MATH 416 Take-Home Exam 2 Solutions
Due 11:59pm Thursday, 21 May 2020

Be sure to show all work and to make your reasoning clear.

1. [20] Consider the function f(x) =1/v/1+ 22 over R.
a. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x)
at the uniform nodes {—7,—5,—-3,—1,1,3,5,7}.
b. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x)
at the Chebyshev nodes {8 : Tg(r) = 0}.

c. [4] Plot f(x) and these two interpolants over the interval [—8, 8]. Which interpolant
gives a better approximation to f(x) over [—8,8]7 Why?

Remark. In parts (a) and (b) the nodes are symmetric about the origin (if zj is a
node then so is —xy), while the function f(x) = 1/4/1 + 22 has even symmetry over R
(f(=z) = f(x) Yz € R). These symmetries imply that the interpolating polynomials
will each be even. This observation greatly simplifies any approach to these problems.
They each have eight nodes, which we can denote as

Ty < T3 < T < — 21 <0< 2 <1y <3 < 24

Because every even polynomial of degree at most 7 must have degree at most 6, each
interpolating polynomial p(x) must have the form

p(z) = ag + a12* + asx* + asa®,

where the polynomial ¢(y) given by
q(y) = ao + ary + asy® + azy®,

interpolates the values of g(y) = 1/4/1 + y at the nodes {y, = z? : k=1,2,3,4}. If we
use the Vandermonde approach then {ag, a1, as, asz} solve the linear algebraic system

1 2% ot 2f ao f(z1)
Loaf o af | Lar| _ [ f(z2)
Loaf oo ap | |az)| | flas)
1 22 z} z2P) \as f(z4)

If we use the Lagrange approach then we can directly write down

@i e e o))
Sl o s e R A o e o ) R
(e — 22)(a? — 22)(e — a?) (a2 — 22)(a? — 22)(a? — a2)
PR e or s A L e e s g o s RS

We will use the Lagrange approach below.

Solution (a). For the uniform nodes we have 21 = 1, x5 = 3, 23 =5, and x4 = 7, so
(9—a*)(25 —a*)(49 —a?) 1 N (22 —1)(25 — 2?)(49 — 2%) 1

palz) =

8. 2448 NG 816 - 40 /10
N (22 —1)(2* — 9)(49 — 2?) 1 N (22 —1)(2? = 9) (22 —25) 1
211624 /% 4840 - 24 /50



Solution (b). The Chebyshev nodes are {87 : Tg(r) = 0}. Because
cos(86) = T (cos(d)),
we see that Ty(r) = 0 for some r € [—1,1] if and only if 7 = cos(f) and 80 = kr — T

for some k € Z. All the roots in (0,1) are given by 6 = % 1 for k =1, 2, 3, and 4.
Therefore the positive Chebyshev nodes are

zg) 16) 16>

Placing these nodes into the Lagrange formula for p(x) given above yields py(x). O

x1 = 8cos( To = 8 cos( x3 = 8cos( x4 = 8cos({5) -

Remark. While not required here, these nodes can be expressed as algebric numbers.

Starting with cos(§) = ‘/75, two applications of the cosine half-angle identity yield

) = \/1—1—005(%) \/2—1—\/_

cos(

~ 1—|—cos% \/2+ 2+
(:os—6
3T

Starting with cos(") = —i two apphcatlons of the cosine half-angle identity yield

- 1+cos(f) \/2—
i) 1 4 cos % \/ 2+ 2 —
cos(7g)
Finally, we have

2—1V2-2
cos(3%) = sin(3%) = \/1— cos(32))” = ,

|3

ool

cos(

=t

O&

Im)

6

2—12+2
\/1— cosl = .

cos( 1) = sin(

Therefore the positive Chebychev nodes are

i
Ql

T =41/2— 2, To=41/2—1/2—- V2,
z3=4\/2+ 12— V2, ze=4\/24+\2+ V2.

Solution (c). You are asked to plot f(t), p.(t) and py(t) versus t over [—8,8]. You
should see that due to the coarseness of these approximations, neither is great. However,
pp(t) maintains positivity, almost recovers the correct monotonicity, and is significantly
quantitatively better over the outer region 4 < |t| < 8. On the other hand, p,(t) is
quantitatively better only over the inner region [¢| < 1. On balance, py(t) is better. [



2. [20] Let ¢(t) = hat(t), where the “hat” function is defined over R by

1— f -1,1
hat@):{ ] fort € (~1,1),

0 otherwise .

This function satisfies the interpolation condition,
»(0)=1, o(k) =0 forevery k € Z —{0}.

Define ¢ : R — R by ¢y (t) = ¢(t — k). Let {cx}rez be any real sequence over Z. For
every m,n € 7 with m <n define u,,, : R = R by

n

U () = D i di(t).

k=m

The set {tmn : m,n € Z, m < n} has the Cauchy property with respect to a norm || - ||
if for every € > 0 there exists N, € N such that for every m,n € Z with m < n we have

n<—-N. or N.<m — |ttmn|| < €.

Consider the L*(R) norm defined by

ol = ([ \vo:)r*chs)i

a. [4] Evaluate

et 1y = / ()] .
R
b. [8] Show that

n n
DY erl* < Nttmnllfay <D el
k=m k=m

c. [8] Prove that {uy, : m,n € Z, m < n} has the Cauchy property with respect to
the L*(R) norm if and only if
Z len]* < oo

kEZ

Solution (a). Because each u,,, is the continuous piecewise linear interpolant that
satisfies u, (k) = ¢ for every k € Z with k € [m,n| and u,, (k) = 0 for every k € Z
with k ¢ [m,n], we see that for every k € Z and t € [k, k + 1] we have

(t—m+1)cm if [k, k+1] = [m—1,m)],
g (1) = (k+1—t)cp + (t — k)epyr i [k, k+1] C [m,n],
A NCORS O if [k, k+ 1] = [n,n+ 1],

0 otherwise .



Because the binomial expansion yields
(k4+1 =)+ (t—K)erpn) = (k+ 1 — )¢t + 40k + 1 — 02 (t — )clorp
+6(k+1—1)%(t — k)’ciciyy
+ Ak + 1 —t)(t = k) erciyr + (8 — k) o

while elementary integrations yield

k+1 k1 1 k1 1
/ (k:+1—t)4dt_/ (t—kydi= 1 / (k1= t)2(t— k)2 dt = —
k k 5 k 30

k+1 k+1 1
/ (k:+1—t)3(t—k:)dt:/ (k+1—-t)(t—k)?*dt = —,

a direct calculation shows that

( C4
?m if [k,k+1]=[m—1,m],
k1 Ci F CROh1 + CFCE  CrCl + R
/ (1) dt = 5 if [k k1] < [mo ),
k el .
5 if [k, k+1] = [n,n+1],
L0 otherwise .
Therefore
k1
4 )| )|
femlisey = [ a1t =3 [ Jumn 01
keZ
:_ﬁz Zl Cr F o + el Faciy + o +§
5 — 5) 5
This completes part a. O

Solution (b). By using the facts that cycpy1 < 3(c2 +¢2y) and ¢2cfy ) < (et +cih),
the quantity inside the sum can be bounded above by
e+ clepyr + el +epep + et 3¢t +4ckc? | + 3¢t ot + ¢
k k Ck+1 k“k+1 kCk+1 ktl 2% k“k+1 ktl Tk k41
5 - 10 - 2
We thereby obtain the upper bound

4 n
n

ct — b ey c

4 k+1

Humn”L‘l(R) < ?m Z g
=m

IN

e
k=m
Similarly, By using the fact that cycii1 > —3(c? + ¢2,,) on its second and fourth
terms, the quantity inside the sum can be bounded below by
G+ i + GG + ek + i > Ci + Cipa
5 - 10
We thereby obtain the lower bound

4 n—1 4 4 4
c cr +c c
Humnué‘i(R) > Fm + % +

] =

n
—_ > el
0 5 = Z k
k=m k=m

This lower bound combined with the upper bound yields the assertion of Part b. 0



Remark. The upper bound could also be derived using the inequalities
Cpcrin < %Clj + iclﬁﬂa Gty < %Cl? + %Cliula CrCigr < %Clﬁ + %Céﬂ'
These follow from the Young inequality that for every p,q € (1, 00) with % + % = 1 says
vy < SlafP + Lly|?  for every .y € R.
For example, the first inequality follows by taking x = ¢2, y = cj11, p = %, and g = 4.
Solution (c). First suppose that {c¢; : k € Z} satisfies the sum condition
D o <0
kEZ

We want to show that {u,, : m,n € Z, m < n} has the Cauchy property with respect
to the L*(R) norm.

Let € > 0. The fact that {c; : k € Z} satisfies the sum condition implies that there
exists N, € N such that for every m,n € Z with m < n we have

n
n<—-N., or N.<m = Zc,f<e4.
k=m

But then our upper bound implies that
n<—-N, or N.<m — HumnH}fA;(R) < et

Hence, {tu, : m,n € Z, m < n} has the Cauchy property with respect to the L*(R)
norm.

Now suppose that {um, : m,n € Z, m < n} has the Cauchy property with respect
to the L*(R) norm. We want to show that {c, : k € Z} satisfies the sum condition

D gl <o

keZ

We do this by showing that for every € > 0 there exists N, € N such that for every
m,n € Z with m < n we have

n
n<-—-N., or N.<m — Zc,f<e.
k=m

Let € > 0. The fact that {u,,, : m,n € Z, m < n} has the Cauchy property with
respect to the L*(R) norm implies that there exists N, € N such that for every m,n € Z
with m < n we have

n<—-N, or N.<m — \|uman4(R) < fe.

But then our lower bound implies that
n
n<-—-N, or N.<m — Zc,f<e.
k=m

But this implies that the sum condition is satisfied. This completes Part c. 0



3. [20] The Haar wavelet function ¢ : R — R is
1 fortel0,3),
P(t) =4 -1 fortel;,1),
0  otherwise.
It has a primitive ¥ : R — R given by
W(t) = {min{t, 1—t} forte(0,1),

0 otherwise .

For each j, k € Z define ¥j;, : R =+ R and ¥, : R — R by

Vi(t) = 2802t — k), W(t) = 2730(20 — k).
Let S C L*([0,1]) be given by

S:{wjk:j6{0717”'}7k€{071a"'72j_1}}‘

Problem 1 of Homework 10 showed that S is an orthonormal set in L?([0,1]) that is
orthogonal to every constant function. For every J € Z, let P, : L*([0,1]) — L*([0,1])
be the orthogonal projection given by

J—127-1

Pu (1, u —l—ZZ Yk, w) Yix(t) for every u € L*([0,1]).

=0 k=0

Let b € (0,1) and set v(t) = x,, (t) where

Yo (1) = {1 if t €0,b),

0 otherwise.

a. [8] Show for every J € Z, that

Pu(t) =b+ 2min{2jb — [278], [2b] — 270} 4 (27t — [27B)),

where | - | and [ -] denote the “floor” and “ceiling” functions, which are defined
for every x € R by

|z] =max{k € Z : k <z}, [z] =min{k € Z : v < k}.

b. [8] Use induction on J to prove for every J € Z, that

1 for t € [0,b,),
Pu(t) =< 27b— |27b] fort € [b;,bs),
0 for t € [by, 1),

where b, = [27b]/27 and b; = [27b]/2”.
c. [4] Show for every J € Z, that

([276] — 27b) (270 — |27b)) 1
2J — 9J+2 "

|Pv — UHEQ([OJ]) =



7

Solution (a). We need to compute the coefficients in the projection P,v of the function
v(t) = X, (t) for every J € Z,. Therefore we must compute

(1, 0) and (Y1, v) forevery j € Nand k € {0,1,---,2/71}.

The easiest step is
1 b
(1, v) :/ X (t) dt :/ dt=0b.
0 0

Next, let j € Nand k € {0,1,---,2/7}. Because W,4(t) is the primitive of 1, (¢) that
satlsﬁes U, (0) = 0, we have

(Vjr, v /%k X0 (1 /%k t)dt = W (b).

Because W, (t) = 2_5\11(2% — k), the given formula for W(t) yields
(e v) =2 2V~ k)
2t min{20b— k, k+1—20b} if 20—k € (0,1),
1o otherwise .
But 270 — k € (0,1) holds if and only if k = |2/b]. If k = [27b] and 27b > |27b] then
[27b] = k + 1 and we see that
275 min{2/b — 2], [27b] — b} if k = 270,

0 otherwise .

If k= [27b| and 27b = |27b] then this formula still holds even though [27b] = k because
its right-hand side vanishes.

Finally, we place the above results into the definition of the orthogonal projection P,
and use the fact that ;;(t) = 221(2/t — k) to obtain

J-127-1
Po(t) = (1, v) + (i 5 v) Yy (t)
7=0 k=0
J—1
= b+ > min{27b — [270], [276] — 27b} 2734, iy (1)
7=0
J—1
=b+ Y min{2b— [27b], [2b] — 2b} (2t — [270]).
5=0
This completes Part a. 0

Solution (b). For every J € Z, let Pv € L*([0,1]) be as in the assertion in Part a
and let v, € L*([0,1]) be defined by

1 ift €1[0,b,),
v,(t) =< 27b—|27b] ifte(b,by),
0 if t € [bs,1).

We want to show for every J € Z, that Pu(t) = v,(t) for every t € [0, 1).



We begin the induction at J = 1. For every t € [0,1) we have

1 ifbe[l1)andteo,l),

‘ 2b—1 ifbe[l 1) andte[i 1),
D) 7270

0 if be[0,1)andte[l,1).

Next, notice that

_ o) Jooifbelog), o [2] 5 ifbe (03],
T2 L el T2 11

whereby for every ¢ € [0,1) we have

1 if t €[0,b,),
Ru(t) = 2b— |2b] ift € [b,b),
0 if t € [by,1),

which shows that Pv(t) = v, (t) for every t € [0,1).
Now suppose for some J > 1 we know that P,_ v(t) = v,_,(t) for every ¢t € [0,1).
Observe that b € [b;_,,b;_1] and that (277"t — [2/7'b|) = 0 outside [b;_,,b;_1). Let

bj_1 = 3(b;_y +by_1). Then for every t € [b;_;,b;_1) we have

Po(t) =P,_v(t) + min{277'b — [2770), [277'0] — 277 b} (2771 — [27710))
’72‘]_15‘ —2771p ifbe [bJ 1,bJ 1) and t € [bJ 1,b] 1),
27-1p — |—2Jilb-| if b e [bJ 1,bJ 1) and t € [bJ 1,bJ 1),
2771y — (2771 ifbe[b; 4,b5-1) and t € [b; ;,bs 1)
L2J_1bJ —2771p ifbe [bJ 1, bs— 1) and t € [bJ 1,bJ 1),

)

1 if be[by_y,by_1)andt e b, ,bs1),
) 27b—27b;y if b€ [byy,byo1) and t € [by_1,b51),
) 27b—-27b, , ifbeb, ,by)andt e b, b 1),

0 ifbe by q,bs1)andt € [byq,bs ).

Next, notice that

b, = [27b] )b,y ifbE by . bsm),
AV byj_y ifbe by 1,0 1)

Y

[_)Jfl 9 Z_)J—l] 9
by_1,by_1].

_ 270] by ifbe(
)by ifbe(

Therefore for every ¢ € [0,1) we have
1 if t €10,0;),
Po(t) =< 2b—|27b] ift € by, by),
0 if t €[bs,1),

whereby Pu(t) = v,(t) for every t € [0,1). The induction proof is thereby complete. [



Remark. This result shows that if 2706 = [27b] for some J € Z, that then Pv = v.
Solution (c). First, treat the case when [27b| < [27b]. Because b € [b;,b;], we have

B] EJ
HP,U—UH;([OJD:/ (P,U—U)th:/ (1—73v)2dt+/ (Po)”dt
b b

b

b Y
:/ ([2Jb1—2Jb)2dt+/ (27— |27b)) " at

= (1276] — 27b)*(b— b,) + (270 — |275))"(bs — b)

(1276] — 276)* (276 — 27b))  (27b — |27b))*([27b] — 270)

27 + 27
([276] = 27b) (276 — [27b])

27 .
Next, this equality still holds when [27b] = [27b] because then |27b| = 27b = [27b],
whereby both of its sides vanish. Therefore the equality in the assertion of Part ¢ holds.
The inequality in the assertion of Part ¢ holds because (1—z)z < 1 for every z € R. 0

Remark. This result shows that

}1_{20 |Pv— UHL2([0,1]) =0,

which says that for every b € [0, 1] we have

Xiow €8PAN{1, Yy 1 5 €{0,1,---}, ke {0,1,---2 —1}}.

For every [a,b) C [0, 1] we have X, , = X;04) — Xjp..» Whereby

Xius) espan{l, ¢ : j€{0,1,---}, ke {0,1,---2/ —1}}.
We thereby have the inclusions
W{X[a,b) : la,b) € [0,1]} Cspan{l, ¢y, : j€{0,1,---}, ke{0,1,---27 —1}}
c L*([0,1]).
This lays the groundwork for a proof that
L2([0,1]) = span{1, s : j € {0,1, -}, ke {0,1,---2 — 1}},

which implies that the orthonormal set {1, ¢y, : j € {0,1,---}, k€ {0,1,---27 —1}}
is a basis for L?([0,1]). This orthonormal set is the so-called Haar basis for L?([0,1]).
The step needed to complete this proof is to show that

L*([0,1]) Span{x[a’b) : la,b) € [0,1]}.

This step requires knowledge about definite integrals. A partial step in that direction
is to show that for every function u that is Riemann integrable over [0, 1] we have

u € span{x[a’b) 2 [a,b) C 0, 1]} )

This can be proved without knowledge of the Lebesgue integral. The conclusion uses
the fact that L?([0, 1]) can be identified with the completion of the Riemann integrable
functions with respect to the L?([0, 1]) norm, which is a fact about the Lebesgue integral.



10

4. [20] The Haar scaling function ¢ : R — R and wavelet function ¢ : R — R are

1 fortel0,2)
1 fortel0,1 120
oy =41 ey e ),
0 otherwise, )
0 otherwise .

They satisfy the two-scale relations
o(t) = o(2t) + 92t = 1),  P(t) = d(2t) — ¢(2t — 1).
For every j,k € Z define ¢j; : R — R and ¢, : R = R by
Gn(t) = 250(Pt — k), du(t) = 250(2t — k).
For every j € Z define the subspaces V; and W; by
Vi=span{¢;, : k€ Z},  W;=span{yy : k€ Z}.

a. [8] Show for every j € Z that V; and W; are orthogonal subspaces.
b. [8] Show for every j € Z that
Vimn=V;+W;={v+w :veV;,,weW}.

c. [4] Show for every j € Z, that

Solution (a). Let j € Z. For every ki, ky € Z we have ¢y, (t) = 22(20t — ky) and
wjkl (t) = 2%¢<2jt - k?Q), Whereby

<¢jk1 ) 7ij1€2> - /R¢jk1 (t) ¢jk1 (t> dt =2/ /]R ¢(2jt - kl) ¢(2jt - k2) dt

1
:/¢(t)w(2€+k1 —kz)dt:/ Yt +k —ky)dt=0.
R 0
So each member of the basis for V; is orthogonal to every member of the basis for Wj.
Therefore V; and W, are orthogonal subspaces. 0

Solution (b). Let j € Z. The two-scale relation for ¢ implies that for every k € Z we
have

25p(2t — k) = 25(2H 1t — 2h) + 22(2Ht — 2% — 1) .
Because ¢j;(t) = 2%¢(2jt — k), this is equivalent to
Oin(t) = J50G+1k) () + T30+ k1) (1) -

So each member of the basis for V; is in V4. Therefore V; C V4.
Similarly, The two-scale relation for ) implies that for every k € Z we have

259h(20t — k) = 22 (2011t — 2k) — 23p(2H 1t — 2k — 1)
Because ¢, (t) = 2%@&(2% — k), this is equivalent to

Uir(t) = 5 dG+nen () = 75 Su+nen () -
So each member of the basis for W; is in Vj ;. Therefore W; C V4.
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Because V; C Vi1, W; C V44, and V)4 is a linear subspace, we conclude that
Vi +W; C Vj11. What remains to be shown is that V;, C V; + Wj.

The two-scale relations imply that
20(2t) = o) + (1), 2002t —1) = ¢(t) —¥(t).
It follows that for every k € Z we have
25" G( N — 2k) = Y p(Pt — k) + Pp(Pt — k),
275 $(2011 — 2% — 1) = V(2 — k) + 20(27t — k),
which is equivalent to
Pi+1)(20) (1) = \/% ¢ (t) + \/% Vir(t)
P+ (1) = 75 k() — 75 Uik(t) -

So each member of the basis for Vj;; is in V; + W;. Therefore V;; C V; + W;. When
this is combined with our earlier inclusion result, we conclude that V; ; = V; +W;. O

Solution (c). We proceed by induction on j. By Part b we know that
Vi=Vo+ Wy, and Vo=V +W;.

Therefore

Vo=Vi+W;=Vo+Wo)+ Wy =Vo+Wo+W;.
Therefore we have established the result for j = 1.

Now suppose that the result holds for j for some j > 1. This means that
Vier = Vo + Wo + -+ W

But then by Part b we see that

Viee = Vigr + Wi = (Vo + Wo -+ + W) + Wi

= Vot Wo+ -+ W+ Wi .

Therefore we have established the result for j + 1. Therefore the result holds for every
J € Z, by induction. 0
Remark. The orthonormal set {1, : j, k € Z} is the Haar basis for L?(R). The proof
that it is a basis for L?(R) is similar to the proof of the Haar basis for L*([0, 1]) that was
presented in the solution to Problem 3. The result of Part d can then be strengthened.
We have

V,=@W; foreveryjeZ, and L*R)=EHW;.
§'<j JEL
Remark. Haar did his work over 100 years ago. The label “Haar basis” was established

long before wavelet theory was developed and the term “wavelet” was introduced, but
from a modern perspective the label “Haar wavelet basis” is also suitible.
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5. [20] Let F: L*(R) — L*(R) denote the Fourier transform given by
Fu(§) = / ety (t)dt  for every u € L*(R).
R
Let ¢ : R — R be the function given by
W (t) = 2sinc(2t) — sinc(t) .
For every j, k € Z define ¢y, : R — R by ¢ (t) = 25¢(2t — k).
a. [4] Compute F1(£). You can use the fact that

for |¢] <
for [¢] =
for [£| >

Fsine(§) =

S = =

N N N~

b. [4] Compute

[
0 §

c. [4] For every j, k € Z compute F); ().
d. [8] Show that {t¢;x : j, k € Z} is an orthonormal set in L*(R).

Solution (a). By linearity of the Fourier transform we have

F1p(€) = 2F [sinc(2t)](§) — Flsinc(t)](€) -
From the definition of F and the given fact we see that

2F [sinc(2t)] (&) = 2/ e~ #melsinc(2t) dt

R
1 it e <1,
= / e~ ™tsine(t) dt = Fsinc(g) =q1 iflg =1,
& 0 if¢l>1.
Therefore
ifi<g <1,

Fi(&) = fsinc(%) — Fsine(§) = if ¢ =3 or ¢ =1,

if [¢] <ior¢>1.

O = =

Solution (b). We see from Part a that

SIFEOR L
/0 £ dg_/% €d§—log(§)%_ log(3) = log(2) .
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Solution (c). Because ¢,(t) = 2%¢(2jt — k), we have

Fun(e) = [ el de=2b [ ey

R R

27

=274 [ ey a2 i S Fu(H)
R

2-he 2y if 90l < |¢| <
= 427y i ¢ =2t or [¢| =,
0 if €| <27 or €] > 27,

Solution (d). The Plancherel Theorem says

(s ) = (e« Fe) = [ Flp (O F s (€)ds.
We see from our solution to Part ¢ that
Fibjr, (§) s supported on 27171 < [¢] < 271
Fibipn, (€) s supported on 27271 < [¢] < 272
Thus, if j; # jo then the above integrand vanishes at all but at most two points, whereby
<~7:¢j1k:1 ) f¢j2k2> =0.

If j1 = jo = j then our solution to Part ¢, a change of variable, the odd symmetry of
sine, the even symmetry of cosine, and an elementary integration combine to show that

j —127 2—K1 i
<‘F¢jk1 ) ]:¢ij> = 2_3/ e 2 (ka—k )2J d§

2i-1<|g|<2i

_ / e—12m(ka—k1)¢ d¢ = COS(27T<k2 - kl)g) d¢
3<lel<1 3<lel<1

1
= 2[ COS<27T(]€2 — k’l)f) df = 5k1k2 .

Putting everything together we have
<¢j1k1 ) 7WDJ'2162> = <fwj1k1 ) ‘Fl/}j2k2> = 6j1j2 5k1k2 :
Therefore {1 : j,k € Z} is an orthonormal set in L*(R). O

Remark. The orthonormal set {¢j; : j,k € Z} is the Shannon wavelet basis. To prove
that this set is a basis we would need to show for any u € L?(R) that

(Y, u) =0 for every j,k € Z — u=0.
This can be done using the Plancherel Theorem and the result of Part c. Try it!



