Fifteenth Homework: MATH 410 Due Friday, 13 December 2019 (but not collected!)

- 1. Let $\{a_k\}_{k\in\mathbb{N}}$ and $\{b_k\}_{k\in\mathbb{N}}$ be bounded, positive sequences in \mathbb{R} .
 - (a) Prove that

$$\limsup_{k \to \infty} (a_k b_k) \le \left(\limsup_{k \to \infty} a_k\right) \left(\limsup_{k \to \infty} b_k\right).$$

- (b) Give an example for which equality does not hold above.
- 2. Determine the set of $a \in \mathbb{R}$ for which the following formal infinite series converge. Give your reasoning.

(a)
$$\sum_{n=1}^{\infty} \frac{a^n}{n3^n}$$

(b)
$$\sum_{k=1}^{\infty} \left(\frac{k^2+1}{k^4+1}\right)^a$$

3. Let $[a,b] \subset \mathbb{R}$ be a closed, bounded interval. Let $f : [a,b] \to [a,b]$. Suppose there exists an $M \in (0,1)$ such that

$$|f(x) - f(y)| \le M |x - y|$$
 for every $x, y \in [a, b]$.

Let $x_0 \in [a, b]$. Define a sequence $\{x_n\}_{n=0}^{\infty}$ by

$$x_{n+1} = f(x_n)$$
 for every $n \in \mathbb{N}$.

Show that $\{x_n\}_{n=0}^{\infty}$ is a Cauchy sequence. (Hint: Consider $x_{n+1} - x_n = f(x_n) - f(x_{n-1})$.)

4. Let $f: (a, b) \to \mathbb{R}$ be differentiable at a point $c \in (a, b)$ with f'(c) > 0. Show that there exists a $\delta > 0$ such that

$$\begin{aligned} x &\in (c - \delta, c) \subset (a, b) \implies f(x) < f(c) \,, \\ x &\in (c, c + \delta) \subset (a, b) \implies f(c) < f(x) \,, \end{aligned}$$

- 5. Let $f : [a, b] \to \mathbb{R}$ and $g : [a, b] \to \mathbb{R}$ be Riemann integrable over [a, b]. Prove that f + g is Riemann integrable over [a, b].
- 6. Let $\alpha \in (0,1]$ and $K \in \mathbb{R}_+$ such that the function $f : [a,b] \to \mathbb{R}$ satisfy the Hölder bound

$$|f(x) - f(y)| < K |x - y|^{\alpha}$$
 for every $x, y \in [a, b]$.

- (a) Show that f is uniformly continuous over [a, b].
- (b) Show that for every partition P of [a, b] one has

$$0 \leq U(f,P) - L(f,P) < |P|^{\alpha} K \left(b - a \right).$$

7. Prove that every countable subset of \mathbb{R} has measure zero.

More Problems on the back of this Page.

- 8. For every $n \in \mathbb{Z}_+$ define $h_n(x) = nx(1+nx)^{-2}$ for every $x \in [0,\infty)$.
 - (a) Prove that $h_n \to 0$ pointwise over $[0, \infty)$.
 - (b) Prove that this limit is not uniform over $[0, \infty)$.
 - (c) Prove that this limit is uniform over $[\delta, \infty)$ for every $\delta > 0$.
- 9. Let $f:[a,b] \to \mathbb{R}$ be continuous. Prove that there exists $p \in (a,b)$ such that

$$f(p) = \frac{1}{e^b - e^a} \int_a^b f(x) e^x \,\mathrm{d}x$$

10. Consider a function f defined by

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{4^k} \sin(3^k x),$$

for every $x \in \mathbb{R}$ for which the above series converges.

- (a) Show that f is defined for every $x \in \mathbb{R}$.
- (b) Show that the series converges uniformly over \mathbb{R} .
- (c) Show that f is continuously differentiable over \mathbb{R} and that

$$f'(x) = \sum_{k=0}^{\infty} \frac{3^k}{4^k} \cos(3^k x) \,.$$

11. For every $n \in \mathbb{Z}_+$ define $f_n(x) = n(1+nx)^{-2}$ for every $x \in [0,\infty)$.

(a) Prove for every $\delta > 0$ that

$$\lim_{n \to \infty} f_n = 0 \qquad \text{uniformly over } [\delta, \infty) \,.$$

(b) Prove for every $\delta > 0$ that

$$\lim_{n \to \infty} \int_0^\delta f_n = 1 \,.$$

(c) Let $g: [0,1] \to \mathbb{R}$ be continuous. Show that

$$\lim_{n \to \infty} \int_0^1 f_n g = g(0) \,.$$

12. Given that for every x > -1 and every $n \in \mathbb{Z}_+$ we have

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n}\log(1+x) = (-1)^{n-1}\frac{(n-1)!}{(1+x)^n},$$

prove that

$$\log(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k \text{ for every } x \in (-1,1],$$

that the series converges uniformly over every $[-R, R] \subset (-1, 1)$, and that the series diverges for every real $x \notin (-1, 1]$.