MATH 416 Take-Home Exam 2 Solutions Due 11:59pm Thursday, 21 May 2020

Be sure to show all work and to make your reasoning clear.

- 1. [20] Consider the function $f(x) = 1/\sqrt{1+x^2}$ over \mathbb{R} .
 - a. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x) at the uniform nodes $\{-7, -5, -3, -1, 1, 3, 5, 7\}$.
 - b. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x) at the Chebyshev nodes $\{8r : T_8(r) = 0\}$.
 - c. [4] Plot f(x) and these two interpolants over the interval [-8, 8]. Which interpolant gives a better approximation to f(x) over [-8, 8]? Why?

Remark. In parts (a) and (b) the nodes are symmetric about the origin (if x_k is a node then so is $-x_k$), while the function $f(x) = 1/\sqrt{1+x^2}$ has even symmetry over \mathbb{R} $(f(-x) = f(x) \ \forall x \in \mathbb{R})$. These symmetries imply that the interpolating polynomials will each be even. This observation greatly simplifies any approach to these problems. They each have eight nodes, which we can denote as

$$-x_4 < -x_3 < -x_2 < -x_1 < 0 < x_1 < x_2 < x_3 < x_4$$

Because every even polynomial of degree at most 7 must have degree at most 6, each interpolating polynomial p(x) must have the form

$$p(x) = a_0 + a_1 x^2 + a_2 x^4 + a_3 x^6 \,,$$

where the polynomial q(y) given by

$$q(y) = a_0 + a_1 y + a_2 y^2 + a_3 y^3,$$

interpolates the values of $g(y) = 1/\sqrt{1+y}$ at the nodes $\{y_k = x_k^2 : k = 1, 2, 3, 4\}$. If we use the Vandermonde approach then $\{a_0, a_1, a_2, a_3\}$ solve the linear algebraic system

$$\begin{pmatrix} 1 & x_1^2 & x_1^4 & x_1^6 \\ 1 & x_1^2 & x_1^4 & x_1^6 \\ 1 & x_1^2 & x_1^4 & x_1^6 \\ 1 & x_1^2 & x_1^4 & x_1^6 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} f(x_1) \\ f(x_2) \\ f(x_3) \\ f(x_4) \end{pmatrix}$$

If we use the Lagrange approach then we can directly write down

$$p(x) = \frac{(x_2^2 - x^2)(x_3^2 - x^2)(x_4^2 - x^2)}{(x_2^2 - x_1^2)(x_3^2 - x_1^2)(x_4^2 - x_1^2)} f(x_1) + \frac{(x^2 - x_1^2)(x_3^2 - x^2)(x_4^2 - x^2)}{(x_2^2 - x_1^2)(x_3^2 - x_2^2)(x_4^2 - x_2^2)} f(x_2) \\ + \frac{(x^2 - x_1^2)(x^2 - x_2^2)(x_4^2 - x^2)}{(x_3^2 - x_1^2)(x_3^2 - x_2^2)(x_4^2 - x_3^2)} f(x_3) + \frac{(x^2 - x_1^2)(x^2 - x_2^2)(x^2 - x_3^2)}{(x_4^2 - x_1^2)(x_4^2 - x_2^2)(x_4^2 - x_3^2)} f(x_4) .$$

We will use the Lagrange approach below.

Solution (a). For the uniform nodes we have $x_1 = 1$, $x_2 = 3$, $x_3 = 5$, and $x_4 = 7$, so

$$p_{a}(x) = \frac{(9-x^{2})(25-x^{2})(49-x^{2})}{8\cdot 24\cdot 48} \frac{1}{\sqrt{2}} + \frac{(x^{2}-1)(25-x^{2})(49-x^{2})}{8\cdot 16\cdot 40} \frac{1}{\sqrt{10}} + \frac{(x^{2}-1)(x^{2}-9)(49-x^{2})}{24\cdot 16\cdot 24} \frac{1}{\sqrt{26}} + \frac{(x^{2}-1)(x^{2}-9)(x^{2}-25)}{48\cdot 40\cdot 24} \frac{1}{\sqrt{50}}.$$

Solution (b). The Chebyshev nodes are $\{8r : T_8(r) = 0\}$. Because

$$\cos(8\theta) = T_8(\cos(\theta)),$$

we see that $T_8(r) = 0$ for some $r \in [-1, 1]$ if and only if $r = \cos(\theta)$ and $8\theta = k\pi - \frac{\pi}{2}$ for some $k \in \mathbb{Z}$. All the roots in (0, 1) are given by $\theta = \frac{(2k-1)\pi}{16}$ for k = 1, 2, 3, and 4. Therefore the positive Chebyshev nodes are

$$x_1 = 8\cos(\frac{7\pi}{16}), \qquad x_2 = 8\cos(\frac{5\pi}{16}), \qquad x_3 = 8\cos(\frac{3\pi}{16}), \qquad x_4 = 8\cos(\frac{\pi}{16}).$$

Placing these nodes into the Lagrange formula for p(x) given above yields $p_{\rm b}(x)$. **Remark.** While not required here, these nodes can be expressed as algebric numbers. Starting with $\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$, two applications of the cosine half-angle identity yield

$$\cos(\frac{\pi}{8}) = \sqrt{\frac{1 + \cos(\frac{\pi}{4})}{2}} = \frac{\sqrt{2 + \sqrt{2}}}{2},$$
$$\cos(\frac{\pi}{16}) = \sqrt{\frac{1 + \cos(\frac{\pi}{8})}{2}} = \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2}$$

Starting with $\cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2}$, two applications of the cosine half-angle identity yield

$$\cos(\frac{3\pi}{8}) = \sqrt{\frac{1 + \cos(\frac{3\pi}{4})}{2}} = \frac{\sqrt{2 - \sqrt{2}}}{2},$$
$$\cos(\frac{3\pi}{16}) = \sqrt{\frac{1 + \cos(\frac{3\pi}{8})}{2}} = \frac{\sqrt{2 + \sqrt{2 - \sqrt{2}}}}{2}$$

Finally, we have

$$\cos(\frac{5\pi}{16}) = \sin(\frac{3\pi}{16}) = \sqrt{1 - \left(\cos(\frac{3\pi}{16})\right)^2} = \frac{\sqrt{2 - \sqrt{2 - \sqrt{2}}}}{2}$$
$$\cos(\frac{7\pi}{16}) = \sin(\frac{\pi}{16}) = \sqrt{1 - \left(\cos(\frac{\pi}{16})\right)^2} = \frac{\sqrt{2 - \sqrt{2 + \sqrt{2}}}}{2}.$$

Therefore the positive Chebychev nodes are

$$x_1 = 4\sqrt{2 - \sqrt{2 + \sqrt{2}}}, \qquad x_2 = 4\sqrt{2 - \sqrt{2 - \sqrt{2}}},$$
$$x_3 = 4\sqrt{2 + \sqrt{2 - \sqrt{2}}}, \qquad x_4 = 4\sqrt{2 + \sqrt{2 + \sqrt{2}}}.$$

Solution (c). You are asked to plot f(t), $p_{a}(t)$ and $p_{b}(t)$ versus t over [-8, 8]. You should see that due to the coarseness of these approximations, neither is great. However, $p_{b}(t)$ maintains positivity, almost recovers the correct monotonicity, and is significantly quantitatively better over the outer region $4 \leq |t| \leq 8$. On the other hand, $p_{a}(t)$ is quantitatively better only over the inner region $|t| \leq 1$. On balance, $p_{b}(t)$ is better. \Box

2. [20] Let $\phi(t) = hat(t)$, where the "hat" function is defined over \mathbb{R} by

$$hat(t) = \begin{cases} 1 - |t| & \text{for } t \in (-1, 1), \\ 0 & \text{otherwise.} \end{cases}$$

This function satisfies the *interpolation condition*,

$$\phi(0) = 1$$
, $\phi(k) = 0$ for every $k \in \mathbb{Z} - \{0\}$.

Define $\phi_k : \mathbb{R} \to \mathbb{R}$ by $\phi_k(t) = \phi(t-k)$. Let $\{c_k\}_{k \in \mathbb{Z}}$ be any real sequence over \mathbb{Z} . For every $m, n \in \mathbb{Z}$ with $m \leq n$ define $u_{mn} : \mathbb{R} \to \mathbb{R}$ by

$$u_{mn}(t) = \sum_{k=m}^{n} c_k \phi_k(t) \,.$$

The set $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the *Cauchy property* with respect to a norm $\|\cdot\|$ if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for every $m, n \in \mathbb{Z}$ with $m \leq n$ we have

$$n \leq -N_{\epsilon} \quad \text{or} \quad N_{\epsilon} \leq m \implies ||u_{mn}|| < \epsilon.$$

Consider the $L^4(\mathbb{R})$ norm defined by

$$||v||_{L^4(\mathbb{R})} = \left(\int_{\mathbb{R}} |v(t)|^4 \, \mathrm{d}t\right)^{\frac{1}{4}}.$$

a. [4] Evaluate

$$||u_{mn}||^4_{L^4(\mathbb{R})} = \int_{\mathbb{R}} |u_{mn}(t)|^4 dt$$

b. [8] Show that

$$\frac{1}{5}\sum_{k=m}^{n} |c_k|^4 \le ||u_{mn}||_{L^4(\mathbb{R})}^4 \le \sum_{k=m}^{n} |c_k|^4.$$

c. [8] Prove that $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the Cauchy property with respect to the $L^4(\mathbb{R})$ norm if and only if

$$\sum_{k\in\mathbb{Z}}|c_k|^4<\infty$$
 .

Solution (a). Because each u_{mn} is the continuous piecewise linear interpolant that satisfies $u_{mn}(k) = c_k$ for every $k \in \mathbb{Z}$ with $k \in [m, n]$ and $u_{mn}(k) = 0$ for every $k \in \mathbb{Z}$ with $k \notin [m, n]$, we see that for every $k \in \mathbb{Z}$ and $t \in [k, k + 1]$ we have

$$u_{mn}(t) = \begin{cases} (t - m + 1)c_m & \text{if } [k, k + 1] = [m - 1, m], \\ (k + 1 - t)c_k + (t - k)c_{k+1} & \text{if } [k, k + 1] \subset [m, n], \\ (n + 1 - t)c_n & \text{if } [k, k + 1] = [n, n + 1], \\ 0 & \text{otherwise}. \end{cases}$$

Because the binomial expansion yields

$$((k+1-t)c_k + (t-k)c_{k+1})^4 = (k+1-t)^4 c_k^4 + 4(k+1-t)^3(t-k)c_k^3 c_{k+1} + 6(k+1-t)^2(t-k)^2 c_k^2 c_{k+1}^2 + 4(k+1-t)(t-k)^3 c_k c_{k+1}^3 + (t-k)^4 c_{k+1}^4 ,$$

while elementary integrations yield

$$\int_{k}^{k+1} (k+1-t)^{4} dt = \int_{k}^{k+1} (t-k)^{4} dt = \frac{1}{5}, \qquad \int_{k}^{k+1} (k+1-t)^{2} (t-k)^{2} dt = \frac{1}{30},$$
$$\int_{k}^{k+1} (k+1-t)^{3} (t-k) dt = \int_{k}^{k+1} (k+1-t) (t-k)^{3} dt = \frac{1}{20},$$

a direct calculation shows that

$$\int_{k}^{k+1} |u_{mn}(t)|^{4} dt = \begin{cases} \frac{c_{m}^{4}}{5} & \text{if } [k, k+1] = [m-1, m], \\ \frac{c_{k}^{4}}{5} c_{k}^{2} + c_{k}^{3} c_{k+1} + c_{k}^{2} c_{k+1}^{2} + c_{k} c_{k+1}^{3} + c_{k+1}^{5} & \text{if } [k, k+1] \subset [m, n], \\ \frac{c_{n}^{4}}{5} & \text{if } [k, k+1] = [n, n+1], \\ 0 & \text{otherwise}. \end{cases}$$

Therefore

$$\begin{aligned} \|u_{mn}\|_{L^{4}(\mathbb{R})}^{4} &= \int_{\mathbb{R}} |u_{mn}(t)|^{4} dt = \sum_{k \in \mathbb{Z}} \int_{k}^{k+1} |u_{mn}(t)|^{4} dt \\ &= \frac{c_{m}^{4}}{5} + \sum_{k=m}^{n-1} \frac{c_{k}^{4} + c_{k}^{3} c_{k+1} + c_{k}^{2} c_{k+1}^{2} + c_{k} c_{k+1}^{3} + c_{k+1}^{4}}{5} . \end{aligned}$$
beletes part a.

This completes part a.

Solution (b). By using the facts that $c_k c_{k+1} \leq \frac{1}{2}(c_k^2 + c_{k+1}^2)$ and $c_k^2 c_{k+1}^2 \leq \frac{1}{2}(c_k^4 + c_{k+1}^4)$, the quantity inside the sum can be bounded above by

$$\frac{c_k^4 + c_k^3 c_{k+1} + c_k^2 c_{k+1}^2 + c_k c_{k+1}^3 + c_{k+1}^4}{5} \le \frac{3c_k^4 + 4c_k^2 c_{k+1}^2 + 3c_{k+1}^4}{10} \le \frac{c_k^4 + c_{k+1}^4}{2} \,.$$

We thereby obtain the upper bound

$$\|u_{mn}\|_{L^4(\mathbb{R})}^4 \le \frac{c_m^4}{5} + \sum_{k=m}^{n-1} \frac{c_k^4 + c_{k+1}^4}{2} + \frac{c_n^4}{5} \le \sum_{k=m}^n c_k^4$$

Similarly, By using the fact that $c_k c_{k+1} \ge -\frac{1}{2}(c_k^2 + c_{k+1}^2)$ on its second and fourth terms, the quantity inside the sum can be bounded below by

$$\frac{c_k^4 + c_k^3 c_{k+1} + c_k^2 c_{k+1}^2 + c_k c_{k+1}^3 + c_{k+1}^4}{5} \ge \frac{c_k^4 + c_{k+1}^4}{10}$$

We thereby obtain the lower bound

$$\|u_{mn}\|_{L^4(\mathbb{R})}^4 \ge \frac{c_m^4}{5} + \sum_{k=m}^{n-1} \frac{c_k^4 + c_{k+1}^4}{10} + \frac{c_n^4}{5} \ge \frac{1}{5} \sum_{k=m}^n c_k^4$$

This lower bound combined with the upper bound yields the assertion of Part b. $\hfill \Box$

Remark. The upper bound could also be derived using the inequalities

 $c_k^3 c_{k+1} \le \frac{3}{4} c_k^4 + \frac{1}{4} c_{k+1}^4, \qquad c_k^2 c_{k+1}^2 \le \frac{1}{2} c_k^4 + \frac{1}{2} c_{k+1}^4, \qquad c_k c_{k+1}^3 \le \frac{1}{4} c_k^4 + \frac{3}{4} c_{k+1}^4.$

These follow from the Young inequality that for every $p, q \in (1, \infty)$ with $\frac{1}{p} + \frac{1}{q} = 1$ says

 $|xy| \leq \frac{1}{p}|x|^p + \frac{1}{q}|y|^q$ for every $x, y \in \mathbb{R}$.

For example, the first inequality follows by taking $x = c_k^3$, $y = c_{k+1}$, $p = \frac{4}{3}$, and q = 4. Solution (c). First suppose that $\{c_k : k \in \mathbb{Z}\}$ satisfies the sum condition

$$\sum_{k\in\mathbb{Z}}c_k^4<\infty$$

We want to show that $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the Cauchy property with respect to the $L^4(\mathbb{R})$ norm.

Let $\epsilon > 0$. The fact that $\{c_k : k \in \mathbb{Z}\}$ satisfies the sum condition implies that there exists $N_{\epsilon} \in \mathbb{N}$ such that for every $m, n \in \mathbb{Z}$ with $m \leq n$ we have

$$n \le -N_{\epsilon} \quad \text{or} \quad N_{\epsilon} \le m \qquad \Longrightarrow \qquad \sum_{k=m}^{n} c_k^4 < \epsilon^4 \,.$$

But then our upper bound implies that

$$n \leq -N_{\epsilon} \quad \text{or} \quad N_{\epsilon} \leq m \implies \|u_{mn}\|_{L^{4}(\mathbb{R})}^{4} < \epsilon^{4}$$

Hence, $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the Cauchy property with respect to the $L^4(\mathbb{R})$ norm.

Now suppose that $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the Cauchy property with respect to the $L^4(\mathbb{R})$ norm. We want to show that $\{c_k : k \in \mathbb{Z}\}$ satisfies the sum condition

$$\sum_{k\in\mathbb{Z}}c_k^4<\infty$$

We do this by showing that for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for every $m, n \in \mathbb{Z}$ with $m \leq n$ we have

$$n \le -N_{\epsilon}$$
 or $N_{\epsilon} \le m$ \Longrightarrow $\sum_{k=m}^{n} c_k^4 < \epsilon$.

Let $\epsilon > 0$. The fact that $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the Cauchy property with respect to the $L^4(\mathbb{R})$ norm implies that there exists $N_{\epsilon} \in \mathbb{N}$ such that for every $m, n \in \mathbb{Z}$ with $m \leq n$ we have

$$n \leq -N_{\epsilon}$$
 or $N_{\epsilon} \leq m \implies ||u_{mn}||_{L^{4}(\mathbb{R})}^{4} < \frac{1}{5}\epsilon$.

But then our lower bound implies that

$$n \le -N_{\epsilon}$$
 or $N_{\epsilon} \le m$ \Longrightarrow $\sum_{k=m}^{n} c_{k}^{4} < \epsilon$

But this implies that the sum condition is satisfied. This completes Part c.

3. [20] The Haar wavelet function $\psi : \mathbb{R} \to \mathbb{R}$ is

$$\psi(t) = \begin{cases} 1 & \text{for } t \in [0, \frac{1}{2}), \\ -1 & \text{for } t \in [\frac{1}{2}, 1), \\ 0 & \text{otherwise}. \end{cases}$$

It has a primitive $\Psi : \mathbb{R} \to \mathbb{R}$ given by

$$\Psi(t) = \begin{cases} \min\{t, 1-t\} & \text{for } t \in (0, 1), \\ 0 & \text{otherwise}. \end{cases}$$

For each $j, k \in \mathbb{Z}$ define $\psi_{jk} : \mathbb{R} \to \mathbb{R}$ and $\Psi_{jk} : \mathbb{R} \to \mathbb{R}$ by

$$\psi_{jk}(t) = 2^{\frac{j}{2}} \psi(2^{j}t - k), \qquad \Psi_{jk}(t) = 2^{-\frac{j}{2}} \Psi(2^{j}t - k).$$

Let $S \subset L^2([0,1])$ be given by

$$S = \left\{ \psi_{jk} : j \in \{0, 1, \cdots\}, k \in \{0, 1, \cdots, 2^{j} - 1\} \right\}$$

Problem 1 of Homework 10 showed that S is an orthonormal set in $L^2([0,1])$ that is orthogonal to every constant function. For every $J \in \mathbb{Z}_+$ let $\mathcal{P}_J : L^2([0,1]) \to L^2([0,1])$ be the orthogonal projection given by

$$\mathcal{P}_{J}u(t) = \langle 1, u \rangle + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} \langle \psi_{jk}, u \rangle \psi_{jk}(t) \quad \text{for every } u \in L^{2}([0,1]).$$

Let $b \in (0,1)$ and set $v(t) = \chi_{_{[0,b)}}(t)$ where

$$\chi_{\scriptscriptstyle [0,b)}(t) = \begin{cases} 1 & \text{if } t \in [0,b) \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

a. [8] Show for every $J \in \mathbb{Z}_+$ that

$$\mathcal{P}_{J}v(t) = b + \sum_{j=0}^{J-1} \min\left\{2^{j}b - \lfloor 2^{j}b\rfloor, \lceil 2^{j}b\rceil - 2^{j}b\right\}\psi\left(2^{j}t - \lfloor 2^{j}b\rfloor\right),$$

where $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$ denote the "floor" and "ceiling" functions, which are defined for every $x \in \mathbb{R}$ by

$$\lfloor x \rfloor = \max\{k \in \mathbb{Z} : k \le x\}, \qquad \lceil x \rceil = \min\{k \in \mathbb{Z} : x \le k\}.$$

b. [8] Use induction on J to prove for every $J \in \mathbb{Z}_+$ that

$$\mathcal{P}_{J}v(t) = \begin{cases} 1 & \text{for } t \in [0, \underline{b}_{J}), \\ 2^{J}b - \lfloor 2^{J}b \rfloor & \text{for } t \in [\underline{b}_{J}, \overline{b}_{J}), \\ 0 & \text{for } t \in [\overline{b}_{J}, 1), \end{cases}$$

where $\underline{b}_J = \lfloor 2^J b \rfloor / 2^J$ and $\overline{b}_J = \lceil 2^J b \rceil / 2^J$.

c. [4] Show for every $J \in \mathbb{Z}_+$ that

$$\|\mathcal{P}_{J}v - v\|_{L^{2}([0,1])}^{2} = \frac{\left(\left\lceil 2^{J}b \right\rceil - 2^{J}b\right)\left(2^{J}b - \left\lfloor 2^{J}b \right\rfloor\right)}{2^{J}} \le \frac{1}{2^{J+2}}.$$

Solution (a). We need to compute the coefficients in the projection $\mathcal{P}_J v$ of the function $v(t) = \chi_{_{[0,b]}}(t)$ for every $J \in \mathbb{Z}_+$. Therefore we must compute

 $\langle 1, v \rangle$ and $\langle \psi_{jk}, v \rangle$ for every $j \in \mathbb{N}$ and $k \in \{0, 1, \cdots, 2^{j-1}\}$.

The easiest step is

$$\langle 1, v \rangle = \int_0^1 \chi_{[0,b]}(t) \, \mathrm{d}t = \int_0^b \, \mathrm{d}t = b$$

Next, let $j \in \mathbb{N}$ and $k \in \{0, 1, \dots, 2^{j-1}\}$. Because $\Psi_{jk}(t)$ is the primitive of $\psi_{jk}(t)$ that satisfies $\Psi_{jk}(0) = 0$, we have

$$\langle \psi_{jk}, v \rangle = \int_0^1 \psi_{jk}(t) \chi_{[0,b]}(t) dt = \int_0^b \psi_{jk}(t) dt = \Psi_{jk}(b)$$

Because $\Psi_{jk}(t) = 2^{-\frac{j}{2}} \Psi(2^{j}t - k)$, the given formula for $\Psi(t)$ yields

$$\begin{aligned} \langle \psi_{jk} \,, \, v \rangle &= 2^{-\frac{j}{2}} \Psi(2^{j}b - k) \\ &= \begin{cases} 2^{-\frac{j}{2}} \min\{2^{j}b - k \,, \, k + 1 - 2^{j}b\} & \text{if } 2^{j}b - k \in (0, 1) \\ 0 & \text{otherwise} \,. \end{cases} \end{aligned}$$

But $2^{j}b - k \in (0, 1)$ holds if and only if $k = \lfloor 2^{j}b \rfloor$. If $k = \lfloor 2^{j}b \rfloor$ and $2^{j}b > \lfloor 2^{j}b \rfloor$ then $\lfloor 2^{j}b \rfloor = k + 1$ and we see that

$$\langle \psi_{jk}, v \rangle = \begin{cases} 2^{-\frac{j}{2}} \min\{2^{j}b - \lfloor 2^{j}b \rfloor, \lceil 2^{j}b \rceil - 2^{j}b\} & \text{if } k = \lfloor 2^{j}b \rfloor, \\ 0 & \text{otherwise.} \end{cases}$$

If $k = \lfloor 2^j b \rfloor$ and $2^j b = \lfloor 2^j b \rfloor$ then this formula still holds even though $\lceil 2^j b \rceil = k$ because its right-hand side vanishes.

Finally, we place the above results into the definition of the orthogonal projection \mathcal{P}_{J} and use the fact that $\psi_{jk}(t) = 2^{\frac{j}{2}}\psi(2^{j}t - k)$ to obtain

$$\mathcal{P}_{J}v(t) = \langle 1, v \rangle + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} \langle \psi_{jk}, v \rangle \psi_{jk}(t)$$

= $b + \sum_{j=0}^{J-1} \min\{2^{j}b - \lfloor 2^{j}b \rfloor, \lceil 2^{j}b \rceil - 2^{j}b\} 2^{-\frac{j}{2}} \psi_{j\lfloor 2^{j}b \rfloor}(t)$
= $b + \sum_{j=0}^{J-1} \min\{2^{j}b - \lfloor 2^{j}b \rfloor, \lceil 2^{j}b \rceil - 2^{j}b\} \psi(2^{j}t - \lfloor 2^{j}b \rfloor).$

This completes Part a.

Solution (b). For every $J \in \mathbb{Z}_+$ let $\mathcal{P}_J v \in L^2([0,1])$ be as in the assertion in Part a and let $v_J \in L^2([0,1])$ be defined by

$$v_{_J}(t) = \begin{cases} 1 & \text{if } t \in [0, \underline{b}_J) \,, \\ 2^J b - \lfloor 2^J b \rfloor & \text{if } t \in [\underline{b}_J, \overline{b}_J) \,, \\ 0 & \text{if } t \in [\overline{b}_J, 1) \,. \end{cases}$$

We want to show for every $J \in \mathbb{Z}_+$ that $\mathcal{P}_J v(t) = v_J(t)$ for every $t \in [0, 1)$.

We begin the induction at J = 1. For every $t \in [0, 1)$ we have

$$\mathcal{P}_{1}v(t) = b + \min\{b, 1-b\} \ \psi(t) = \begin{cases} 1 & \text{if } b \in [\frac{1}{2}, 1) \text{ and } t \in [0, \frac{1}{2}) \,, \\ 2b - 1 & \text{if } b \in [\frac{1}{2}, 1) \text{ and } t \in [\frac{1}{2}, 1) \,, \\ 2b & \text{if } b \in [0, \frac{1}{2}) \text{ and } t \in [0, \frac{1}{2}) \,, \\ 0 & \text{if } b \in [0, \frac{1}{2}) \text{ and } t \in [0, \frac{1}{2}) \,. \end{cases}$$

Next, notice that

$$\underline{b}_{1} = \frac{\lfloor 2b \rfloor}{2} = \begin{cases} 0 & \text{if } b \in [0, \frac{1}{2}), \\ \frac{1}{2} & \text{if } b \in [\frac{1}{2}, 1), \end{cases} \quad \overline{b}_{1} = \frac{\lceil 2b \rceil}{2} = \begin{cases} \frac{1}{2} & \text{if } b \in (0, \frac{1}{2}], \\ 1 & \text{if } b \in (\frac{1}{2}, 1], \end{cases}$$

whereby for every $t \in [0, 1)$ we have

$$\mathcal{P}_{1}v(t) = \begin{cases} 1 & \text{if } t \in [0, \underline{b}_{1}), \\ 2b - \lfloor 2b \rfloor & \text{if } t \in [\underline{b}_{1}, \overline{b}_{1}), \\ 0 & \text{if } t \in [\overline{b}_{1}, 1), \end{cases}$$

which shows that $\mathcal{P}_1 v(t) = v_1(t)$ for every $t \in [0, 1)$.

Now suppose for some J > 1 we know that $\mathcal{P}_{J^{-1}}v(t) = v_{J^{-1}}(t)$ for every $t \in [0,1)$. Observe that $b \in [\underline{b}_{J^{-1}}, \overline{b}_{J^{-1}}]$ and that $\psi(2^{J^{-1}}t - \lfloor 2^{J^{-1}}b \rfloor) = 0$ outside $[\underline{b}_{J^{-1}}, \overline{b}_{J^{-1}})$. Let $b_{J^{-1}} = \frac{1}{2}(\underline{b}_{J^{-1}} + \overline{b}_{J^{-1}})$. Then for every $t \in [\underline{b}_{J^{-1}}, \overline{b}_{J^{-1}})$ we have

$$\begin{split} \mathcal{P}_{J}v(t) &= \mathcal{P}_{J^{-1}}v(t) + \min\left\{2^{J^{-1}}b - \lfloor 2^{J^{-1}}b \rfloor, \lceil 2^{J^{-1}}b \rceil - 2^{J^{-1}}b\right\}\psi\left(2^{J^{-1}}t - \lfloor 2^{J^{-1}}b \rfloor\right) \\ &= v_{J^{-1}}(t) + \begin{cases} \lceil 2^{J^{-1}}b \rceil - 2^{J^{-1}}b \rceil & \text{if } b \in [b_{J^{-1}}, \overline{b}_{J^{-1}}) \text{ and } t \in [\underline{b}_{J^{-1}}, b_{J^{-1}}), \\ 2^{J^{-1}}b - \lceil 2^{J^{-1}}b \rceil & \text{if } b \in [b_{J^{-1}}, \overline{b}_{J^{-1}}) \text{ and } t \in [b_{J^{-1}}, \overline{b}_{J^{-1}}), \\ 2^{J^{-1}}b - \lfloor 2^{J^{-1}}b \rfloor & \text{if } b \in [\underline{b}_{J^{-1}}, b_{J^{-1}}) \text{ and } t \in [\underline{b}_{J^{-1}}, b_{J^{-1}}), \\ \lfloor 2^{J^{-1}}b \rfloor - 2^{J^{-1}}b \end{pmatrix} & \text{if } b \in [\underline{b}_{J^{-1}}, b_{J^{-1}}) \text{ and } t \in [b_{J^{-1}}, \overline{b}_{J^{-1}}), \\ \\ &= \begin{cases} 1 & \text{if } b \in [b_{J^{-1}}, \overline{b}_{J^{-1}}) \text{ and } t \in [\underline{b}_{J^{-1}}, \overline{b}_{J^{-1}}), \\ 2^{J}b - 2^{J}b_{J^{-1}} & \text{if } b \in [b_{J^{-1}}, \overline{b}_{J^{-1}}) \text{ and } t \in [b_{J^{-1}}, \overline{b}_{J^{-1}}), \\ 2^{J}b - 2^{J}\underline{b}_{J^{-1}}} & \text{if } b \in [\underline{b}_{J^{-1}}, b_{J^{-1}}) \text{ and } t \in [\underline{b}_{J^{-1}}, b_{J^{-1}}), \\ 0 & \text{if } b \in [\underline{b}_{J^{-1}}, b_{J^{-1}}) \text{ and } t \in [\underline{b}_{J^{-1}}, \overline{b}_{J^{-1}}), \\ 0 & \text{if } b \in [\underline{b}_{J^{-1}}, b_{J^{-1}}] \text{ and } t \in [\underline{b}_{J^{-1}}, \overline{b}_{J^{-1}}]. \end{split}$$

Next, notice that

$$\underline{b}_{J} = \frac{\lfloor 2^{J}b \rfloor}{2^{J}} = \begin{cases} \underline{b}_{J-1} & \text{if } b \in [\underline{b}_{J-1}, b_{J-1}), \\ b_{J-1} & \text{if } b \in [b_{J-1}, \overline{b}_{J-1}), \end{cases}$$
$$\overline{b}_{J} = \frac{\lfloor 2^{J}b \rfloor}{2^{J}} = \begin{cases} b_{J-1} & \text{if } b \in (\underline{b}_{J-1}, b_{J-1}], \\ \overline{b}_{J-1} & \text{if } b \in (b_{J-1}, \overline{b}_{J-1}]. \end{cases}$$

Therefore for every $t \in [0, 1)$ we have

$$\mathcal{P}_{J}v(t) = \begin{cases} 1 & \text{if } t \in [0, \underline{b}_{J}), \\ 2^{J}b - \lfloor 2^{J}b \rfloor & \text{if } t \in [\underline{b}_{J}, \overline{b}_{J}), \\ 0 & \text{if } t \in [\overline{b}_{J}, 1), \end{cases}$$

whereby $\mathcal{P}_J v(t) = v_J(t)$ for every $t \in [0, 1)$. The induction proof is thereby complete. \Box

Remark. This result shows that if $2^J b = \lfloor 2^J b \rfloor$ for some $J \in \mathbb{Z}_+$ that then $\mathcal{P}_J v = v$. Solution (c). First, treat the case when $\lfloor 2^J b \rfloor < \lceil 2^J b \rceil$. Because $b \in [\underline{b}_J, \overline{b}_J]$, we have

$$\begin{split} \|\mathcal{P}_{J}v - v\|_{L^{2}([0,1])}^{2} &= \int_{\underline{b}_{J}}^{\overline{b}_{J}} \left(\mathcal{P}_{J}v - v\right)^{2} \mathrm{d}t = \int_{\underline{b}_{J}}^{b} \left(1 - \mathcal{P}_{J}v\right)^{2} \mathrm{d}t + \int_{b}^{\overline{b}_{J}} \left(\mathcal{P}_{J}v\right)^{2} \mathrm{d}t \\ &= \int_{\underline{b}_{J}}^{b} \left(\left\lceil 2^{J}b\right\rceil - 2^{J}b\right)^{2} \mathrm{d}t + \int_{b}^{\overline{b}_{J}} \left(2^{J}b - \left\lfloor 2^{J}b\right\rfloor\right)^{2} \mathrm{d}t \\ &= \left(\left\lceil 2^{J}b\right\rceil - 2^{J}b\right)^{2} \left(b - \underline{b}_{J}\right) + \left(2^{J}b - \left\lfloor 2^{J}b\right\rfloor\right)^{2} \left(\overline{b}_{J} - b\right) \\ &= \frac{\left(\left\lceil 2^{J}b\right\rceil - 2^{J}b\right)^{2} \left(2^{J}b - \left\lfloor 2^{J}b\right\rfloor\right)}{2^{J}} + \frac{\left(2^{J}b - \left\lfloor 2^{J}b\right\rfloor\right)^{2} \left(\left\lceil 2^{J}b\right\rceil - 2^{J}b\right)}{2^{J}} \\ &= \frac{\left(\left\lceil 2^{J}b\right\rceil - 2^{J}b\right) \left(2^{J}b - \left\lfloor 2^{J}b\right\rfloor\right)}{2^{J}}. \end{split}$$

Next, this equality still holds when $\lfloor 2^J b \rfloor = \lceil 2^J b \rceil$ because then $\lfloor 2^J b \rfloor = 2^J b = \lceil 2^J b \rceil$, whereby both of its sides vanish. Therefore the equality in the assertion of Part c holds. The inequality in the assertion of Part c holds because $(1-x)x \leq \frac{1}{4}$ for every $x \in \mathbb{R}$. \Box **Remark.** This result shows that

$$\lim_{J \to \infty} \|\mathcal{P}_J v - v\|_{L^2([0,1])} = 0$$

which says that for every $b \in [0, 1]$ we have

$$\chi_{[0,b]} \in \overline{\operatorname{span}} \{ 1, \psi_{jk} : j \in \{0, 1, \cdots\}, k \in \{0, 1, \cdots 2^j - 1\} \}.$$

For every $[a,b) \subset [0,1]$ we have $\chi_{[a,b)} = \chi_{[0,b)} - \chi_{[0,a)}$, whereby

$$\chi_{[a,b]} \in \overline{\operatorname{span}} \{ 1, \psi_{jk} : j \in \{0, 1, \cdots\}, k \in \{0, 1, \cdots 2^j - 1\} \}.$$

We thereby have the inclusions

$$\overline{\operatorname{span}} \{ \chi_{[a,b)} : [a,b] \subset [0,1] \} \subset \overline{\operatorname{span}} \{ 1, \psi_{jk} : j \in \{0,1,\cdots\}, k \in \{0,1,\cdots 2^j - 1\} \}$$
$$\subset L^2([0,1]).$$

This lays the groundwork for a proof that

$$L^{2}([0,1]) = \overline{\operatorname{span}} \{ 1, \psi_{jk} : j \in \{0, 1, \cdots\}, k \in \{0, 1, \cdots 2^{j} - 1\} \},\$$

which implies that the orthonormal set $\{1, \psi_{jk} : j \in \{0, 1, \dots\}, k \in \{0, 1, \dots 2^j - 1\}\}$ is a basis for $L^2([0, 1])$. This orthonormal set is the so-called Haar basis for $L^2([0, 1])$. The step needed to complete this proof is to show that

$$L^{2}([0,1]) \subset \overline{\operatorname{span}}\left\{\chi_{[a,b)} : [a,b) \subset [0,1]\right\}.$$

This step requires knowledge about definite integrals. A partial step in that direction is to show that for every function u that is Riemann integrable over [0, 1] we have

$$u \in \overline{\operatorname{span}} \{ \chi_{[a,b)} : [a,b) \subset [0,1] \}$$

This can be proved without knowledge of the Lebesgue integral. The conclusion uses the fact that $L^2([0,1])$ can be identified with the completion of the Riemann integrable functions with respect to the $L^2([0,1])$ norm, which is a fact about the Lebesgue integral. 4. [20] The Haar scaling function $\phi : \mathbb{R} \to \mathbb{R}$ and wavelet function $\psi : \mathbb{R} \to \mathbb{R}$ are

$$\phi(t) = \begin{cases} 1 & \text{for } t \in [0, 1) ,\\ 0 & \text{otherwise} , \end{cases} \quad \psi(t) = \begin{cases} 1 & \text{for } t \in [0, \frac{1}{2}) ,\\ -1 & \text{for } t \in [\frac{1}{2}, 1) ,\\ 0 & \text{otherwise} . \end{cases}$$

They satisfy the two-scale relations

$$\phi(t) = \phi(2t) + \phi(2t - 1), \qquad \psi(t) = \phi(2t) - \phi(2t - 1).$$

For every $j, k \in \mathbb{Z}$ define $\phi_{jk} : \mathbb{R} \to \mathbb{R}$ and $\psi_{jk} : \mathbb{R} \to \mathbb{R}$ by

$$\phi_{jk}(t) = 2^{\frac{j}{2}} \phi(2^{j}t - k), \qquad \psi_{jk}(t) = 2^{\frac{j}{2}} \psi(2^{j}t - k)$$

For every $j \in \mathbb{Z}$ define the subspaces V_j and W_j by

$$V_j = \overline{\operatorname{span}} \{ \phi_{jk} : k \in \mathbb{Z} \}, \qquad W_j = \overline{\operatorname{span}} \{ \psi_{jk} : k \in \mathbb{Z} \}.$$

- a. [8] Show for every $j \in \mathbb{Z}$ that V_j and W_j are orthogonal subspaces.
- b. [8] Show for every $j \in \mathbb{Z}$ that

$$V_{j+1} = V_j + W_j = \{ v + w : v \in V_j , w \in W_j \}.$$

c. [4] Show for every $j \in \mathbb{Z}_+$ that

$$V_{j+1} = V_0 + W_0 + \dots + W_j$$

Solution (a). Let $j \in \mathbb{Z}$. For every $k_1, k_2 \in \mathbb{Z}$ we have $\phi_{jk_1}(t) = 2^{\frac{j}{2}}\phi(2^jt - k_1)$ and $\psi_{jk_1}(t) = 2^{\frac{j}{2}}\psi(2^jt - k_2)$, whereby

$$\langle \phi_{jk_1} , \psi_{jk_2} \rangle = \int_{\mathbb{R}} \phi_{jk_1}(t) \,\psi_{jk_1}(t) \,\mathrm{d}t = 2^j \int_{\mathbb{R}} \phi(2^j t - k_1) \,\psi(2^j t - k_2) \,\mathrm{d}t$$

=
$$\int_{R} \phi(t) \,\psi(t + k_1 - k_2) \,\mathrm{d}t = \int_{0}^{1} \psi(t + k_1 - k_2) \,\mathrm{d}t = 0 \,.$$

So each member of the basis for V_j is orthogonal to every member of the basis for W_j . Therefore V_j and W_j are orthogonal subspaces.

Solution (b). Let $j \in \mathbb{Z}$. The two-scale relation for ϕ implies that for every $k \in \mathbb{Z}$ we have

$$2^{\frac{j}{2}}\phi(2^{j}t-k) = 2^{\frac{j}{2}}\phi(2^{j+1}t-2k) + 2^{\frac{j}{2}}\phi(2^{j+1}t-2k-1).$$

Because $\phi_{jk}(t) = 2^{\frac{j}{2}} \phi(2^{j}t - k)$, this is equivalent to

$$\phi_{jk}(t) = \frac{1}{\sqrt{2}}\phi_{(j+1)(2k)}(t) + \frac{1}{\sqrt{2}}\phi_{(j+1)(2k+1)}(t).$$

So each member of the basis for V_j is in V_{j+1} . Therefore $V_j \subset V_{j+1}$.

Similarly, The two-scale relation for ψ implies that for every $k \in \mathbb{Z}$ we have

$$2^{\frac{j}{2}}\psi(2^{j}t-k) = 2^{\frac{j}{2}}\phi(2^{j+1}t-2k) - 2^{\frac{j}{2}}\phi(2^{j+1}t-2k-1).$$

Because $\psi_{jk}(t) = 2^{\frac{j}{2}}\psi(2^{j}t - k)$, this is equivalent to

$$\psi_{jk}(t) = \frac{1}{\sqrt{2}} \phi_{(j+1)(2k)}(t) - \frac{1}{\sqrt{2}} \phi_{(j+1)(2k+1)}(t) \,.$$

So each member of the basis for W_j is in V_{j+1} . Therefore $W_j \subset V_{j+1}$.

Because $V_j \subset V_{j+1}$, $W_j \subset V_{j+1}$, and V_{j+1} is a linear subspace, we conclude that $V_j + W_j \subset V_{j+1}$. What remains to be shown is that $V_{j+1} \subset V_j + W_j$.

The two-scale relations imply that

 $2\phi(2t) = \phi(t) + \psi(t) , \qquad 2\phi(2t-1) = \phi(t) - \psi(t) .$

It follows that for every $k \in \mathbb{Z}$ we have

$$\begin{split} & 2^{\frac{j+2}{2}}\phi(2^{j+1}t-2k) = 2^{j}\phi(2^{j}t-k) + 2^{j}\psi(2^{j}t-k) \,, \\ & 2^{\frac{j+2}{2}}\phi(2^{j+1}t-2k-1) = 2^{j}\phi(2^{j}t-k) + 2^{j}\psi(2^{j}t-k) \,, \end{split}$$

which is equivalent to

$$\phi_{(j+1)(2k)}(t) = \frac{1}{\sqrt{2}} \phi_{jk}(t) + \frac{1}{\sqrt{2}} \psi_{jk}(t) ,$$

$$\phi_{(j+1)(2k+1)}(t) = \frac{1}{\sqrt{2}} \phi_{jk}(t) - \frac{1}{\sqrt{2}} \psi_{jk}(t) .$$

So each member of the basis for V_{j+1} is in $V_j + W_j$. Therefore $V_{j+1} \subset V_j + W_j$. When this is combined with our earlier inclusion result, we conclude that $V_{j+1} = V_j + W_j$. \Box

Solution (c). We proceed by induction on j. By Part b we know that

$$V_1 = V_0 + W_0$$
, and $V_2 = V_1 + W_1$.

Therefore

$$V_2 = V_1 + W_1 = (V_0 + W_0) + W_1 = V_0 + W_0 + W_1$$

Therefore we have established the result for j = 1.

Now suppose that the result holds for j for some $j \ge 1$. This means that

$$V_{j+1} = V_0 + W_0 + \dots + W_j$$
.

But then by Part b we see that

$$V_{j+2} = V_{j+1} + W_{j+1} = (V_0 + W_0 + \dots + W_j) + W_{j+1}$$

= $V_0 + W_0 + \dots + W_j + W_{j+1}$.

Therefore we have established the result for j + 1. Therefore the result holds for every $j \in \mathbb{Z}_+$ by induction.

Remark. The orthonormal set $\{\psi_{jk} : j, k \in \mathbb{Z}\}$ is the Haar basis for $L^2(\mathbb{R})$. The proof that it is a basis for $L^2(\mathbb{R})$ is similar to the proof of the Haar basis for $L^2([0, 1])$ that was presented in the solution to Problem 3. The result of Part d can then be strengthened. We have

$$V_j = \bigoplus_{j' < j} W_{j'}$$
 for every $j \in \mathbb{Z}$, and $L^2(\mathbb{R}) = \bigoplus_{j \in \mathbb{Z}} W_j$.

Remark. Haar did his work over 100 years ago. The label "Haar basis" was established long before wavelet theory was developed and the term "wavelet" was introduced, but from a modern perspective the label "Haar wavelet basis" is also suitible.

5. [20] Let $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the Fourier transform given by

$$\mathcal{F}u(\xi) = \int_{\mathbb{R}} e^{-i2\pi\xi t} u(t) \, \mathrm{d}t \qquad \text{for every } u \in L^2(\mathbb{R}) \,.$$

Let $\psi : \mathbb{R} \to \mathbb{R}$ be the function given by

$$\psi(t) = 2\operatorname{sinc}(2t) - \operatorname{sinc}(t) \,.$$

For every $j, k \in \mathbb{Z}$ define $\psi_{jk} : \mathbb{R} \to \mathbb{R}$ by $\psi_{jk}(t) = 2^{\frac{j}{2}} \psi(2^{j}t - k)$.

a. [4] Compute $\mathcal{F}\psi(\xi)$. You can use the fact that

$$\mathcal{F}\operatorname{sinc}(\xi) = \begin{cases} 1 & \text{for } |\xi| < \frac{1}{2} ,\\ \frac{1}{2} & \text{for } |\xi| = \frac{1}{2} ,\\ 0 & \text{for } |\xi| > \frac{1}{2} . \end{cases}$$

b. [4] Compute

$$\int_0^\infty \frac{|\mathcal{F}\psi(\xi)|^2}{\xi} \,\mathrm{d}\xi\,.$$

- c. [4] For every $j, k \in \mathbb{Z}$ compute $\mathcal{F}\psi_{jk}(\xi)$.
- d. [8] Show that $\{\psi_{jk} : j, k \in \mathbb{Z}\}$ is an orthonormal set in $L^2(\mathbb{R})$.

Solution (a). By linearity of the Fourier transform we have

$$\mathcal{F}\psi(\xi) = 2\mathcal{F}[\operatorname{sinc}(2t)](\xi) - \mathcal{F}[\operatorname{sinc}(t)](\xi)$$
.

From the definition of \mathcal{F} and the given fact we see that

$$2\mathcal{F}[\operatorname{sinc}(2t)](\xi) = 2\int_{\mathbb{R}} e^{-i2\pi\xi t} \operatorname{sinc}(2t) \, \mathrm{d}t$$
$$= \int_{\mathbb{R}} e^{-i\pi\xi t} \operatorname{sinc}(t) \, \mathrm{d}t = \mathcal{F}\operatorname{sinc}(\frac{\xi}{2}) = \begin{cases} 1 & \text{if } |\xi| < 1\\ \frac{1}{2} & \text{if } |\xi| = 1\\ 0 & \text{if } |\xi| > 1 \end{cases}$$

Therefore

$$\mathcal{F}\psi(\xi) = \mathcal{F}\operatorname{sinc}(\frac{\xi}{2}) - \mathcal{F}\operatorname{sinc}(\xi) = \begin{cases} 1 & \text{if } \frac{1}{2} < |\xi| < 1 \,, \\ \frac{1}{2} & \text{if } |\xi| = \frac{1}{2} \text{ or } |\xi| = 1 \\ 0 & \text{if } |\xi| < \frac{1}{2} \text{ or } |\xi| > 1 \end{cases}$$

Solution (b). We see from Part a that

$$\int_0^\infty \frac{|\mathcal{F}\psi(\xi)|^2}{\xi} \,\mathrm{d}\xi = \int_{\frac{1}{2}}^1 \frac{1}{\xi} \,\mathrm{d}\xi = \log(\xi) \Big|_{\frac{1}{2}}^1 = -\log(\frac{1}{2}) = \log(2) \,.$$

L			
L			
L	_	_	л.

Solution (c). Because $\psi_{jk}(t) = 2^{\frac{j}{2}}\psi(2^{j}t - k)$, we have

$$\begin{aligned} \mathcal{F}\psi_{jk}(\xi) &= \int_{\mathbb{R}} e^{-i2\pi\xi t} \psi_{jk}(t) \, \mathrm{d}t = 2^{\frac{j}{2}} \int_{\mathbb{R}} e^{-i2\pi\xi t} \psi(2^{j}t-k) \, \mathrm{d}t \\ &= 2^{-\frac{j}{2}} \int_{\mathbb{R}} e^{-i2\pi\xi \frac{t+k}{2^{j}}} \psi(t) \, \mathrm{d}t = 2^{-\frac{j}{2}} e^{-i2\pi k \frac{\xi}{2^{j}}} \mathcal{F}\psi(\frac{\xi}{2^{j}}) \\ &= \begin{cases} 2^{-\frac{j}{2}} e^{-i2\pi k \frac{\xi}{2^{j}}} & \text{if } 2^{j-1} < |\xi| < 2^{j} \, , \\ 2^{-\frac{j+2}{2}} e^{-i2\pi k \frac{\xi}{2^{j}}} & \text{if } |\xi| = 2^{j-1} \text{ or } |\xi| = 2^{j} \, , \\ 0 & \text{if } |\xi| < 2^{j-1} \text{ or } |\xi| > 2^{j} \, . \end{cases} \end{aligned}$$

Solution (d). The Plancherel Theorem says

$$\langle \psi_{j_1k_1}, \psi_{j_2k_2} \rangle = \langle \mathcal{F}\psi_{j_1k_1}, \mathcal{F}\psi_{j_2k_2} \rangle = \int_{\mathbb{R}} \overline{\mathcal{F}\psi_{j_1k_1}(\xi)} \, \mathcal{F}\psi_{j_2k_2}(\xi) \, \mathrm{d}\xi.$$

We see from our solution to Part c that

$$\mathcal{F}\psi_{j_1k_1}(\xi) \quad \text{is supported on } 2^{j_1-1} \le |\xi| \le 2^{j_1} \,, \\ \mathcal{F}\psi_{j_2k_2}(\xi) \quad \text{is supported on } 2^{j_2-1} \le |\xi| \le 2^{j_2} \,.$$

Thus, if $j_1 \neq j_2$ then the above integrand vanishes at all but at most two points, whereby

$$\langle \mathcal{F}\psi_{j_1k_1}\,,\,\mathcal{F}\psi_{j_2k_2}
angle=0$$
 .

If $j_1 = j_2 = j$ then our solution to Part c, a change of variable, the odd symmetry of sine, the even symmetry of cosine, and an elementary integration combine to show that

$$\langle \mathcal{F}\psi_{jk_1}, \mathcal{F}\psi_{jk_2} \rangle = 2^{-j} \int_{2^{j-1} < |\xi| < 2^j} e^{-i2\pi(k_2 - k_1)\frac{\xi}{2^j}} \, \mathrm{d}\xi$$

=
$$\int_{\frac{1}{2} < |\xi| < 1} e^{-i2\pi(k_2 - k_1)\xi} \, \mathrm{d}\xi = \int_{\frac{1}{2} < |\xi| < 1} \cos\left(2\pi(k_2 - k_1)\xi\right) \, \mathrm{d}\xi$$

=
$$2 \int_{\frac{1}{2}}^{1} \cos\left(2\pi(k_2 - k_1)\xi\right) \, \mathrm{d}\xi = \delta_{k_1k_2} \, .$$

Putting everything together we have

$$\langle \psi_{j_1k_1}, \psi_{j_2k_2} \rangle = \langle \mathcal{F}\psi_{j_1k_1}, \mathcal{F}\psi_{j_2k_2} \rangle = \delta_{j_1j_2} \,\delta_{k_1k_2} \,.$$

 $k \in \mathbb{Z}$ is an orthonormal set in $L^2(\mathbb{P})$

Therefore $\{\psi_{jk} : j, k \in \mathbb{Z}\}$ is an orthonormal set in $L^2(\mathbb{R})$.

Remark. The orthonormal set $\{\psi_{jk} : j, k \in \mathbb{Z}\}$ is the Shannon wavelet basis. To prove that this set is a basis we would need to show for any $u \in L^2(\mathbb{R})$ that

$$\langle \psi_{jk}, u \rangle = 0 \quad \text{for every } j, k \in \mathbb{Z} \qquad \Longrightarrow \qquad u = 0$$

This can be done using the Plancherel Theorem and the result of Part c. Try it!