Second In-Class Exam Math 410, Professor David Levermore Friday, 1 November 2019

- 1. [10] Let $D \subset \mathbb{R}$ and $f : D \to \mathbb{R}$. Let c be a limit point of $D \cap (c, \infty)$. Write negations of the following assertions.
 - (a) "For every sequence $\{x_k\}_{k\in\mathbb{N}}\subset D\cap(c,\infty)$ we have

$$\lim_{k \to \infty} x_k - c = 0 \implies \lim_{k \to \infty} f(x_k) = -\infty.$$

(b) "For every $M \in \mathbb{R}$ there exists a $\delta > 0$ such that for every $x \in D$ we have

$$0 < x - c < \delta \implies f(x) < M ."$$

- 2. [10] Give (with reasoning) a counterexample to each of the following false assertions.
 (a) If f: (a, b) → ℝ is increasing and one-to-one then it is continuous over (a, b).
 (b) If f: (a, b) → ℝ is differentiable and decreasing then f' < 0 over (a, b).
- 3. [15] Let $f: (a,b) \to \mathbb{R}$ be differentiable at a point $c \in (a,b)$ with f'(c) > 0. Show that there exists a $\delta > 0$ such that

$$x \in (c - \delta, c) \subset (a, b) \implies f(x) < f(c),$$

$$x \in (c, c + \delta) \subset (a, b) \implies f(c) < f(x).$$

4. [15] If $f(x) = \sin(x)$ for every $x \in \mathbb{R}$ then for every $k \in \mathbb{N}$ we have

$$f^{(2k)}(x) = (-1)^k \sin(x), \qquad f^{(2k+1)}(x) = (-1)^k \cos(x) \qquad \text{for every } x \in \mathbb{R}.$$

Use this fact to show that

$$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
 for every $x \in \mathbb{R}$.

5. [15] Let $\alpha \in (0, 1)$ and x > 0. Define $g : [x, \infty) \to \mathbb{R}$ by

$$g(y) = (y - x)^{\alpha} - y^{\alpha} + x^{\alpha}$$
 for every $y \in [x, \infty)$.

Prove that g is increasing over $[x, \infty)$.

6. [15] Let p > 1. Prove that

$$1 + p x \le (1 + x)^p$$
 for every $x \ge -1$.

- 7. [10] Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose the equation f'(x) = 0 has at most two real solutions. Prove that the equation f(x) = 0 has at most three real solutions.
- 8. [10] Let $D \subset \mathbb{R}$. Recall that a function $f : D \to \mathbb{R}$ is said to be Hölder continuous of order $\alpha \in (0, 1)$ if there exists a $C \in \mathbb{R}_+$ such that

$$|f(y) - f(x)| \le C |y - x|^{\alpha}$$
 for every $x, y \in D$.

Prove that if $f: D \to \mathbb{R}$ is Hölder continuous of order α for some $\alpha \in (0, 1)$ then it is uniformly continuous over D.