Tenth Homework: MATH 410 Due Monday, 4 November 2019

- 1. Show that $f : \mathbb{R}_+ \to \mathbb{R}$ given by $f(x) = \sin(1/x)$ is not uniformly continuous.
- 2. Second exercise on page 44 of the notes.
- 3. Third exercise on page 44 of the notes.
- 4. Prove Proposition 8.6 on page 46 in the notes.
- 5. Give a counterexample to each of the following false assertions.
	- (a) If $f : \mathbb{R} \to \mathbb{R}$ is differentiable and increasing over \mathbb{R} then $f' > 0$ over \mathbb{R} .
	- (b) If $f : (a, b) \to \mathbb{R}$ is continuous then f has a minimum or a maximum over (a, b) .
- 6. Let $D \subset \mathbb{R}$ and $f: D \to \mathbb{R}$ be uniformly continuous over D. Let $\{x_k\}_{k\in\mathbb{N}}$ be a Cauchy sequence contained in D. Show that $\{f(x_k)\}_{k\in\mathbb{N}}$ is a convergent sequence.
- 7. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Prove it is continuous.
- 8. Let $f(x) = \sinh(x)$ for every $x \in \mathbb{R}$. Show that

$$
sinh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1}
$$
 for every $x \in \mathbb{R}$.

9. Evaluate the following limit. Give your reasoning.

$$
\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9} \, .
$$

10. Suppose that $f:(a,b)\to\mathbb{R}$ is twice differentiable and that $f'':(a,b)\to\mathbb{R}$ is bounded over (a, b) . Show that there exists an $M \in \mathbb{R}_+$ such that for every $x, y \in (a, b)$ we have

$$
\left|f'(x) - f'(y)\right| \le M \left|x - y\right|.
$$

11. Prove that for every $x > 0$ we have

$$
1 + \frac{3}{2}x < (1+x)^{\frac{3}{2}} < 1 + \frac{3}{2}x + \frac{3}{8}x^2.
$$

12. Let $D \subset \mathbb{R}$. A function $f: D \to \mathbb{R}$ is said to be Hölder continuous of order $\alpha \in (0,1]$ if there exists a $C \in \mathbb{R}_+$ such that for every $x, y \in D$ we have

$$
|f(x) - f(y)| \le C |x - y|^{\alpha}.
$$

Show that if $f: D \to \mathbb{R}$ is Hölder continuous of order α for some $\alpha \in (0,1]$ then it is uniformly continuous over D.

13. Let $\alpha \in (0,1)$. Let $f : [0,\infty) \to \mathbb{R}$ be defined by $f(x) = x^{\alpha}$. Show that f is uniformly continuous over $[0,\infty)$. Hint: Use the previous problem after showing that

$$
|x^{\alpha} - y^{\alpha}| \le |x - y|^{\alpha}
$$
 for every $x, y \in [0, \infty)$.

- 14. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose the equation $f'(x) = 0$ has at most one solution over $x \in \mathbb{R}$. Show the equation $f(x) = 0$ has at most two solutions over $x \in \mathbb{R}$.
- 15. Let $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$. Write negations of the following assertions.
	- (a) "For all sequences $\{x_k\}_{k\in\mathbb{N}}$ and $\{y_k\}_{k\in\mathbb{N}}$ contained in D we have

$$
\lim_{k \to \infty} |x_k - y_k| = 0 \implies \lim_{k \to \infty} |f(x_k) - f(y_k)| = 0
$$

(b) "For every $\epsilon > 0$ there exists a $\delta > 0$ such that for all points $x, y \in D$ we have

$$
|x - y| < \delta \quad \Longrightarrow \quad |f(x) - f(y)| < \epsilon \, .
$$