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12. Sequences of Functions

We now explore two notions of what it means for a sequence of functions {fn}n∈N to converge
to a function f . The first notion, pointwise convergence, might seem natural at first, but we
will see that it is not strong enough to do much. The second notion, uniform convergence, is
strong enough to do many things, but might seem less natural at first. We will explore these
notions through examples that show the superiority of uniform convergence.

12.1. Pointwise Convergence. We begin with the definition of pointwise convergent.

Definition 12.1. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are
each defined over S. The sequence {fn}n∈N is said to be pointwise convergent or to converge
pointwise over S if there exists a function f defined over S such that

lim
n→∞

fn(x) = f(x) for every x ∈ S .

We say fn converges to f pointwise over S and call f the pointwise limit of the sequence
{fn}n∈N over S. We denote this as

fn → f pointwise over S .

Because every Cauchy sequence of real numbers has a unique limit, we have the following.

Proposition 12.1. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are
each defined over S such that

for every x ∈ S the real sequence {fn(x)}n∈N is Cauchy .

Then there exists a unique real-valued function f defined over S such that

(12.1) fn → f pointwise S .

Proof. For each x ∈ S define f(x) to be the unique limit of the Cauchy sequence of real
numbers {fn(x)}n∈N. �

The following natural questions arise.

• If fn → f pointwise over [a, b] and each fn is continuous over [a, b] then is f continuous
over [a, b]?
• If fn → f pointwise over [a, b] and each fn is Riemann integrable over [a, b] then is f

Riemann integrable over [a, b] and does∫ b

a

fn →
∫ b

a

f ?

• If fn → f pointwise over [a, b] and each fn is differentiable over [a, b] then is f differen-
tiable over [a, b] and does

f ′n → f ′ pointwise over [a, b] ?
1
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For pointwise convergence the answer to each of these three questions is NO, NOT ALWAYS!
To understand why, consider the following examples.

Example. Consider fn(x) = xn over [0, 1]. It can be shown that

fn(x)→ f(x) =

{
0 for x ∈ [0, 1) ,

1 for x = 1 .

However f is not continuous over [0, 1].

Exercise. Prove the claim in the example above.

Example. Consider fn(x) = 2nx(1− x2)n−1 over [0, 1]. It can be shown that

fn(x)→ f(x) = 0 pointwise over [0, 1] .

However, for every n ∈ Z+ we have∫ 1

0

fn = 2n

∫ 1

0

x(1− x2)n−1 dx = −(1− x2)n
∣∣∣1
0

= 1 ,

so that ∫ 1

0

fn = 1 6→
∫ 1

0

f = 0 .

Exercise. Prove the claim in the example above.

Example. Consider fn(x) = 1
n

sin(nx) over [−π, π]. It is clear that

fn(x)→ f(x) = 0 pointwise over [−π, π] .

Because sin(nx) is odd and [−π, π] is symmetric, we have∫ π

−π
fn =

1

n

∫ π

−π
sin(nx) dx = 0 .

Therefore ∫ π

−π
fn = 0→

∫ π

−π
f = 0 .

However, it can be shown that

lim
n→∞

f ′n(x) = lim
n→∞

cos(nx) diverges for every nonzero x ∈ [−π, π] .

Exercise. Prove the claim in the example above.

Exercise. Find a sequence {fn}n∈N of continuously differentiable functions over [0, 1] such that

fn → 0 pointwise over [0, 1] , and f ′n(x) diverges for x ∈ [0, 1] ∩Q .
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12.2. Uniform Convergence. In the previous section we saw that the pointwise limit of a
sequence of functions may not have many properties we might expect. In this section we
introduce the uniform limit of a sequence of functions, which will behave better. We motivate
this notion from the following characterization of pointwise convergence.

Proposition 12.2. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are
each defined over S. Let f be a real-valued functon that is defined over S. Then

fn → f pointwise over S

if and only if for every x ∈ S and every ε > 0 there exists an nx,ε ∈ N such that

n ≥ nx,ε =⇒ |fn(x)− f(x)| < ε .

Proof. Exercise.

We now define uniform convergence, which is a stronger notion of convergence.

Definition 12.2. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are
each defined over S. The sequence {fn}n∈N is said to be uniformly convergent or to converge
uniformly over S if there exists a function f defined over S such that for every ε there exists
an nε ∈ N such that for every x ∈ S

n ≥ nε =⇒ |fn(x)− f(x)| < ε .

We say fn converges to f uniformly over S and call f the uniform limit of the sequence {fn}n∈N
over S. We denote this as

fn → f uniformly over S .

It should be clear from this definition and from Proposition 12.2 that uniform convergence
implies pointwise convergence.

Proposition 12.3. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are
each defined over S. Let f be a real-valued functon that is defined over S. If fn → f uniformly
over S then fn → f pointwise over S.

Proof. Exercise.

Remark. This is why we say uniform convergence is a stronger notion of convergence than
pointwise convergence.

The first payoff of this stronger notion is the following.

Proposition 12.4. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are each
continuous over S. Let f be a real-valued functon that is defined over S. If fn → f uniformly
over S then f is continuous over S.

Proof. Let x ∈ S be arbitrary. We want to show that f is continuous at x. Let ε > 0. Because
fn → f uniformly over S, there exists n ∈ N such that

|fn(z)− f(z)| < ε

3
for every z ∈ S .

Because fn is continuous over S there exists δ > 0 such that for every y ∈ S

|y − x| < δ =⇒ |fn(y)− fn(x)| < ε

3
.
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Then

|y − x| < δ =⇒ |f(y)− f(x)| ≤ |f(y)− fn(y)|+ |fn(y)− fn(x)|+ |fn(x)− f(x)|

<
ε

3
+
ε

3
+
ε

3
= ε .

Therefore f is continuous at x ∈ S. Because x ∈ S was arbitrary, we conclude that f is
continuous over S. �

We can replace “continuous” by “uniformly continuous” in the foregoing proposition.

Proposition 12.5. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are
each uniformly continuous over S. Let f be a real-valued functon that is defined over S. If
fn → f uniformly over S then f is uniformly continuous over S.

Proof. Exercise.

Uniform convergence behaves as we might hope for integrals.

Proposition 12.6. Let a < b. Let {fn}n∈N be a sequence of real-valued functions that are
each Riemann integrable over [a, b]. Let f be a real-valued functon that is defined over [a, b]. If
fn → f uniformly over [a, b] then f is Riemann integrable over [a, b] and

lim
n→∞

∫ b

a

fn =

∫ b

a

f .

Proof. Let ε > 0. Because fn → f uniformly over [a, b] there exists an n ∈ N such that

|fn(z)− f(z)| < ε

3(b− a)
for every z ∈ [a, b] .

Because fn is Riemann integrable over [a, b] there exists a partition P of [a, b] such that

0 ≤ U(fn, P )− L(fn, P ) <
ε

3
.

Because fn is bounded over [a, b] and because for every z ∈ [a, b]

fn(z)− ε

3(b− a)
< f(z) < fn(z) +

ε

3(b− a)
,

we conclude that f is bounded over [a, b] and that

L(fn, P )− ε

3
< L(f, P ) ≤ U(f, P ) < U(fn, P ) +

ε

3
.

Then
0 < U(f, P )− L(f, P ) < U(fn, P ) +

ε

3
− L(fn, P ) +

ε

3

<
ε

3
+
ε

3
+
ε

3
= ε .

Therefore f is Riemann integrable over [a, b]. �

The story for the convergence of derivatives is more complicated. For example, consider the
sequence of functions over R given by

fn(x) =
1

3n
sin(9nx) .

It should be clear that fn → 0 uniformly over R. Each fn is differentiable over R with

f ′n(x) = 3n cos(9nx) .
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Notice that if x = (kπ)/9m for some k ∈ Z and m ∈ N then for every n > m we have

f ′n(x) = 3n cos
(
9n−mkπ

)
= (−1)k3n .

Therefore the real sequence {f ′n(x)} diverges to +∞ when k is even and diverges to −∞ when
k is odd. But the sets{

kπ

9m
: k is even and m ∈ N

}
,

{
kπ

9m
: k is odd and m ∈ N

}
are each dense in R. It is clear that the sequence of functions {f ′n} is not well behaved as
n→∞.

The foregoing discussion shows that knowing a sequence of continuously differentiable func-
tions {fn} converges uniformly to a continuously differentiable function f does not imply that
the sequence of their derivatives {f ′n} will converge pointwise to f ′, or even that it will converge
pointwise at all! However, if we assume that the sequence derivatives {f ′n} converges uniformly
then we can use the Fundamental Theorems of Calculus and Propositions 12.4 and 12.6 to
obtain the following useful theorem.

Proposition 12.7. Let a < b. Let {fn}n∈N be a sequence of real-valued continuously differen-
tiable functions over [a, b]. Let f and g be real-valued functions over [a, b] such that

• fn → f pointwise over [a, b];
• f ′n → g uniformly over [a, b].

Then g is continuous over [a, b] and f is continuously differentiable over [a, b] with f ′ = g.

Proof. Because each fn is continuously differentiable over [a, b], the First Fundamental Theo-
rem of Calculus implies that

fn(x) = fn(a) +

∫ x

a

f ′n for every x ∈ [a, b] .

Because fn → f pointwise over [a, b] we have

lim
n→∞

fn(x) = f(x) for every x ∈ [a, b] .

Because f ′n → g uniformly over [a, b] and each f ′n is continuous, Proposition 12.4 implies that
g is continuous over [a, b]. Moreover, Propostion 12.6 implies that

lim
n→∞

∫ x

a

f ′n =

∫ x

a

g for every x ∈ [a, b] .

Therefore

f(x) = f(a) +

∫ x

a

g for every x ∈ [a, b] .

Because g is continuous, the Second Fundamental Theorem of Calculus implies that the above
right-hand side is continuously differentiable over [a, b] and that its derivative is g. Therefore
f is continuously differentiable over [a, b] and f ′ = g. �



6

12.3. Uniform Norms. Uniform convergence is best studied with a tool called the uniform
norm. Let S ⊂ R. Let B(S) denote the set of all bounded functions f : S → R. Then for every
f ∈ B(S) we define its uniform norm ‖f‖B(S) by

(12.2) ‖f‖B(S) = sup
{
|f(x)| : x ∈ S

}
.

Clearly, f ∈ B(S) if and only if ‖f‖B(S) <∞.

Exercise. Let S ⊂ R. Show that f ∈ B(S) if and only if ‖f‖B(S) <∞.

Remark. Uniform norms were introduced by Karl Weierstrass in the mid 1800s, but he neither
call them that nor denoted them as we do here. He used the notation M(f), which he called
the majorizer of f . The modern name and notation used here where introduced in the 1900s,
when it was realized that majorizers are a special case of the concept of a norm.

Before we show how the set B(S) and its uniform norm are connected to uniform convergence,
we collect some of their basic properties.

Proposition 12.8. Let S ⊂ R. Then for every α ∈ R and every f, g ∈ B(S) we have

(12.3) αf ∈ B(S) , f + g ∈ B(S) , and fg ∈ B(S) .

Moreover, for every α ∈ R and every f, g ∈ B(S) the uniform norm ‖ · ‖B(S) satisfies:

• ‖f‖B(S) ≥ 0, — nonegativity;
• ‖f‖B(S) = 0 if and only if f = 0, — definitness;
• ‖αf‖B(S) = |α|‖f‖B(S), — homogeneity;
• ‖f + g‖B(S) ≤ ‖f‖B(S) + ‖g‖B(S), — triangle inequality;
• ‖fg‖B(S) ≤ ‖f‖B(S)‖g‖B(S), — product inequality.

Proof. Exercise. �
Exercise. Prove Proposition 12.8.

Remark. The first two properties in (12.3) state that the set B(S) is a linear space over the
reals. All three properties in (12.3) state that the set B(S) is an algebra over the reals. The
first four properties of ‖ · ‖B(S) listed in Proposition 12.8 are shared by all norms. You will
meet these abstractions in later courses.

Remark. Proposition 12.8 shows that if f and g are functions over S such that f − g ∈ B(S)
then we can think of ‖f − g‖B(S) as a measure of distance between f and g.

The connection of the set B(S) and its uniform norm with uniform convergence is provided
by the following characterization, due to Weierstrass.

Proposition 12.9. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are each
defined over S. Let f be a real-valued functon that is defined over S. Then fn → f uniformly
over S as n→∞ if and only if

fn − f ∈ B(S) eventually and ‖fn − f‖B(S) → 0 as n→∞ .

Proof. Exercise. �
Exercise. Prove Proposition 12.9.
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12.4. Uniformly Cauchy. In 1841 Weierstrass gave a beautiful extension to sequences of
functions of the Cauchy Criterion for convergence of sequences of real numbers. We begin by
defining what it means for a sequence of functions to be uniformly Cauchy.

Definition 12.3. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that are each
defined over S. We say that the sequence {fn}n∈N is uniformly Cauchy over S if for every ε > 0
there exists Nε ∈ N such that

(12.4) m,n ≥ Nε =⇒ ‖fm − fn‖B(S) < ε .

Remark. Notice that this definition is analogous to the definition of what it means for a
sequence of reals to be Cauchy, with the uniform norm playing the role of the absolute value.

The key fact about uniformly Cauchy sequences is the following.

Proposition 12.10. Let S ⊂ R. Let {fn}n∈N be a sequence of real-valued functions that is
uniformly Cauchy over S. Then for every ε > 0 there exists Nε ∈ N such that for every x ∈ S
we have

(12.5) m,n ≥ Nε =⇒ |fm(x)− fn(x)| < ε .

In particular, for every x ∈ S the real sequence {fn(x)}n∈N is Cauchy.

Proof. The result follows directly from the definition of uniformly Cauchy (12.4) and the fact
that for every x ∈ S and every m,n ∈ N we have

|fm(x)− fn(x)| ≤ ‖fm − fn‖B(S) .

The details are left as an exercise. �

Exercise. Prove Proposition 12.10.

Weierstrass gave the following characterization of uniformly convergent sequences in terms
of sequences being uniformly Cauchy.

Proposition 12.11. (Weierstrass Criterion) Let S ⊂ R. Let {fn}n∈N be a sequence of
real-valued functions that are each defined over S. Then the sequence {fn}n∈N is uniformly
convergent over S if and only if it is uniformly Cauchy over S.

Proof. The proof of the direction (=⇒) is similar to that for the Cauchy Criterion for real
sequences, so we do it first.

(=⇒) Let {fn}n∈N be uniformly convergent over S. This means there exists a function
f : S → R such that fn → f uniformly over S. We must show that {fn}n∈N is uniformly
Cauchy over S. Let ε > 0. Because fn → f uniformly over S, by Proposition 12.9 there exists
an Nε ∈ N such that

n ≥ Nε =⇒ ‖fn − f‖B(S) <
ε

2
.

Then for every m,n ≥ Nε we have

‖fn − fm‖B(S) = ‖(fn − f)− (fm − f)‖B(S)

≤ ‖fn − f‖B(S) + ‖fm − f‖B(S) <
ε

2
+
ε

2
= ε .

Therefore {fn}n∈N is uniformly Cauchy over S.
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The proof of the direction (⇐=) uses Proposition 12.10 and the Cauchy Criterion for real
sequences to construct the limiting function f .

(⇐=) Let {fn}n∈N be uniformly Cauchy over S. We want to show that there exists a function
f : S → R such that fn → f uniformly over S. Proposition 12.10 implies that for every x ∈ S
the sequence of real numbers {fn(x)}n∈N is Cauchy, and thereby is convergent by the Cauchy
Criterion. Therefore we can define f : S → R by

f(x) = lim
n→∞

fn(x) for every x ∈ S .

This shows that fn → f pointwise over S. We still must show that fn → f uniformly over S.

Let ε > 0. Let ηε ∈ (0, ε). Because {fn}n∈N is uniformly Cauchy over S there exists Nε ∈ N
such that

m,n ≥ Nε =⇒ ‖fn − fm‖B(S) < ηε .

Therefore for every x ∈ S we have

m,n ≥ Nε =⇒ |fn(x)− fm(x)| < ηε .

By letting m→∞ in the above we see that

n ≥ Nε =⇒ |fn(x)− f(x)| ≤ ηε < ε ,

which implies that
n ≥ Nε =⇒ ‖fn − f‖B(S) ≤ ηε < ε .

Therefore fn → f uniformly over S. �
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13. Series of Functions

In the 1800s much mathematical attention was focused on series of simple functions that
defined other functions. The two most important examples of such series are power series and
trigonometric series.

Power series have the form

(13.1)
∞∑
k=0

ckx
k .

These define functions as sums of monomials. They are natural extensions of polynomials that
were studied long before the time of Newton and Liebniz. Newton used power series to express
solutions of differential equations. This technique became wide spread in the 1800s.

Trigonometric series have the form

(13.2) 1
2
a0 +

∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
.

These define 2π-periodic functions as sums of basic trigonometric functions. They were used in
the 1700s by D. Bernoulli and L. Euler to express certain continuous periodic functions. In 1807
J. Fourier claimed that periodic functions with jump discontinuities could also be expressed
as such a sum. At that time this claim was controversial because then many (maybe most)
mathematicians did not believe that summing nice functions like cos(kx) and sin(kx) could ever
produce functions with jump discontinuities! This controversy drove much of the work in the
1800s to understand the sense in which such series converge. For example, Riemann developed
his integral theory as part of this effort. Eventually Fourier was proven correct. Trigonometric
series are also called Fourier series to recognize the importance of his work.

13.1. Uniform Convergence for Series of Functions. Now consider a sequence {hk}∞k=0

of real-valued functions defined over a common domain D ⊂ R. For each x ∈ D consider the
infinite series

∞∑
k=0

hk(x) .

Let S = {x ∈ D : the above series converges}. Define a function f : S → R by

(13.3) f(x) =
∞∑
k=0

hk(x) for every x ∈ S .

This states that the associated sequence of partial sums converges to f pointwise over S. The
set S is called the domain of convergence for the series.

The following notions of uniform convergence for series of functions are natural.

Definition 13.1. The series of functions (13.3) is said to converge uniformly over a set S if
the associated sequence of partial sums converges to f uniformly over S. It is said to converge
absolutely uniformly over a set S if the sequence of partial sums associated with |hk| converges
uniformly over S.

With this definition of uniform convergence for series the following propositions are immediate
corollaries of Propositions 12.4, 12.5, 12.6, and 12.7.
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Proposition 13.1. Let S ⊂ R. Let {hk}∞k=0 be a sequence of functions in B(S) such that

∞∑
k=0

hk converges uniformly over S .

Let f : S → R be defined by

f(x) =
∞∑
k=0

hk(x) for every x ∈ S .

Then we have the following.

• If each hk is continuous over S then f is continuous over S.
• If each hk is uniformly continuous over S then f is uniformly continuous over S.

Proof. Exercise.

The next proposition gives conditions that permit term-by-term integration of infinite series.

Proposition 13.2. Let [a, b] ⊂ R. Let {hk}∞k=0 be a sequence of functions in B([a, b]) such that

∞∑
k=0

hk converges uniformly over [a, b] .

Let f : [a, b]→ R be defined by

f(x) =
∞∑
k=0

hk(x) for every x ∈ [a, b] .

If each hk is Riemann integrable over [a, b] then f is Riemann integrable over [a, b] with∫ b

a

f =
∞∑
k=0

∫ b

a

hk .

Proof. Exercise.

The next proposition gives conditions that permit term-by-term differentiation of infinite
series.

Proposition 13.3. Let [a, b] ⊂ R. Let {hk}∞k=0 be a sequence of continuously differentiable
functions over [a, b] such that

∞∑
k=0

hk and
∞∑
k=0

h′k converge uniformly over [a, b] .

Let f : [a, b]→ R be defined by

f(x) =
∞∑
k=0

hk(x) for every x ∈ [a, b] .

Then f is continuously differentiable over [a, b] with

f ′(x) =
∞∑
k=0

h′k(x) for every x ∈ [a, b] .
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Proof. Exercise.

Exercise. Prove Proposition 13.1.

Exercise. Prove Proposition 13.2.

Exercise. Prove Proposition 13.3.

In order to apply Propositions 13.1, 13.2, and 13.3, we need a useful criterion that tells us
when a series of functions converges uniformly over a set S. Weierstrass gave such a criterion
for series based upon Proposition 12.11, the Weierstrass Criterion for sequences of functions.

Proposition 13.4. (Weierstrass M-Test) Let S ⊂ R. Let {hk}∞k=0 be a sequence of functions
in B(S) that satisfies

(13.4)
∞∑
k=0

‖hk‖B(S) <∞ .

Then

(13.5)
∞∑
k=0

hk converges absolutely uniformly over S .

Remark. This is called the Weierstrass M -Test because he used the notation Mk = ‖hk‖B(S)

in (13.4). He used this notation because he called Mk the majorizer of hk.

Proof. Let fn be the nth partial sum of (13.4), which for each n ∈ N is the function over S
defined by

fn(x) =
n∑
k=0

hk(x) for every x ∈ S .

We will show that the sequence {fn} is uniformly Cauchy, and thereby is uniformly convergent
by the Weierstrass Criterion, Proposition 12.11.

Let ε > 0. By condition (13.4) there exists an Nε ∈ N such that

∞∑
k=Nε

‖hk‖B(S) < ε .

Let m,n ≥ Nε. Without loss of generality we can assume that m < n. Then

‖fn − fm‖B(S) =

∥∥∥∥∥
n∑

k=m+1

hk

∥∥∥∥∥
B(S)

≤
n∑

k=m+1

‖hk‖B(S) ≤
∞∑

k=Nε

‖hk‖B(S) < ε .

Therefore the sequence {fn} is uniformly Cauchy, and thereby is uniformly convergent by the
Weierstrass Criterion, Proposition 12.11.

Finally, because the sequence {hk}∞k=0 satisfies condition (13.4), the sequence {|hk|}∞k=0 also
satisfies condition (13.4). Therefore, by what we have already proved, the series associated with
{|hk|}∞k=0 is uniformly convergent over S. Therefore the series in (13.5) converges absolutely
uniformly over S. �
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13.2. Power Series. We now apply the propositions from the previous section to power series.
In order to apply the Root Test to the power series (13.1), we compute

ρ = lim sup
k→∞

∣∣ckxk∣∣ 1k = |x| lim sup
k→∞

|ck|
1
k .

The Root Test states the series converges absolutely when ρ < 1 and diverges when ρ > 1.
Therefore the series (13.1) converges absolutely when |x| < R and diverges when |x| > R where

(13.6)
1

R
= lim sup

k→∞
|ck|

1
k ,

with R = 0 when the lim sup is ∞, and R =∞ when the lim sup is 0. The number R is called
the radius of convergence for the power series (13.1).

The Root Test shows that the set of x for which the power series converges is an interval,
the so-called interval of convergence of the power series (13.1).

• When R =∞ the interval of convergence is (−∞,∞) = R.

• When R = 0 the interval of convergence is [0, 0], which is the singleton set {0}.
• When 0 < R <∞ the interval of convergence will be either

(−R,R) , [−R,R) , (−R,R] , or [−R,R] ,

depending upon the convergence or divergence of the series
∞∑
k=0

ck(−R)k and
∞∑
k=0

ckR
k .

These endpoint cases must be analyzed by other convergence tests.

The power series (13.1) converges to a function f(x) over this interval of convergence and
diverges outside of it. This result is called the Cauchy-Hadamard Theorem because Cauchy
gave a form of it in his 1821 lecture notes and Hadamard published it in 1888.

We now consider those power series (13.1) with a radius of convergence R > 0 and interval
of convergence I. We have the following.

Proposition 13.5. Let the power series (13.1) have radius of convergence R > 0 and interval
of convergence I. For every x ∈ I let f(x) be the sum of this series.

Then the series converges absolutely to f uniformly over [a, b] for every [a, b] ⊂ (−R,R).
The function f is uniformly continuous over every [a, b] ⊂ (−R,R) and

(13.7)

∫ b

a

f =
∞∑
k=0

ck

∫ b

a

xk =
∞∑
k=0

ck
bk+1 − ak+1

k + 1
.

The function f is infinitely differentiable over (−R,R) with f (n) for each n ∈ N given by

(13.8) f (n)(x) =
∞∑
k=0

(k + n)!

n!
ck+n x

k for every x ∈ (−R,R) .

Remark. This result states that functions defined by power series with radius of convergence
R are infinitely differentiable over (−R,R) with derivatives that are also given by power series
with the same radius of convergence. Moreover, formula (13.8) shows that the power series for
the derivatives are obtained via term-by-term differentation of the power series for the function.
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Proof. Let [a, b] ⊂ (−R,R). Let r ∈ (0, R) such that [a, b] ⊂ [−r, r]. Let s ∈ (r, R). Because

lim sup
k→∞

|ck|
1
k =

1

R
<

1

s
.

It follows that

(13.9) |ck| <
1

sk
eventually as k →∞ .

This implies that

‖ckxk‖B([a,b]) <
rk

sk
eventually as k →∞ .

By the Direct Comparison Test, we conclude that
∞∑
k=0

‖ckxk‖B([a,b]) <∞ .

Then by the Weierstrass M -Test, the series converges absolutely to f uniformly over [a, b],
where [a, b] ⊂ (−R,R) was arbitrary.

Because ckx
k is uniformly continuous over every [a, b] ⊂ (−R,R), Proposition 13.1 implies

that the function f is uniformly continuous over every [a, b] ⊂ (−R,R). Proposition 13.2 then
implies that (13.7) holds.

In order to show that f is infinitely differentiable with f (n) given by (13.8) for every n ∈ N,
we first show that for every [a, b] ⊂ (−R,R) we have

(13.10)
∞∑
k=0

(k + n)!

n!
‖ck+n xk‖B([a,b]) <∞ .

Let r ∈ (0, R) such that [a, b] ⊂ [−r, r]. Let s ∈ (r, R). By (13.9) and the fact that |xk| ≤ rk

we have

‖ck+nxk‖B([a,b]) <
rk

sk+n
eventually as k →∞ .

Because r < s, the Direct Comparison Test implies that (13.10) holds because it can be shown
for every n ∈ N that

(13.11)
∞∑
k=0

(k + n)!

n!

rk

sk+n
=

n! s

(s− r)n+1
<∞ .

Therefore the Weierstrass M -Test, Proposition 13.4, implies that
∞∑
k=0

(k + n)!

n!
ck+n x

k converges uniformly over [a, b] .

Hence, if f is n-times continuously differentiable and f (n) is given by (13.8) for some n ∈ N
then Proposition 13.3 implies that f is (n+1)-times continuously differentiable and that f (n+1)

is given by (13.8). Therefore by induction on n we conclude that f is infinitely differentiable
and that f (n) is given by (13.8) for every n ∈ N. �

Exercise. Prove (13.11) by first showing that for every ρ ∈ (0, 1) and every n ∈ N we have
∞∑
k=0

(k + n)!

n!
ρk =

n!

(1− ρ)n+1
.
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13.3. Fourier Series. We now apply the Weierstrass M -Test, Proposition 13.4, along with
Propositions 13.1 and 13.2 to the Fourier series (13.2). We start with the following proposition.

Proposition 13.6. Let {ak}∞k=0 and {bk}∞k=1 be real sequences such that

(13.12)
∞∑
k=1

(|ak|+ |bk|) <∞ .

Then the Fourier series (13.2) converges uniformly over R. Its sum defines a function f that
is 2π-periodic and uniformly continuous over R. In other words, there exits a 2π-periodic,
uniformly continuous function f over R such that

(13.13) f(x) = 1
2
a0 +

∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
for every x ∈ R .

Moreover, the {ak}∞k=0 and {bk}∞k=1 are related to f by

(13.14)

ak =
1

π

∫ π

−π
f(x) cos(kx) dx for every k ∈ N ,

bk =
1

π

∫ π

−π
f(x) sin(kx) dx for every k ∈ Z+ .

Proof. We apply the and the Weierstrass M -Test, Proposition 13.4, with

hk(x) = ak cos(kx) + bk sin(kx) for every k ∈ Z+ and x ∈ R .

It is clear that

|hk(x)| ≤ |ak cos(kx)|+ |bk sin(kx)| ≤ |ak|+ |bk| for every k ∈ Z+ and x ∈ R .

Therefore

‖hk‖B(R) ≤ |ak|+ |bk| for every k ∈ Z+ .

By hypothesis (13.12) and the Weierstrass M -Test, Proposition 13.4, the Fourier series on the
right-hand side of (13.13) converges absolutely uniformly over R. Therefore we can define f(x)
by equation (13.13).

Because each hk is uniformly continuous over R, Proposition Proposition 13.1 implies that
f is uniformly continuous over R. In particular, f is Riemann integrable over every closed
bounded interval [a, b] We leave as an exercise the task of showing that f is 2π-periodic.

Let j ∈ N and multiply relation (13.13) by cos(jx) to obtain the relation

f(x) cos(jx) = 1
2
a0 cos(jx) +

∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
cos(jx) .

Now apply Proposition 13.2 with [a, b] = [−π, π] and

hk(x) =
(
ak cos(kx) + bk sin(kx)

)
cos(jx) for every k ∈ Z+ and x ∈ R .

We obtain∫ π

−π
f(x) cos(jx) dx = 1

2
a0

∫ π

−π
cos(jx) dx+

∞∑
k=1

∫ π

−π

(
ak cos(kx) + bk sin(kx)

)
cos(jx) dx .
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Next, we evaluate each term in the above sum by using the facts that∫ π

−π
cos(jx) dx = 2πδj0 , for every j ∈ N ,∫ π

−π
cos(kx) cos(jx) dx = πδjk , for every j ∈ N and k ∈ Z+ ,∫ π

−π
sin(kx) cos(jx) dx = 0 , for every j, k ∈ Z+ ,

where δjk is the Kronecker delta. We see that all terms in the sum vanish except one, leaving
us with ∫ π

−π
f(x) cos(jx) dx = πaj .

This gives us the first relation in (13.14).

We leave as an exercise the task of getting the second relation in (13.14). �

Exercise. Show that f given by (13.13) is 2π-periodic.

Exercise. Show that the second relation in (13.14) holds.

Now comes the question of whether we can express any continuous, 2π-periodic function f
as the sum (13.13) with {ak}∞k=0 and {bk}∞k=1 given by formulas (13.14). In this context the
sum (13.13) is called the Fourier expansion of f while the ak and bk are called the Fourier
coefficients of f . Because the Fourier coefficients are defined for any continuous, 2π-periodic
function f , the only difficulty that can arise is a breakdown of the Fourier expansion (13.13).

Of course, if the Fourier coefficients ak and bk of every continuous, 2π-periodic function f
satisfy condition (13.12) then there would be no breakdown of the Fourier expansion (13.13).
However, that is not the case. As it turns out, the set of continuous, 2π-periodic functions is
not natural for Fourier series.

When and how the Fourier expansion (13.13) makes sense was perhaps the most central
question in mathematics through most of the 19th and much of the 20th century. It started in
1807 when Joseph Fourier submitted his article on the heat equation for publication. In it he
asserted that the expansion that now bares his name is valid for a wide class of funtions, in-
cluding some with jump discontinuities. This was simply not believed by most mathematicians
at the time. His paper would not be published until 1822. Much of the theory that we have
covered in this course was developed to address this question. This includes the theory of the
Riemann integral and the modern construction of the real numbers. Moreover, the Lebesgue
integral, harmonic analysis, aspects of complex analysis, and many other area were developed
to help address this question.
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14. Everywhere Continuous, Nowhere Differentiable Functions

In 1872 Karl Weierstrass startled the mathematical world by giving examples of functions that
where continuous everywhere but differentiable nowhere. Specifically, he considered functions
of the form

(14.1) f(x) =
∞∑
k=0

ak cos
(
bkx
)
, where 0 < a < 1 < b with ab ≥ 1 .

It is clear by the Weierstrass M -test that this series converges uniformly over R, and thereby
defines a function f that is continuous over R. It is equally clear that if ab < 1 then this
function would be continuously differentiable over R with

f ′(x) = −
∞∑
k=0

akbk sin
(
bkx
)
.

Therefore if the function f defined by (14.1) is nondifferentable somewhere in R then ab ≥ 1.
Weierstrass showed that if b is an odd integer that satisfies ab > 1+ 3

2
π then f is not differentiable

anywhere in R. These conditions on b were reduced to the necessary condition ab ≥ 1 in 1916
when Godfrey Harold Hardy showed that every function f defined by (14.1) is not differentiable
anywhere in R!

We will not prove the theorem of Hardy. Rather, we will give a different construction of an
everywhere continuous, nowhere differentiable function built up from so-called zigzag functions.

14.1. Zigzag Functions. The basic building block of our construction will be the unit zigzag
function z, which we define for every x ∈ R by

(14.2) z(x) =

{
2n− x when x ∈ [2n− 1, 2n) for some n ∈ Z ,
x− 2n when x ∈ [2n, 2n+ 1) for some n ∈ Z .

Clearly z is a continuous, periodic function with

(14.3) z(x+ 2) = z(x) , 0 ≤ z(x) ≤ 1 , for every x ∈ R .
It is also piecewise differentiable over R with

(14.4) z′(x) =

{
−1 when x ∈ (2n− 1, 2n) for some n ∈ Z ,
1 when x ∈ (2n, 2n+ 1) for some n ∈ Z .

It is not differentiable for x ∈ Z.

Let { zk}k∈N be the sequence of zigzag functions defined by

(14.5) zk(x) = 4−k z
(
4kx
)
.

Clearly zk is a continuous, periodic function with

(14.6) zk(x+ 2 · 4−k) = zk(x) , 0 ≤ zk(x) ≤ 4−k , for every x ∈ R .
It is piecewise differentiable over R with

(14.7) z′k(x) =

{
−1 when x ∈ (2n−1

4k
, 2n
4k

) for some n ∈ Z ,
1 when x ∈ (2n

4k
, 2n+1

4k
) for some n ∈ Z .

It is not differentiable at points x ∈ R such that 4kx ∈ Z.
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14.2. An Everywhere Continuous Function. Because the unit zigzag function z satisfies
0 ≤ z(x) ≤ z(1) = 1 for every x ∈ R, we see that it is in B(R) and satisfies

‖ z‖B(R) = 1 .

Because zk(x) = 4−k z(4kx) for every x ∈ R and k ∈ N, we see that zk ∈ B(R) for every k ∈ N,
and that

(14.8) ‖ zk‖B(R) = 4−k for every k ∈ N .

The geometric series summation formula with r = 4−1 then shows that
∞∑
k=0

‖ zk‖B(R) =
∞∑
k=0

4−k =
1

1− 4−1
=

4

3
<∞ .

The Weierstrass M -Test then implies that the series

(14.9)
∞∑
k=0

zk converges absolutely uniformly over R .

Therefore we can define a function h : R→ R by

(14.10) h(x) =
∞∑
k=0

zk(x) for every x ∈ R .

By Proposition 13.1 the function h is continuous over R. In the next section we will show that
h is not differentiable at any point of R.

Exercise. Prove that h defined by (14.10) is periodic with period 2.

Exercise. Prove that h defined by (14.10) is unifromly continuous over R.

14.3. That is Nowhere Differentiable. We want to show that the function h defined by
(14.10) is nowhere differentiable. This means that h is not differentiable at any point of R.
More specifically, we want to show for every x ∈ R that

(14.11) lim
y→x

h(y)− h(x)

y − x
diverges .

It suffices to show for every x ∈ R that there exists a sequence {xn}n∈N ⊂ R− {x} such that

(14.12) lim
n→∞

xn = x , but lim
n→∞

h(xn)− h(x)

xn − x
diverges .

The construction of the sequence {xn}n∈N is based upon the observation that for every x ∈ R
the unit zigzag function z either is monotonic on [x, x + 1

2
] or is monotonic on [x− 1

2
, x]. The

graph of z should make this clear. It follows that for every x ∈ R and every n ∈ N the zigzag
function zn either is monotonic on [x, x+ 1

2
· 4−n] or is monotonic on [x− 1

2
· 4−n, x].

Now let x ∈ R. By the paragraph above, we can define the sequence {xn}n∈N by

(14.13) xn =

{
x+ 1

2
· 4−n if zn is monotonic on [x, x+ 1

2
· 4−n] ,

x− 1
2
· 4−n otherwise .

Because |xn − x| = 1
2
· 4−n, it is clear that

lim
n→∞

xn = x .
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In order to establish (14.12) it remains to prove that

(14.14) lim
n→∞

h(xn)− h(x)

xn − x
diverges .

The proof of (14.14) is based upon two more observations. First, if k > n then 4k−n+1 ∈ Z
and, because z is 2-periodic, we have

zk(xn) = 4−k z
(
4k
(
x± 1

2
· 4−n

))
= 4−k z

(
4kx± 1

2
· 4k−n

)
= 4−k z

(
4kx± 2 · 4k−n−1

)
= 4−k z

(
4kx
)

= zk(x) .

Second, if k ≤ n then:

• if zn is monotonic on [x, x+ 1
2
· 4−n] then zk is monotonic on [x, x+ 1

2
· 4−n];

• if zn is monotonic on [x− 1
2
· 4−n, x] then zk is monotonic on [x− 1

2
· 4−n, x].

This means that if k ≤ n then
zk(xn)− zk(x)

xn − x
= ±1 .

Upon combining definition (14.10) of h with these observations we see that

(14.15)
h(xn)− h(x)

xn − x
=
∞∑
k=0

zk(xn)− zk(x)

xn − x
=

n∑
k=0

zk(xn)− zk(x)

xn − x
=

n∑
k=0

±1 .

It follows that ∣∣∣∣h(xn+1)− h(x)

xn+1 − x
− h(xn)− h(x)

xn − x

∣∣∣∣ = 1 ,

whereby (14.14) is satisfied for this sequence. Therefore h is nowhere differentiable over R. �
Remark. It follows from (14.15) that

h(xn)− h(x)

xn − x
=

{
odd when n is even ,

even when n is odd .

Remark. It turns out that most continuous functions are nowhere differentiable. This sense
in which this is true is beyond what we can do here.
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15. Weierstrass Approximation Theorem

In 1885 Karl Weierstrass showed that every continuous real-valued function f over a compact
interval [a, b] can be uniformly approximated by polynomials. Without loss of generality we can
consider the case [a, b] = [0, 1]. Let C([0, 1]) be the set of all continuous functions f : [0, 1]→ R.
Because every continuous function over [0, 1] is bounded, we know that C([0, 1]) ⊂ B([0, 1]).

15.1. Bernstein Polynomial Approximation. In 1912 Sergei Bernstein gave a proof of the
Weierstrass Theorem that used an explicit sequence of approximating polynomials. Specifically,
given any f ∈ C([0, 1]) and n ∈ Z+ he defined the so-called nth Bernstein approximating
polynomial by

(15.1) Bnf(x) =
n∑

m=0

f
(
m
n

)
bnm(x) ,

where bnm(x) are the so-called Bernstein basis polynomials that for every n ∈ Z+ and every
m ∈ {0, · · · , n} are defined by

(15.2) bnm(x) =
n!

m!(n−m)!
xm(1− x)n−m .

Each bnm(x) is a polynomial of degree n that is positive over the interval (0, 1). Because

d

dx
bnm(x) =

n!

m!(n−m)!
xm−1(1− x)n−m−1(m− nx) ,

we see that bnm(x) has a unique maximizer over the interval [0, 1] at the point x = m
n

. For
every n ∈ Z+ the Bernstein basis polynomials {bnm(x)}nm=0 form a basis for the linear space of
polynomials of degree at most n. Therefore each Bnf(x) is a polynomial of degree at most n.
Bernstein proved that these polynomials uniformly approximate f over [0, 1].

Exercise. Prove that for every n ∈ Z+ and for every m ∈ {0, · · · , n} the Bernstein basis
polynomial bnm(x) given by (15.2) has degree n, is positive over the interval (0, 1), and has a
unique maximizer over the interval [0, 1] at the point x = m

n
.

Exercise. The Bernstein basis polynomials of degree 4 are

b40(x) = (1− x)4 ,

b41(x) = 4x(1− x)3 ,

b42(x) = 6x2(1− x)2 ,

b43(x) = 4x3(1− x) ,

b44(x) = x4 .

Sketch these polynomials over [0, 1] on a single graph.

Exercise. Prove that for every n ∈ Z+ the Bernstein basis polynomials {bnm(x)}nm=0 form a
basis for the linear space of polynomials of degree at most n. (Hint: Show they are linearly
independent.)
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15.2. Three Elementary Identities. The proof of the Weierstrass Approximation Theorem
requires three elementry identites, which we record in the following lemma.

Lemma 15.1. For every n ∈ Z+ we have elementary identities

(15.3) Bn1 = 1 , Bnx = x , Bnx2 = x2 +
x(1− x)

n
.

Remark. The last identity in (15.3) shows that the Bernstein approximating polynomials
Bnf(x) do not generally converge to f(x) quickly. Specifically, it shows that Bnx2 converges to
x2 like 1/n everywhere in (0, 1). This rate of convergence is typical for the Bernstein approx-
imating polynomials. This is why they are not used for building accurate approximations in
practice. However, they have properties that make them useful for other tasks.

Proof. For every x, y ∈ R every and every n ∈ Z+ the binomial formula yields

n∑
m=0

n!

m!(n−m)!
xmyn−m = (x+ y)n .

By applying x∂x and (x∂x)
2 to this identity we obtain

n∑
m=0

n!

m!(n−m)!
mxmyn−m = nx(x+ y)n−1 ,

n∑
m=0

n!

m!(n−m)!
m2xmyn−m = n(n− 1)x2(x+ y)n−2 + nx(x+ y)n−1 .

By setting y = 1 − x in the three foregoing identities and by using definition (15.2) of the
Bernstiein basis polynomials we see that

n∑
m=0

bnm(x) =
n∑

m=0

n!

m!(n−m)!
xm(1− x)n−m = 1 ,

n∑
m=0

mbnm(x) =
n∑

m=0

n!

m!(n−m)!
mxm(1− x)n−m = nx ,

n∑
m=0

m2bnm(x) =
n∑

m=0

n!

m!(n−m)!
m2xm(1− x)n−m = n(n− 1)x2 + nx .

Identites (15.4) follow from these and from definition (15.1) of Bnf(x) with f(x) = 1, f(x) = x,
and f(x) = x2 respectively. �

Remark. The identites (15.3) are the zeroth, first, and second moments of the binomial
probability distribution for Bernoulli trials with probability of success x. Both the identities
and the foregoing proof might look familiar to those who have studied those distributions. This
connection with the binomial probability was at the heart of how Bernstein approached the
problem.

Remark. We could continue in the style of the proof of Lemma 15.1 to derive expressions for
Bnxk for every k ∈ N. These expressions show that Bnxk converges to xk like 1/n as n → ∞.
However, we need only the expressions in (15.3) to prove that Bnf(x) converges uniformly to
f(x) like 1/n as n→∞ for a much more general class of functions f .
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15.3. Bernstein Approximation Bound. The key bound in the Bernstein proof of the
Weierstrass Approximation Theorem is provided by the following lemma.

Lemma 15.2. Let f be twice continuously differentiable over [0, 1]. Then for every n ∈ Z+ we
have the pointwise bounds

(15.4) K
x(1− x)

2n
≤ Bnf(x)− f(x) ≤ K

x(1− x)

2n
for every x ∈ [0, 1] ,

where K and K are given by

(15.5) K = min
{
f ′′(x) : x ∈ [0, 1]

}
, K = max

{
f ′′(x) : x ∈ [0, 1]

}
.

Remark. Because x(1− x) ≤ 1
4

over [0, 1], the pointwise bounds in (15.4) imply the uniform
bound

(15.6)
∣∣Bnf(x)− f(x)

∣∣ ≤ K

8n
, where K = max{K,−K} = max

{
|f ′′(x)| : x ∈ [0, 1]

}
.

This uniform bound will be used in the proof of the Weierstrass Approximation Theorem. It
shows that when f is twice continuously differentiable the Bernstein approximating polynomials
Bnf converge uniformly to f over [0, 1] at least as fast as 1/n as n→∞.

Remark. Because f ′′ is continuous over [0, 1] the lower pointwise bound in (15.4) will be
nonzero if and only if f ′′(x) is either always positive or always negative over [0, 1]. In this case
the lower pointwise bound shows that the Bernstein approximating polynomials Bnf converge
uniformly to f over [0, 1] no faster than 1/n as n→∞.

Remark. When f is a polynomial of degree two then K = K. In that case the lower and upper
pointwise bounds in (15.4) are equal. They are consistent with the third identity in (15.3).

Proof. Let n ∈ Z+. Let x ∈ [0, 1]. Because f is twice differentiable over [0, 1], the Lagrange
Remainder Theorem states that for every m ∈ {0, · · · , n} there exists a point zm between x
and m

n
such that

f
(
m
n

)
= f(x) + f ′(x)

(
m
n
− x
)

+ 1
2
f ′′(zm)

(
m
n
− x
)2
.

Then by the identities (15.3) we have

Bnf(x)− f(x) =
n∑

m=0

(
f
(
m
n

)
− f(x)

)
bnm(x)

=
n∑

m=0

f ′(x)
(
m
n
− x
)
bnm(x) +

n∑
m=0

1
2
f ′′(zm)

(
m
n
− x
)2
bnm(x)

=
n∑

m=0

1
2
f ′′(zm)

(
m
n
− x
)2
bnm(x) .

Because bnm(x) ≥ 0, the definitions of K and K given by (15.5) implies that

K
1

2

n∑
m=0

(
m
n
− x
)2
bnm(x) ≤ Bnf(x)− f(x) ≤ K

1

2

n∑
m=0

(
m
n
− x
)2
bnm(x) .
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The identities (15.3) can be used to evaluate the sums above as
n∑

m=0

(
m
n
− x
)2
bnm(x) = Bnx2 − 2xBnx+ x2Bn1

=

(
x2 +

x(1− x)

n

)
− 2x · x+ x2 · 1 =

x(1− x)

n
.

Therefore the pointwise bounds (15.4) hold for every n ∈ Z+. �

15.4. Proof of the Weierstrass Approximation Theorem. Lemma 15.2 shows that every
twice continuously differentiable function over [0, 1] is uniformly approximated by its sequence
of Bernstein approximating polynomials. The Weierstrass Approximation Theorem asserts that
the same is true for every continuous function over [0, 1]. In order to prove it we must show
that for every f ∈ C([0, 1]) and every ε > 0 we can find g ∈ C2([0, 1]) such that ‖f − g‖ < 1

3
ε.

Given this fact, a proof of the Weierstrass Approximation Theorem goes as follows.

Proof. Let f ∈ C([0, 1]). Let ε > 0. We want to show that ‖Bnf − f‖ < ε eventually as
n→∞. Let g ∈ C2([0, 1]) such that ‖f − g‖ < 1

3
ε. Then

‖Bnf − Bng‖ < 1
3
ε for every n ∈ Z+ .

Let K = ‖g′′‖. Then for every n ∈ Z+ we have

‖Bnf − f‖ ≤ ‖Bnf − Bng‖+ ‖Bng − g‖+ ‖g − f‖ < 1
3
ε+

K

8n
+ 1

3
ε .

Therefore ‖Bnf − f‖ < ε for every n > 3
8
K/ε. �

Exercise. Complete the proof of the Weierstrass Approximation Theorem by showing that for
every f ∈ C([0, 1]) and every ε > 0 we can find g ∈ C2([0, 1]) such that ‖f − g‖ < ε.


