
MATH 416 Take-Home Exam 2 Solutions
Due 11:59pm Thursday, 21 May 2020

Be sure to show all work and to make your reasoning clear.

1. [20] Consider the function f(x) = 1/
√

1 + x2 over R.

a. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x)
at the uniform nodes {−7,−5,−3,−1, 1, 3, 5, 7}.

b. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x)
at the Chebyshev nodes {8r : T8(r) = 0}.

c. [4] Plot f(x) and these two interpolants over the interval [−8, 8]. Which interpolant
gives a better approximation to f(x) over [−8, 8]? Why?

Remark. In parts (a) and (b) the nodes are symmetric about the origin (if xk is a
node then so is −xk), while the function f(x) = 1/

√
1 + x2 has even symmetry over R

(f(−x) = f(x) ∀x ∈ R). These symmetries imply that the interpolating polynomials
will each be even. This observation greatly simplifies any approach to these problems.
They each have eight nodes, which we can denote as

−x4 < −x3 < −x2 < −x1 < 0 < x1 < x2 < x3 < x4 .

Because every even polynomial of degree at most 7 must have degree at most 6, each
interpolating polynomial p(x) must have the form

p(x) = a0 + a1x
2 + a2x

4 + a3x
6 ,

where the polynomial q(y) given by

q(y) = a0 + a1y + a2y
2 + a3y

3 ,

interpolates the values of g(y) = 1/
√

1 + y at the nodes {yk = x 2
k : k = 1, 2, 3, 4}. If we

use the Vandermonde approach then {a0, a1, a2, a3} solve the linear algebraic system
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f(x4)

 .

If we use the Lagrange approach then we can directly write down

p(x) =
(x 2

2 − x2)(x 2
3 − x2)(x 2

4 − x2)
(x 2

2 − x 2
1 )(x 2

3 − x 2
1 )(x 2

4 − x 2
1 )
f(x1) +

(x2 − x 2
1 )(x 2

3 − x2)(x 2
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(x 2
2 − x 2

1 )(x 2
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2 )
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1 )(x2 − x 2
2 )(x 2

4 − x2)
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3 − x 2
1 )(x 2

3 − x 2
2 )(x 2

4 − x 2
3 )
f(x3) +

(x2 − x 2
1 )(x2 − x 2

2 )(x2 − x 2
3 )

(x 2
4 − x 2

1 )(x 2
4 − x 2

2 )(x 2
4 − x 2

3 )
f(x4) .

We will use the Lagrange approach below.

Solution (a). For the uniform nodes we have x1 = 1, x2 = 3, x3 = 5, and x4 = 7, so

pa(x) =
(9− x2)(25− x2)(49− x2)

8 · 24 · 48

1√
2

+
(x2 − 1)(25− x2)(49− x2)

8 · 16 · 40

1√
10

+
(x2 − 1)(x2 − 9)(49− x2)

24 · 16 · 24

1√
26

+
(x2 − 1)(x2 − 9)(x2 − 25)

48 · 40 · 24

1√
50
.

�
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Solution (b). The Chebyshev nodes are {8r : T8(r) = 0}. Because

cos(8θ) = T8
(
cos(θ)

)
,

we see that T8(r) = 0 for some r ∈ [−1, 1] if and only if r = cos(θ) and 8θ = kπ − π
2

for some k ∈ Z. All the roots in (0, 1) are given by θ = (2k−1)π
16

for k = 1, 2, 3, and 4.
Therefore the positive Chebyshev nodes are

x1 = 8 cos(7π
16

) , x2 = 8 cos(5π
16

) , x3 = 8 cos(3π
16

) , x4 = 8 cos( π
16

) .

Placing these nodes into the Lagrange formula for p(x) given above yields pb(x). �
Remark. While not required here, these nodes can be expressed as algebric numbers.

Starting with cos(π
4
) =

√
2
2

, two applications of the cosine half-angle identity yield

cos(π
8
) =

√
1 + cos(π

4
)

2
=

√
2 +
√

2

2
,

cos( π
16

) =

√
1 + cos(π

8
)

2
=

√
2 +

√
2 +
√

2

2
.

Starting with cos(3π
4

) = −
√
2
2

, two applications of the cosine half-angle identity yield

cos(3π
8

) =

√
1 + cos(3π

4
)

2
=

√
2−
√

2

2
,

cos(3π
16

) =

√
1 + cos(3π

8
)

2
=

√
2 +

√
2−
√

2

2
.

Finally, we have

cos(5π
16

) = sin(3π
16

) =

√
1−

(
cos(3π

16
)
)2

=

√
2−

√
2−
√

2

2
,

cos(7π
16

) = sin( π
16

) =

√
1−

(
cos( π

16
)
)2

=

√
2−

√
2 +
√

2

2
.

Therefore the positive Chebychev nodes are

x1 = 4

√
2−

√
2 +
√

2 , x2 = 4

√
2−

√
2−
√

2 ,

x3 = 4

√
2 +

√
2−
√

2 , x4 = 4

√
2 +

√
2 +
√

2 .

Solution (c). You are asked to plot f(t), pa(t) and pb(t) versus t over [−8, 8]. You
should see that due to the coarseness of these approximations, neither is great. However,
pb(t) maintains positivity, almost recovers the correct monotonicity, and is significantly
quantitatively better over the outer region 4 ≤ |t| ≤ 8. On the other hand, pa(t) is
quantitatively better only over the inner region |t| ≤ 1. On balance, pb(t) is better. �
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2. [20] Let φ(t) = hat(t), where the “hat” function is defined over R by

hat(t) =

{
1− |t| for t ∈ (−1, 1) ,

0 otherwise .

This function satisfies the interpolation condition,

φ(0) = 1 , φ(k) = 0 for every k ∈ Z− {0} .

Define φk : R → R by φk(t) = φ(t − k). Let {ck}k∈Z be any real sequence over Z. For
every m,n ∈ Z with m ≤ n define umn : R→ R by

umn(t) =
n∑

k=m

ck φk(t) .

The set {umn : m,n ∈ Z , m ≤ n} has the Cauchy property with respect to a norm ‖ · ‖
if for every ε > 0 there exists Nε ∈ N such that for every m,n ∈ Z with m ≤ n we have

n ≤ −Nε or Nε ≤ m =⇒ ‖umn‖ < ε .

Consider the L4(R) norm defined by

‖v‖L4(R) =

(∫
R
|v(t)|4 dt

) 1
4

.

a. [4] Evaluate

‖umn‖ 4L4(R) =

∫
R
|umn(t)|4 dt .

b. [8] Show that

1
5

n∑
k=m

|ck|4 ≤ ‖umn‖ 4L4(R) ≤
n∑

k=m

|ck|4 .

c. [8] Prove that {umn : m,n ∈ Z , m ≤ n} has the Cauchy property with respect to
the L4(R) norm if and only if ∑

k∈Z

|ck|4 <∞ .

Solution (a). Because each umn is the continuous piecewise linear interpolant that
satisfies umn(k) = ck for every k ∈ Z with k ∈ [m,n] and umn(k) = 0 for every k ∈ Z
with k /∈ [m,n], we see that for every k ∈ Z and t ∈ [k, k + 1] we have

umn(t) =


(t−m+ 1)cm if [k, k + 1] = [m− 1,m] ,

(k + 1− t)ck + (t− k)ck+1 if [k, k + 1] ⊂ [m,n] ,

(n+ 1− t)cn if [k, k + 1] = [n, n+ 1] ,

0 otherwise .
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Because the binomial expansion yields(
(k + 1− t)ck + (t− k)ck+1

)4
= (k + 1− t)4c 4k + 4(k + 1− t)3(t− k)c 3k ck+1

+ 6(k + 1− t)2(t− k)2c 2k c
2
k+1

+ 4(k + 1− t)(t− k)3ckc
3
k+1 + (t− k)4c 4k+1 ,

while elementary integrations yield∫ k+1

k

(k + 1− t)4 dt =

∫ k+1

k

(t− k)4 dt =
1

5
,

∫ k+1

k

(k + 1− t)2(t− k)2 dt =
1

30
,∫ k+1

k

(k + 1− t)3(t− k) dt =

∫ k+1

k

(k + 1− t)(t− k)3 dt =
1

20
,

a direct calculation shows that

∫ k+1

k

|umn(t)|4 dt =



c 4m
5

if [k, k + 1] = [m− 1,m] ,

c 4k + c 3k ck+1 + c 2k c
2
k+1 + ckc

3
k+1 + c 5k+1

5
if [k, k + 1] ⊂ [m,n] ,

c 4n
5

if [k, k + 1] = [n, n+ 1] ,

0 otherwise .

Therefore

‖umn‖ 4L4(R) =

∫
R
|umn(t)|4 dt =

∑
k∈Z

∫ k+1

k

|umn(t)|4 dt

=
c 4m
5

+
n−1∑
k=m

c 4k + c 3k ck+1 + c 2k c
2
k+1 + ckc

3
k+1 + c 4k+1

5
+
c 4n
5
.

This completes part a. �

Solution (b). By using the facts that ckck+1 ≤ 1
2
(c 2k + c 2k+1) and c 2k c

2
k+1 ≤ 1

2
(c 4k + c 4k+1),

the quantity inside the sum can be bounded above by

c 4k + c 3k ck+1 + c 2k c
2
k+1 + ckc

3
k+1 + c 4k+1

5
≤

3c 4k + 4c 2k c
2
k+1 + 3c 4k+1

10
≤
c 4k + c 4k+1

2
.

We thereby obtain the upper bound

‖umn‖ 4L4(R) ≤
c 4m
5

+
n−1∑
k=m

c 4k + c 4k+1

2
+
c 4n
5
≤

n∑
k=m

c 4k .

Similarly, By using the fact that ckck+1 ≥ −1
2
(c 2k + c 2k+1) on its second and fourth

terms, the quantity inside the sum can be bounded below by

c 4k + c 3k ck+1 + c 2k c
2
k+1 + ckc

3
k+1 + c 4k+1

5
≥
c 4k + c 4k+1

10
.

We thereby obtain the lower bound

‖umn‖ 4L4(R) ≥
c 4m
5

+
n−1∑
k=m

c 4k + c 4k+1

10
+
c 4n
5
≥ 1

5

n∑
k=m

c 4k .

This lower bound combined with the upper bound yields the assertion of Part b. �
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Remark. The upper bound could also be derived using the inequalities

c 3k ck+1 ≤ 3
4
c 4k + 1

4
c 4k+1 , c 2k c

2
k+1 ≤ 1

2
c 4k + 1

2
c 4k+1 , ckc

3
k+1 ≤ 1

4
c 4k + 3

4
c 4k+1 .

These follow from the Young inequality that for every p, q ∈ (1,∞) with 1
p

+ 1
q

= 1 says

|xy| ≤ 1
p
|x|p + 1

q
|y|q for every x, y ∈ R .

For example, the first inequality follows by taking x = c 3k , y = ck+1, p = 4
3
, and q = 4.

Solution (c). First suppose that {ck : k ∈ Z} satisfies the sum condition∑
k∈Z

c 4k <∞ .

We want to show that {umn : m,n ∈ Z , m ≤ n} has the Cauchy property with respect
to the L4(R) norm.

Let ε > 0. The fact that {ck : k ∈ Z} satisfies the sum condition implies that there
exists Nε ∈ N such that for every m,n ∈ Z with m ≤ n we have

n ≤ −Nε or Nε ≤ m =⇒
n∑

k=m

c 4k < ε4 .

But then our upper bound implies that

n ≤ −Nε or Nε ≤ m =⇒ ‖umn‖ 4L4(R) < ε4 .

Hence, {umn : m,n ∈ Z , m ≤ n} has the Cauchy property with respect to the L4(R)
norm.

Now suppose that {umn : m,n ∈ Z , m ≤ n} has the Cauchy property with respect
to the L4(R) norm. We want to show that {ck : k ∈ Z} satisfies the sum condition∑

k∈Z

c 4k <∞ .

We do this by showing that for every ε > 0 there exists Nε ∈ N such that for every
m,n ∈ Z with m ≤ n we have

n ≤ −Nε or Nε ≤ m =⇒
n∑

k=m

c 4k < ε .

Let ε > 0. The fact that {umn : m,n ∈ Z , m ≤ n} has the Cauchy property with
respect to the L4(R) norm implies that there exists Nε ∈ N such that for every m,n ∈ Z
with m ≤ n we have

n ≤ −Nε or Nε ≤ m =⇒ ‖umn‖ 4L4(R) <
1
5
ε .

But then our lower bound implies that

n ≤ −Nε or Nε ≤ m =⇒
n∑

k=m

c 4k < ε .

But this implies that the sum condition is satisfied. This completes Part c. �
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3. [20] The Haar wavelet function ψ : R→ R is

ψ(t) =


1 for t ∈ [0, 1

2
) ,

−1 for t ∈ [1
2
, 1) ,

0 otherwise .

It has a primitive Ψ : R→ R given by

Ψ(t) =

{
min{t, 1− t} for t ∈ (0, 1) ,

0 otherwise .

For each j, k ∈ Z define ψjk : R→ R and Ψjk : R→ R by

ψjk(t) = 2
j
2ψ(2jt− k) , Ψjk(t) = 2−

j
2 Ψ(2jt− k) .

Let S ⊂ L2([0, 1]) be given by

S =
{
ψjk : j ∈ {0, 1, · · · } , k ∈ {0, 1, · · · , 2j − 1}

}
.

Problem 1 of Homework 10 showed that S is an orthonormal set in L2([0, 1]) that is
orthogonal to every constant function. For every J ∈ Z+ let P

J
: L2([0, 1])→ L2([0, 1])

be the orthogonal projection given by

P
J
u(t) = 〈1 , u〉+

J−1∑
j=0

2j−1∑
k=0

〈ψjk , u〉ψjk(t) for every u ∈ L2([0, 1]) .

Let b ∈ (0, 1) and set v(t) = χ
[0,b)

(t) where

χ
[0,b)

(t) =

{
1 if t ∈ [0, b) ,

0 otherwise .

a. [8] Show for every J ∈ Z+ that

P
J
v(t) = b+

J−1∑
j=0

min
{

2jb− b2jbc , d2jbe − 2jb
}
ψ
(
2jt− b2jbc

)
,

where b · c and d · e denote the “floor” and “ceiling” functions, which are defined
for every x ∈ R by

bxc = max{k ∈ Z : k ≤ x} , dxe = min{k ∈ Z : x ≤ k} .

b. [8] Use induction on J to prove for every J ∈ Z+ that

P
J
v(t) =


1 for t ∈ [0, bJ) ,

2Jb− b2Jbc for t ∈ [bJ , bJ) ,

0 for t ∈ [bJ , 1) ,

where bJ = b2Jbc/2J and bJ = d2Jbe/2J .

c. [4] Show for every J ∈ Z+ that

‖P
J
v − v‖ 2L2([0,1]) =

(
d2Jbe − 2Jb

)(
2Jb− b2Jbc

)
2J

≤ 1

2J+2
.
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Solution (a). We need to compute the coefficients in the projection P
J
v of the function

v(t) = χ
[0,b)

(t) for every J ∈ Z+. Therefore we must compute

〈1 , v〉 and 〈ψjk , v〉 for every j ∈ N and k ∈ {0, 1, · · · , 2j−1} .
The easiest step is

〈1 , v〉 =

∫ 1

0

χ
[0,b)

(t) dt =

∫ b

0

dt = b .

Next, let j ∈ N and k ∈ {0, 1, · · · , 2j−1}. Because Ψjk(t) is the primitive of ψjk(t) that
satisfies Ψjk(0) = 0, we have

〈ψjk , v〉 =

∫ 1

0

ψjk(t)χ[0,b)
(t) dt =

∫ b

0

ψjk(t) dt = Ψjk(b) .

Because Ψjk(t) = 2−
j
2 Ψ(2jt− k), the given formula for Ψ(t) yields

〈ψjk , v〉 = 2−
j
2 Ψ(2jb− k)

=

{
2−

j
2 min{2jb− k , k + 1− 2jb} if 2jb− k ∈ (0, 1) ,

0 otherwise .

But 2jb − k ∈ (0, 1) holds if and only if k = b2jbc. If k = b2jbc and 2jb > b2jbc then
d2jbe = k + 1 and we see that

〈ψjk , v〉 =

{
2−

j
2 min

{
2jb− b2jbc , d2jbe − 2jb

}
if k = b2jbc ,

0 otherwise .

If k = b2jbc and 2jb = b2jbc then this formula still holds even though d2jbe = k because
its right-hand side vanishes.

Finally, we place the above results into the definition of the orthogonal projection P
J

and use the fact that ψjk(t) = 2
j
2ψ(2jt− k) to obtain

P
J
v(t) = 〈1 , v〉+

J−1∑
j=0

2j−1∑
k=0

〈ψjk , v〉ψjk(t)

= b+
J−1∑
j=0

min
{

2jb− b2jbc , d2jbe − 2jb
}

2−
j
2ψjb2jbc(t)

= b+
J−1∑
j=0

min
{

2jb− b2jbc , d2jbe − 2jb
}
ψ
(
2jt− b2jbc

)
.

This completes Part a. �

Solution (b). For every J ∈ Z+ let P
J
v ∈ L2([0, 1]) be as in the assertion in Part a

and let v
J
∈ L2([0, 1]) be defined by

v
J
(t) =


1 if t ∈ [0, bJ) ,

2Jb− b2Jbc if t ∈ [bJ , bJ) ,

0 if t ∈ [bJ , 1) .

We want to show for every J ∈ Z+ that P
J
v(t) = v

J
(t) for every t ∈ [0, 1).
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We begin the induction at J = 1. For every t ∈ [0, 1) we have

P1v(t) = b+ min{b , 1− b}ψ(t) =


1 if b ∈ [1

2
, 1) and t ∈ [0, 1

2
) ,

2b− 1 if b ∈ [1
2
, 1) and t ∈ [1

2
, 1) ,

2b if b ∈ [0, 1
2
) and t ∈ [0, 1

2
) ,

0 if b ∈ [0, 1
2
) and t ∈ [1

2
, 1) .

Next, notice that

b1 =
b2bc

2
=

{
0 if b ∈ [0, 1

2
) ,

1
2

if b ∈ [1
2
, 1) ,

b1 =
d2be

2
=

{
1
2

if b ∈ (0, 1
2
] ,

1 if b ∈ (1
2
, 1] ,

whereby for every t ∈ [0, 1) we have

P1v(t) =


1 if t ∈ [0, b1) ,

2b− b2bc if t ∈ [b1, b1) ,

0 if t ∈ [b1, 1) ,

which shows that P1v(t) = v1(t) for every t ∈ [0, 1).

Now suppose for some J > 1 we know that P
J−1
v(t) = v

J−1
(t) for every t ∈ [0, 1).

Observe that b ∈ [bJ−1, bJ−1] and that ψ
(
2J−1t− b2J−1bc

)
= 0 outside [bJ−1, bJ−1). Let

bJ−1 = 1
2
(bJ−1 + bJ−1). Then for every t ∈ [bJ−1, bJ−1) we have

P
J
v(t) = P

J−1
v(t) + min

{
2J−1b− b2J−1bc , d2J−1be − 2J−1b

}
ψ
(
2J−1t− b2J−1bc

)
= v

J−1
(t) +


d2J−1be − 2J−1b if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

2J−1b− d2J−1be if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

2J−1b− b2J−1bc if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

b2J−1bc − 2J−1b if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

=


1 if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

2Jb− 2JbJ−1 if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

2Jb− 2JbJ−1 if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) ,

0 if b ∈ [bJ−1, bJ−1) and t ∈ [bJ−1, bJ−1) .

Next, notice that

bJ =
b2Jbc

2J
=

{
bJ−1 if b ∈ [bJ−1, bJ−1) ,

bJ−1 if b ∈ [bJ−1, bJ−1) ,

bJ =
d2Jbe

2J
=

{
bJ−1 if b ∈ (bJ−1, bJ−1] ,

bJ−1 if b ∈ (bJ−1, bJ−1] .

Therefore for every t ∈ [0, 1) we have

P
J
v(t) =


1 if t ∈ [0, bJ) ,

2Jb− b2Jbc if t ∈ [bJ , bJ) ,

0 if t ∈ [bJ , 1) ,

whereby P
J
v(t) = v

J
(t) for every t ∈ [0, 1). The induction proof is thereby complete. �
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Remark. This result shows that if 2Jb = b2Jbc for some J ∈ Z+ that then P
J
v = v.

Solution (c). First, treat the case when b2Jbc < d2Jbe. Because b ∈ [bJ , bJ ], we have

‖P
J
v − v‖ 2L2([0,1]) =

∫ bJ

bJ

(
P
J
v − v

)2
dt =

∫ b

bJ

(
1− P

J
v
)2

dt+

∫ bJ

b

(
P
J
v
)2

dt

=

∫ b

bJ

(
d2Jbe − 2Jb

)2
dt+

∫ bJ

b

(
2Jb− b2Jbc

)2
dt

=
(
d2Jbe − 2Jb

)2(
b− bJ

)
+
(
2Jb− b2Jbc

)2(
bJ − b

)
=

(
d2Jbe − 2Jb

)2(
2Jb− b2Jbc

)
2J

+

(
2Jb− b2Jbc

)2(d2Jbe − 2Jb
)

2J

=

(
d2Jbe − 2Jb

)(
2Jb− b2Jbc

)
2J

.

Next, this equality still holds when b2Jbc = d2Jbe because then b2Jbc = 2Jb = d2Jbe,
whereby both of its sides vanish. Therefore the equality in the assertion of Part c holds.
The inequality in the assertion of Part c holds because (1−x)x ≤ 1

4
for every x ∈ R. �

Remark. This result shows that

lim
J→∞

‖P
J
v − v‖L2([0,1]) = 0 ,

which says that for every b ∈ [0, 1] we have

χ
[0,b)
∈ span

{
1 , ψjk : j ∈ {0, 1, · · · } , k ∈ {0, 1, · · · 2j − 1}

}
.

For every [a, b) ⊂ [0, 1] we have χ
[a,b)

= χ
[0,b)
− χ

[0,a)
, whereby

χ
[a,b)
∈ span

{
1 , ψjk : j ∈ {0, 1, · · · } , k ∈ {0, 1, · · · 2j − 1}

}
.

We thereby have the inclusions

span
{
χ

[a,b)
: [a, b) ⊂ [0, 1]

}
⊂ span

{
1 , ψjk : j ∈ {0, 1, · · · } , k ∈ {0, 1, · · · 2j − 1}

}
⊂ L2([0, 1]) .

This lays the groundwork for a proof that

L2([0, 1]) = span
{

1 , ψjk : j ∈ {0, 1, · · · } , k ∈ {0, 1, · · · 2j − 1}
}
,

which implies that the orthonormal set
{

1 , ψjk : j ∈ {0, 1, · · · } , k ∈ {0, 1, · · · 2j − 1}
}

is a basis for L2([0, 1]). This orthonormal set is the so-called Haar basis for L2([0, 1]).
The step needed to complete this proof is to show that

L2([0, 1]) ⊂ span
{
χ

[a,b)
: [a, b) ⊂ [0, 1]

}
.

This step requires knowledge about definite integrals. A partial step in that direction
is to show that for every function u that is Riemann integrable over [0, 1] we have

u ∈ span
{
χ

[a,b)
: [a, b) ⊂ [0, 1]

}
.

This can be proved without knowledge of the Lebesgue integral. The conclusion uses
the fact that L2([0, 1]) can be identified with the completion of the Riemann integrable
functions with respect to the L2([0, 1]) norm, which is a fact about the Lebesgue integral.
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4. [20] The Haar scaling function φ : R→ R and wavelet function ψ : R→ R are

φ(t) =

{
1 for t ∈ [0, 1) ,

0 otherwise ,
ψ(t) =


1 for t ∈ [0, 1

2
) ,

−1 for t ∈ [1
2
, 1) ,

0 otherwise .

They satisfy the two-scale relations

φ(t) = φ(2t) + φ(2t− 1) , ψ(t) = φ(2t)− φ(2t− 1) .

For every j, k ∈ Z define φjk : R→ R and ψjk : R→ R by

φjk(t) = 2
j
2φ(2jt− k) , ψjk(t) = 2

j
2ψ(2jt− k) .

For every j ∈ Z define the subspaces Vj and Wj by

Vj = span{φjk : k ∈ Z} , Wj = span{ψjk : k ∈ Z} .

a. [8] Show for every j ∈ Z that Vj and Wj are orthogonal subspaces.

b. [8] Show for every j ∈ Z that

Vj+1 = Vj +Wj =
{
v + w : v ∈ Vj , w ∈ Wj

}
.

c. [4] Show for every j ∈ Z+ that

Vj+1 = V0 +W0 + · · ·+Wj .

Solution (a). Let j ∈ Z. For every k1, k2 ∈ Z we have φjk1(t) = 2
j
2φ(2jt − k1) and

ψjk1(t) = 2
j
2ψ(2jt− k2), whereby

〈φjk1 , ψjk2〉 =

∫
R
φjk1(t)ψjk1(t) dt = 2j

∫
R
φ(2jt− k1)ψ(2jt− k2) dt

=

∫
R

φ(t)ψ(t+ k1 − k2) dt =

∫ 1

0

ψ(t+ k1 − k2) dt = 0 .

So each member of the basis for Vj is orthogonal to every member of the basis for Wj.
Therefore Vj and Wj are orthogonal subspaces. �

Solution (b). Let j ∈ Z. The two-scale relation for φ implies that for every k ∈ Z we
have

2
j
2φ(2jt− k) = 2

j
2φ(2j+1t− 2k) + 2

j
2φ(2j+1t− 2k − 1) .

Because φjk(t) = 2
j
2φ(2jt− k), this is equivalent to

φjk(t) = 1√
2
φ(j+1)(2k)(t) + 1√

2
φ(j+1)(2k+1)(t) .

So each member of the basis for Vj is in Vj+1. Therefore Vj ⊂ Vj+1.

Similarly, The two-scale relation for ψ implies that for every k ∈ Z we have

2
j
2ψ(2jt− k) = 2

j
2φ(2j+1t− 2k)− 2

j
2φ(2j+1t− 2k − 1) .

Because ψjk(t) = 2
j
2ψ(2jt− k), this is equivalent to

ψjk(t) = 1√
2
φ(j+1)(2k)(t)− 1√

2
φ(j+1)(2k+1)(t) .

So each member of the basis for Wj is in Vj+1. Therefore Wj ⊂ Vj+1.
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Because Vj ⊂ Vj+1, Wj ⊂ Vj+1, and Vj+1 is a linear subspace, we conclude that
Vj +Wj ⊂ Vj+1. What remains to be shown is that Vj+1 ⊂ Vj +Wj.

The two-scale relations imply that

2φ(2t) = φ(t) + ψ(t) , 2φ(2t− 1) = φ(t)− ψ(t) .

It follows that for every k ∈ Z we have

2
j+2
2 φ(2j+1t− 2k) = 2jφ(2jt− k) + 2jψ(2jt− k) ,

2
j+2
2 φ(2j+1t− 2k − 1) = 2jφ(2jt− k) + 2jψ(2jt− k) ,

which is equivalent to

φ(j+1)(2k)(t) = 1√
2
φjk(t) + 1√

2
ψjk(t) ,

φ(j+1)(2k+1)(t) = 1√
2
φjk(t)− 1√

2
ψjk(t) .

So each member of the basis for Vj+1 is in Vj + Wj. Therefore Vj+1 ⊂ Vj + Wj. When
this is combined with our earlier inclusion result, we conclude that Vj+1 = Vj +Wj. �

Solution (c). We proceed by induction on j. By Part b we know that

V1 = V0 +W0 , and V2 = V1 +W1 .

Therefore

V2 = V1 +W1 = (V0 +W0) +W1 = V0 +W0 +W1 .

Therefore we have established the result for j = 1.

Now suppose that the result holds for j for some j ≥ 1. This means that

Vj+1 = V0 +W0 + · · ·+Wj .

But then by Part b we see that

Vj+2 = Vj+1 +Wj+1 =
(
V0 +W0 + · · ·+Wj

)
+Wj+1

= V0 +W0 + · · ·+Wj +Wj+1 .

Therefore we have established the result for j + 1. Therefore the result holds for every
j ∈ Z+ by induction. �
Remark. The orthonormal set {ψjk : j, k ∈ Z} is the Haar basis for L2(R). The proof
that it is a basis for L2(R) is similar to the proof of the Haar basis for L2([0, 1]) that was
presented in the solution to Problem 3. The result of Part d can then be strengthened.
We have

Vj =
⊕
j′<j

Wj′ for every j ∈ Z , and L2(R) =
⊕
j∈Z

Wj .

Remark. Haar did his work over 100 years ago. The label “Haar basis” was established
long before wavelet theory was developed and the term “wavelet” was introduced, but
from a modern perspective the label “Haar wavelet basis” is also suitible.



12

5. [20] Let F : L2(R)→ L2(R) denote the Fourier transform given by

Fu(ξ) =

∫
R
e−i2πξtu(t) dt for every u ∈ L2(R) .

Let ψ : R→ R be the function given by

ψ(t) = 2 sinc(2t)− sinc(t) .

For every j, k ∈ Z define ψjk : R→ R by ψjk(t) = 2
j
2ψ(2jt− k).

a. [4] Compute Fψ(ξ). You can use the fact that

Fsinc(ξ) =


1 for |ξ| < 1

2
,

1
2

for |ξ| = 1
2
,

0 for |ξ| > 1
2
.

b. [4] Compute ∫ ∞
0

|Fψ(ξ)|2

ξ
dξ .

c. [4] For every j, k ∈ Z compute Fψjk(ξ).

d. [8] Show that {ψjk : j, k ∈ Z} is an orthonormal set in L2(R).

Solution (a). By linearity of the Fourier transform we have

Fψ(ξ) = 2F [sinc(2t)](ξ)−F [sinc(t)](ξ) .

From the definition of F and the given fact we see that

2F [sinc(2t)](ξ) = 2

∫
R
e−i2πξtsinc(2t) dt

=

∫
R
e−iπξtsinc(t) dt = Fsinc( ξ

2
) =


1 if |ξ| < 1 ,
1
2

if |ξ| = 1 ,

0 if |ξ| > 1 .

Therefore

Fψ(ξ) = Fsinc( ξ
2
)−Fsinc(ξ) =


1 if 1

2
< |ξ| < 1 ,

1
2

if |ξ| = 1
2

or |ξ| = 1 ,

0 if |ξ| < 1
2

or |ξ| > 1 .

�

Solution (b). We see from Part a that∫ ∞
0

|Fψ(ξ)|2

ξ
dξ =

∫ 1

1
2

1

ξ
dξ = log(ξ)

∣∣∣1
1
2

= − log(1
2
) = log(2) .

�
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Solution (c). Because ψjk(t) = 2
j
2ψ(2jt− k), we have

Fψjk(ξ) =

∫
R
e−i2πξtψjk(t) dt = 2

j
2

∫
R
e−i2πξtψ(2jt− k) dt

= 2−
j
2

∫
R
e−i2πξ

t+k

2j ψ(t) dt = 2−
j
2 e−i2πk

ξ

2jFψ( ξ
2j

)

=


2−

j
2 e−i2πk

ξ

2j if 2j−1 < |ξ| < 2j ,

2−
j+2
2 e−i2πk

ξ

2j if |ξ| = 2j−1 or |ξ| = 2j ,

0 if |ξ| < 2j−1 or |ξ| > 2j .

�

Solution (d). The Plancherel Theorem says

〈ψj1k1 , ψj2k2〉 = 〈Fψj1k1 , Fψj2k2〉 =

∫
R
Fψj1k1(ξ)Fψj2k2(ξ) dξ .

We see from our solution to Part c that

Fψj1k1(ξ) is supported on 2j1−1 ≤ |ξ| ≤ 2j1 ,

Fψj2k2(ξ) is supported on 2j2−1 ≤ |ξ| ≤ 2j2 .

Thus, if j1 6= j2 then the above integrand vanishes at all but at most two points, whereby

〈Fψj1k1 , Fψj2k2〉 = 0 .

If j1 = j2 = j then our solution to Part c, a change of variable, the odd symmetry of
sine, the even symmetry of cosine, and an elementary integration combine to show that

〈Fψjk1 , Fψjk2〉 = 2−j
∫
2j−1<|ξ|<2j

e−i2π(k2−k1)
ξ

2j dξ

=

∫
1
2
<|ξ|<1

e−i2π(k2−k1)ξ dξ =

∫
1
2
<|ξ|<1

cos
(
2π(k2 − k1)ξ

)
dξ

= 2

∫ 1

1
2

cos
(
2π(k2 − k1)ξ

)
dξ = δk1k2 .

Putting everything together we have

〈ψj1k1 , ψj2k2〉 = 〈Fψj1k1 , Fψj2k2〉 = δj1j2 δk1k2 .

Therefore {ψjk : j, k ∈ Z} is an orthonormal set in L2(R). �

Remark. The orthonormal set {ψjk : j, k ∈ Z} is the Shannon wavelet basis. To prove
that this set is a basis we would need to show for any u ∈ L2(R) that

〈ψjk , u〉 = 0 for every j, k ∈ Z =⇒ u = 0 .

This can be done using the Plancherel Theorem and the result of Part c. Try it!


