
MATH 416 Take-Home Exam 1 Solutions
Due 11:00am Friday, 3 April 2020

1. [15] Let {e1, e2, e3} denote the usual Euclidean basis given by

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 .

Let {b1,b2,b3} be given by

b1 =

1
4
8

 , b2 =

 4
7
−4

 , b3 =

 8
−4
1

 .

a. [6] Show that {b1,b2,b3} is an orthogonal basis for R3 equipped with the usual
Euclidean inner product, 〈x , y〉 = xTy.

b. [9] Express each member of the Euclidean basis {e1, e2, e3} as a linear combination
of {b1,b2,b3}.

Solution (a). Direct calculations yield

bT
1 b2 = 1 · 4 + 4 · 7 + 8 · (−4) = 0 , bT

1 b1 = 12 + 42 + 82 = 81 ,

bT
2 b3 = 4 · 8 + 7 · (−4) + (−4) · 1 = 0 , bT

1 b1 = 42 + 72 + (−4)2 = 81 ,

bT
3 b1 = 8 · 1 + (−4) · 4 + 1 · 8 = 0 , bT

3 b3 = 12 + (−4)2 + 82 = 81 .

Because these nonzero vectors are orthogonal, they are linearly independent. Because
R3 has dimension three, the linearly independent vectors {b1,b2,b3} will be a basis.
Therefore {b1,b2,b3} is an orthogonal basis for R3. �

Solution (b). Because {b1,b2,b3} is an orthogonal basis, for every x ∈ R3 we have

x =
bT
1 x

bT
1 b1

b1 +
bT
2 x

bT
2 b2

b2 +
bT
3 x

bT
3 b3

b3 =
bT
1 x

81
b1 +

bT
2 x

81
b2 +

bT
3 x

81
b3 .

Simply applying this formula to x = e1, x = e2, and x = e3 yields

e1 = 1
81
b1 + 4

81
b2 + 8

81
b3 , e2 = 4

81
b1 + 7

81
b2 − 4

81
b3 , e3 = 8

81
b1 − 4

81
b2 + 1

81
b3 .

�

Alternative Solution (b). Let B =
(
b1 b1 b1

)
. Then we see from part (a) that

BTB =

1 4 8
4 7 −4
8 −4 1

1 4 8
4 7 −4
8 −4 1

 =

81 0 0
0 81 0
0 0 81

 = 81I .

Because BTB = 81I, we see that B−1 = 1
81
BT, whereby

(
e1 e1 e1

)
= I = BB−1 = B 1

81
BT = 1

81

(
b1 b1 b1

)1 4 8
4 7 −4
8 −4 1

 .

The result can be read off from this. �

Remark. This result could also be found by using row reduction to compute B−1.
However, this approach does not leverage the information from part (a).
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2. [15] Let A ∈ R3×4 be given by

A =

1 2 −1 0
0 −1 2 1
2 3 0 1


Define the linear map T : R4 → R3 by T (x) = Ax for every x ∈ R4. Equip R4 with the
usual Euclidean inner product. Equip R3 with the inner product defined by

〈x , y〉 = xTHy for every x,y ∈ R3 ,

where H is the diagonal matrix

H =

3 0 0
0 2 0
0 0 5

 .

Compute T ∗ : R3 → R4, the adjoint of T , with respect to these inner products.

Solution. Denote the inner products on R3 and R4 respectively by

〈x , y〉3 = xTHy for every x,y ∈ R3 ,

〈x , y〉4 = xTy for every x,y ∈ R4 .

Then the adjoint mapping T ∗ : R3 → R4 is defined by the relation

〈T ∗(x) , y〉4 = 〈x , T (y)〉3 for every x ∈ R3 and y ∈ R4 .

But for every x ∈ R3 and y ∈ R4 we have

〈x , T (y)〉3 = 〈x , Ay〉3 = xTHAy =
(
ATHTx

)T
y =

(
ATHx

)T
y = 〈ATHx , y〉4 .

Therefore

〈T ∗(x) , y〉4 = 〈ATHx , y〉4 for every x ∈ R3 and y ∈ R4 .

We read off from this that

T ∗(x) = ATHx for every x ∈ R3 .

Therefore the adjoint mapping T ∗ : R3 → R4 is given by T ∗(x) = A∗x for every x ∈ R3

where A∗ ∈ R4×3 is given by

A∗ = ATH =


1 0 2
2 −1 3
−1 2 0
0 1 1


3 0 0

0 2 0
0 0 5

 =


3 0 10
6 −2 15
−3 4 0
0 2 5

 .

�

Alternative Solution. More generally, if A ∈ Rn×m and the linear map T : Rm → Rn

is given by T (x) = Ax for every x ∈ Rm, and if Rm and Rn are respectively equipped
with the inner products

〈x , y〉m = xTGy for every x,y ∈ Rm , 〈x , y〉n = xTHy for every x,y ∈ Rn ,

where G ∈ Rm×m and H ∈ Rn×n are positive definite, then the adjoint map with respect
to these inner products is T ∗ : Rn → Rm is given by T ∗(x) = A∗x for every x ∈ Rn,
where A∗ = G−1ATH. If we apply this formula with m = 4, n = 3, G = I, A given
above, and H given above then we obtain the result. �



3

3. [15] For every n ∈ Z+ let P n denote all polynomials with real coefficients of degree at
most n. Consider the mapping S : P n → P n given by

S(p)(t) = (1 + t) p′′(t) + t p′(t)− p(t) , for every p ∈ P n .

Give the matrix representation of S with respect to the basis {tk}nk=0 for n = 3.

Solution. Let ak be the vector representation of S(tk). Because

S(t0) = −t0 , S(t1) = 0 , S(t2) = 2t0 + 2t1 + t2 , S(t3) = 6t1 + 6t2 + 2t3 ,

we see that

a0 =


−1
0
0
0

 , a1 =


0
0
0
0

 , a2 =


2
2
1
0

 , a3 =


0
6
6
0

 .

The matrix representation of S with respect to the basis {tk}3k=0 is then

AS =
(
a0 a1 a2 a3

)
=


−1 0 2 0
0 0 2 6
0 0 1 6
0 0 0 2

 .

�

Alternative Solution. By direct calculation we see that

S(t0) = −t0 , S(t1) = 0 , S(t2) = 2t0 + 2t1 + t2 , S(t3) = 6t1 + 6t2 + 2t3 .

Hence, if p(t) = c0t
0 + c1t

1 + c2t
2 + c3t

3 then

S(p)(t) = (−c0 + 2c2)t
0 + (2c2 + 6c3)t

1 + (c2 + 6c3)t
2 + 2c3t

3 ,

whereby we see that
c0
c1
c2
c3

 7→

−c0 + 2c2
2c2 + 6c3
c2 + 6c3

2c3

 =


−1 0 2 0
0 0 2 6
0 0 1 6
0 0 0 2



c0
c1
c2
c3

 .

Therefore the matrix representation of S with respect to the basis {tk}3k=0 is

AS =


−1 0 2 0
0 0 2 6
0 0 1 6
0 0 0 2

 .

�

Remark. Alternatively, the rows of AS can be read off from the coefficients in the
expression for S(p)(t) given above.
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4. [15] Let L > 0. Let f : R→ R be 2L-periodic such that f(x) = x for x ∈ [−L,L).
a. [10] Compute the coefficients {bk} in its sine expansion

f(x) =
∞∑
k=1

bk sin
(
k
π

L
x
)
.

b. [5] Determime whether or not
n∑
k=1

|bk| converges .

Remark. Odd symmetry implies that∫ L

−L
cos
(
k
π

L
x
)
f(x) dx =

∫ L

−L
cos
(
k
π

L
x
)
x dx = 0 for every k ∈ N .

Therefore the Fourier expansion of f will contain only sine terms.

Solution (a). The coefficients in the sine expansion of f are given by

bk =
1

L

∫ L

−L
sin
(
k
π

L
x
)
f(x) dx =

1

L

∫ L

−L
sin
(
k
π

L
x
)
x dx

= −
cos
(
k
π

L
x
)

kπ
x

∣∣∣∣L
−L

+
1

kπ

∫ L

−L
cos
(
k
π

L
x
)

dx

= −cos(kπ)

kπ
L− cos(kπ)

kπ
L+ 0 = (−1)k+12L

kπ
.

�

Solution (b). Because |bk| = 2L
kπ

is comparable to the terms of the harmonic series,

the partal sums
n∑
k=1

|bk| diverge as n→∞ .

�

Remark. If the series did converge then the Weierstrass M -Test would imply that the
Fourier sine series would converge uniformly to f(x), which would imply that f(x) is
continuous. However, f(x) has jump discontinuities, so the series must diverge.

Let T > 0. For each n ∈ Z+ define the windowing function wn : R→ [0,∞) by

wn(t) =


1 + pn

(
cos( π

T
t)
)

2
for t ∈ [−T, T ] ,

0 otherwise ,

where pn(z) is the unique odd polynomial determined by

p′n(z) = cn(1− z2)n−1 , p(0) = 0 , p(1) = 1 .

Each of these windowing functions satisfy the replication condition∑
k∈Z

wn(t+ kT ) = 1 .
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5. [20] Given any windowing function w : R→ [0,∞) that satisfies the replication condition
the T -periodization of the localization wf of any f : R→ C is given by

fT (t) =
∑
k∈Z

w(t+ kT ) f(t+ kT ) .

The kth Fourier coefficient of this periodization is

f̂T (k) =
1

T

∫ T

0

ek(t) fT (t) dt =
1

T

∫ T

−T
ek(t)w(t) f(t) dt ,

where ek(t) = exp(ik 2π
T
t) for every k ∈ Z.

Find f̂T (k) for every k ∈ Z when f(t) = exp(iωt) for some ω ∈ R and w(t) = w3(t).
Integration by parts can be avoided by using the Euler identity cos(θ) = 1

2
(eiθ + e−iθ)

along with the trig identities

(cos(θ))3 = 1
4

cos(3θ) + 3
4

cos(θ) ,

(cos(θ))5 = 1
16

cos(5θ) + 5
16

cos(3θ) + 5
8

cos(θ) .

Solution. We are asked to compute

f̂T (k) =
1

T

∫ T

−T
e−ik

2π
T
teiωtw3(t) dt .

Because

p′3(z) = c3(1− 2z2 + z4) , p3(0) = 0 , p3(1) = 1 ,

we find that p3(z) = 15
8

(z − 2
3
z3 + 1

5
z5), whereby the trig and Euler identites yield

w3(t) = 1
2

[
1 + 15

8
cos( π

T
t)− 5

4

(
cos( π

T
t)
)3

+ 3
8

(
cos( π

T
t)
)5]

= 1
2

[
1 + 75

64
cos( π

T
t)− 25

128
cos(3π

T
t) + 3

128
cos(5π

T
t)
]

= 1
2

[
1 + 75

128

(
ei

π
T
t + e−i

π
T
t
)
− 25

256

(
ei

3π
T
t + e−i

3π
T
t
)

+ 3
256

(
ei

5π
T
t + e−i

5π
T
t
)]
.

Therefore every integral that needs to be computed has the form

1

T

∫ T

−T
e−iµ

π
T
t dt =

∫ 1

−1
e−iµπt dt =

e−iµπt

−iµπ

∣∣∣∣1
−1

= 2
sin(µπ)

µπ
= 2 sinc(µ) .

Set ω = 2π
T
η and apply the above formula to

µ = 2(k − η) , µ = 2(k − η)∓ 1 , µ = 2(k − η)∓ 3 , µ = 2(k − η)∓ 5 ,

to obtain

f̂T (k) = sinc
(
2(k − η)

)
+ 75

128

[
sinc

(
2(k − η)− 1

)
+ sinc

(
2(k − η) + 1

)]
− 25

256

[
sinc

(
2(k − η)− 3

)
+ sinc

(
2(k − η) + 3

)]
+ 3

256

[
sinc

(
2(k − η)− 5

)
+ sinc

(
2(k − η) + 5

)]
.

�

Remark. Notice that f̂T (k) = δkη if η ∈ Z, which is when f(t) = eiωt is T -periodic.
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6. [20] Let N ∈ Z+. Given any windowing function w : R → [0,∞) that satisfies the
replication condition with T = N , the N -periodization of the localization wf of any
f : Z→ C is given by

fN(j) =
∑
k∈Z

w(j + kN) f(j + kN) .

The kth Fourier coefficient of this periodization is

f̂N(k) =
1

N

∑
j∈ZN

ek(j) fN(j) =
1

N

N∑
j=−N

ek(j)w(j) f(j) ,

where ek(j) = ω kj
N for every k ∈ ZN with ωN = exp(i2π

N
).

Let f̂N(k) for every k ∈ ZN when f(j) = exp(iωj) for some ω ∈ R and w(j) = w1(j).

Set N = 100 and use Matlab to plot f̂N(k) versus k for ω = π
100

, π
200

, π
400

, and π
800

.

Solution. We are asked to compute

f̂N(k) =
1

N

N∑
j=−N

e−i
2π
N
kj eiωj w1(j) .

Because p′1(z) = c1, p1(0) = 0, and p1(1) = 1, we see that p1(z) = z, whereby the Euler
identity yields

w1(j) = 1
2

[
1 + cos( π

N
j)
]

= 1
2

[
1 + 1

2

(
ei

π
N
j + e−i

π
N
j
)]
.

Because w1(∓N) = 0, we have

f̂N(k) =
1

N

N−1∑
j=−(N−1)

e−i
2π
N
kj eiωj w1(j)

=
1

2N

N−1∑
j=−(N−1)

e−i
2π
N
kj eiωj

[
1 + 1

2

(
ei

π
N
j + e−i

π
N
j
)]
.

This sum decomposes into three finite geometric series in the form
N−1∑

j=−(N−1)

e−i
πµ
N
j =

eiπµ
N−1
N − e−iπµ

1− e−iπµN
=

sin(πµ2N−1
2N

)

sin( πµ
2N

)
= (2N − 1)

sinc(µ2N−1
2N

)

sinc( µ
2N

)
.

Set ω = 2π
N
η and apply this formula to µ = 2(k − η) and µ = 2(k − η)∓ 1 to obtain

f̂N(k) =
2N − 1

2N

[
sinc((k − η)2N−1

N
)

sinc(k−η
N

)
+

sinc((2(k − η)− 1)2N−1
2N

)

2 sinc(2(k−η)−1
2N

)

+
sinc((2(k − η) + 1)2N−1

2N
)

2 sinc(2(k−η)+1
2N

)

]
.

You are asked set N = 100 and to plot f̂N(k) versus k for η = 1
2
, 1

4
, 1

8
, and 1

16
. �

Remark. Notice that the continuous result is recovered in the limit

lim
N→∞

f̂N(k) = sinc
(
2(k − η)

)
+ 1

2
sinc

(
2(k − η)− 1

)
+ 1

2
sinc

(
2(k − η) + 1

)
.


