R}^4 with the usual Euclidean inner product. Give the orthogonal projection of \mathbb{R}^4 onto Null(T).
- 4. Equip \mathbb{R}^3 with the inner product defined by

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathrm{T}} \mathbf{G} \mathbf{y}$$
 for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$,

where ${\bf G}$ is the diagonal matrix

$$\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \,.$$

Give the orthogonal projection of \mathbb{R}^3 onto $\operatorname{Range}(T)$.

5. Equip \mathbb{R}^4 and \mathbb{R}^3 with the inner products given in the previous two problems. Compute $T^*: \mathbb{R}^3 \to \mathbb{R}^4$, the adjoint of T with respect to these inner products.