MATH 416 Take-Home Exam 2 Due 11:59pm Thursday, 21 May 2020

Be sure to show all work and to make your reasoning clear.

- 1. [20] Consider the function $f(x) = 1/\sqrt{1+x^2}$ over \mathbb{R} .
 - a. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x) at the uniform nodes $\{-7, -5, -3, -1, 1, 3, 5, 7\}$.
 - b. [8] Compute the polynomial of degree at most 7 that interpolates the values f(x) at the Chebyshev nodes $\{8r : T_8(r) = 0\}$.
 - c. [4] Plot f(x) and these two interpolants over the interval [-8, 8]. Which interpolant gives a better approximation to f(x) over [-8, 8]? Why?
- 2. [20] Let $\phi(t) = hat(t)$, where the "hat" function is defined over \mathbb{R} by

$$hat(t) = \begin{cases} 1 - |t| & \text{for } t \in (-1, 1), \\ 0 & \text{otherwise.} \end{cases}$$

This function satisfies the *interpolation condition*,

$$\phi(0) = 1, \qquad \phi(k) = 0 \quad \text{for every } k \in \mathbb{Z} - \{0\}.$$

Define $\phi_k : \mathbb{R} \to \mathbb{R}$ by $\phi_k(t) = \phi(t-k)$. Let $\{c_k\}_{k \in \mathbb{Z}}$ be any real sequence over \mathbb{Z} . For every $m, n \in \mathbb{Z}$ with $m \leq n$ define $u_{mn} : \mathbb{R} \to \mathbb{R}$ by

$$u_{mn}(t) = \sum_{k=m}^{n} c_k \phi_k(t) \, .$$

The set $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the *Cauchy property* with respect to a norm $\|\cdot\|$ if for every $\epsilon > 0$ there exists $N_{\epsilon} \in \mathbb{N}$ such that for every $m, n \in \mathbb{Z}$ with $m \leq n$ we have

$$n \leq -N_{\epsilon} \quad \text{or} \quad N_{\epsilon} \leq m \implies \qquad \|u_{mn}\| < \epsilon$$

Consider the $L^4(\mathbb{R})$ norm defined by

$$||v||_{L^4(\mathbb{R})} = \left(\int_{\mathbb{R}} |v(t)|^4 \, \mathrm{d}t\right)^{\frac{1}{4}}.$$

a. [4] Evaluate

$$||u_{mn}||_{L^4(\mathbb{R})}^4 = \int_{\mathbb{R}} |u_{mn}(t)|^4 dt.$$

b. [8] Show that

$$\frac{1}{5}\sum_{k=m}^{n} |c_{k}|^{4} \leq ||u_{mn}||_{L^{4}(\mathbb{R})}^{4} \leq \sum_{k=m}^{n} |c_{k}|^{4}.$$

c. [8] Prove that $\{u_{mn} : m, n \in \mathbb{Z}, m \leq n\}$ has the Cauchy property with respect to the $L^4(\mathbb{R})$ norm if and only if

$$\sum_{\substack{k\in\mathbb{Z}\\1}} |c_k|^4 < \infty \, .$$

3. [20] The Haar wavelet function $\psi : \mathbb{R} \to \mathbb{R}$ is

$$\psi(t) = \begin{cases} 1 & \text{for } t \in [0, \frac{1}{2}), \\ -1 & \text{for } t \in [\frac{1}{2}, 1), \\ 0 & \text{otherwise}. \end{cases}$$

It has a primitive $\Psi : \mathbb{R} \to \mathbb{R}$ given by

$$\Psi(t) = \begin{cases} \min\{t, 1-t\} & \text{for } t \in (0, 1), \\ 0 & \text{otherwise}. \end{cases}$$

For each $j, k \in \mathbb{Z}$ define $\psi_{jk} : \mathbb{R} \to \mathbb{R}$ and $\Psi_{jk} : \mathbb{R} \to \mathbb{R}$ by

$$\psi_{jk}(t) = 2^{\frac{j}{2}} \psi(2^{j}t - k), \qquad \Psi_{jk}(t) = 2^{-\frac{j}{2}} \Psi(2^{j}t - k).$$

Let $S \subset L^2([0,1])$ be given by

$$S = \left\{ \psi_{jk} : j \in \{0, 1, \cdots\}, k \in \{0, 1, \cdots, 2^{j} - 1\} \right\}$$

Problem 1 of Homework 10 showed that S is an orthonormal set in $L^2([0,1])$ that is orthogonal to every constant function. For every $J \in \mathbb{Z}_+$ let $\mathcal{P}_J : L^2([0,1]) \to L^2([0,1])$ be the orthogonal projection given by

$$\mathcal{P}_{J}u(t) = \langle 1, u \rangle + \sum_{j=0}^{J-1} \sum_{k=0}^{2^{j}-1} \langle \psi_{jk}, u \rangle \psi_{jk}(t) \quad \text{for every } u \in L^{2}([0,1]).$$

Let $b \in (0,1)$ and set $v(t) = \chi_{_{[0,b)}}(t)$ where

$$\chi_{\scriptscriptstyle [0,b)}(t) = \begin{cases} 1 & \text{if } t \in [0,b) \,, \\ 0 & \text{otherwise} \,. \end{cases}$$

a. [8] Show for every $J \in \mathbb{Z}_+$ that

$$\mathcal{P}_{J}v(t) = b + \sum_{j=0}^{J-1} \min\left\{2^{j}b - \lfloor 2^{j}b\rfloor, \lceil 2^{j}b\rceil - 2^{j}b\right\}\psi\left(2^{j}t - \lfloor 2^{j}b\rfloor\right),$$

where $\lfloor \cdot \rfloor$ and $\lceil \cdot \rceil$ denote the "floor" and "ceiling" functions, which are defined for every $x \in \mathbb{R}$ by

$$\lfloor x \rfloor = \max\{k \in \mathbb{Z} : k \le x\}, \qquad \lceil x \rceil = \min\{k \in \mathbb{Z} : x \le k\}.$$

b. [8] Use induction on J to prove for every $J \in \mathbb{Z}_+$ that

$$\mathcal{P}_{J}v(t) = \begin{cases} 1 & \text{for } t \in [0, \underline{b}_{J}), \\ 2^{J}b - \lfloor 2^{J}b \rfloor & \text{for } t \in [\underline{b}_{J}, \overline{b}_{J}), \\ 0 & \text{for } t \in [\overline{b}_{J}, 1), \end{cases}$$

where $\underline{b}_J = \lfloor 2^J b \rfloor / 2^J$ and $\overline{b}_J = \lceil 2^J b \rceil / 2^J$.

c. [4] Show for every $J \in \mathbb{Z}_+$ that

$$\|\mathcal{P}_{J}v - v\|_{L^{2}([0,1])}^{2} = \frac{\left(\left\lceil 2^{J}b \right\rceil - 2^{J}b\right)\left(2^{J}b - \lfloor 2^{J}b \rfloor\right)}{2^{J}} \le \frac{1}{2^{J+2}}.$$

4. [20] The Haar scaling function $\phi : \mathbb{R} \to \mathbb{R}$ and wavelet function $\psi : \mathbb{R} \to \mathbb{R}$ are

$$\phi(t) = \begin{cases} 1 & \text{for } t \in [0, 1), \\ 0 & \text{otherwise}, \end{cases} \quad \psi(t) = \begin{cases} 1 & \text{for } t \in [0, \frac{1}{2}), \\ -1 & \text{for } t \in [\frac{1}{2}, 1), \\ 0 & \text{otherwise}. \end{cases}$$

They satisfy the two-scale relations

$$\phi(t) = \phi(2t) + \phi(2t - 1), \qquad \psi(t) = \phi(2t) - \phi(2t - 1).$$

For every $j, k \in \mathbb{Z}$ define $\phi_{jk} : \mathbb{R} \to \mathbb{R}$ and $\psi_{jk} : \mathbb{R} \to \mathbb{R}$ by

$$\phi_{jk}(t) = 2^{\frac{j}{2}}\phi(2^{j}t-k), \qquad \psi_{jk}(t) = 2^{\frac{j}{2}}\psi(2^{j}t-k)$$

For every $j \in \mathbb{Z}$ define the subspaces V_j and W_j by

$$V_j = \overline{\operatorname{span}} \{ \phi_{jk} : k \in \mathbb{Z} \}, \qquad W_j = \overline{\operatorname{span}} \{ \psi_{jk} : k \in \mathbb{Z} \}.$$

- a. [8] Show for every $j \in \mathbb{Z}$ that V_j and W_j are orthogonal subspaces.
- b. [8] Show for every $j \in \mathbb{Z}$ that

$$V_{j+1} = V_j + W_j = \{v + w : v \in V_j, w \in W_j\}$$

c. [4] Show for every $j \in \mathbb{Z}_+$ that

$$V_{j+1} = V_0 + W_0 + \dots + W_j$$

5. [20] Let $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ denote the Fourier transform given by

$$\mathcal{F}u(\xi) = \int_{\mathbb{R}} e^{-i2\pi\xi t} u(t) \, \mathrm{d}t \qquad \text{for every } u \in L^2(\mathbb{R}) \,.$$

Let $\psi : \mathbb{R} \to \mathbb{R}$ be the function given by

$$\psi(t) = 2\operatorname{sinc}(2t) - \operatorname{sinc}(t).$$

For every $j, k \in \mathbb{Z}$ define $\psi_{jk} : \mathbb{R} \to \mathbb{R}$ by $\psi_{jk}(t) = 2^{\frac{j}{2}} \psi(2^{j}t - k)$.

a. [4] Compute $\mathcal{F}\psi(\xi)$. You can use the fact that

$$\mathcal{F}\operatorname{sinc}(\xi) = \begin{cases} 1 & \text{for } |\xi| < \frac{1}{2} ,\\ \frac{1}{2} & \text{for } |\xi| = \frac{1}{2} ,\\ 0 & \text{for } |\xi| > \frac{1}{2} . \end{cases}$$

b. [4] Compute

$$\int_0^\infty \frac{|\mathcal{F}\psi(\xi)|^2}{\xi} \,\mathrm{d}\xi$$

- c. [4] For every $j, k \in \mathbb{Z}$ compute $\mathcal{F}\psi_{jk}(\xi)$.
- d. [8] Show that $\{\psi_{jk} : j, k \in \mathbb{Z}\}$ is an orthonormal set in $L^2(\mathbb{R})$.